
Towards Memory-Load Balanced Fast Fourier
Transformations in Fine-grain Execution Models

Chen Chen, Yao Wu, Stéphane Zuckerman, and Guang R. Gao
Electrical and Computer Engineering Department

University of Delaware
Newark, DE 19716, USA

Email: {chenchen,yaowu,szuckerm,ggao}@capsl.udel.edu

Abstract—The codelet model is a fine-grain dataflow-inspired
program execution model that balances the parallelism and
overhead of the runtime system. It plays an important role
in terms of performance, scalability, and energy efficiency in
exascale studies such as the DARPA UHPC project and the DOE
X-Stack project.

As an important application, the Fast Fourier Transform
(FFT) has been deeply studied in fine-grain models, including
the codelet model. However, the existing work focuses on how
fine-grain models achieve more balanced workload comparing
to traditional coarse-grain models. In this paper, we make an
important observation that the flexibility of execution order
of tasks in fine-grain models improves utilization of memory
bandwidth as well. We use the codelet model and the FFT
application as a case study to show that a proper execution order
of tasks (or codelets) can significantly reduce memory contention
and thus improve performance. We propose an algorithm that
provides a heuristic guidance of the execution order of the
codelets to reduce memory contention.

We implemented our algorithm on the IBM Cyclops-64 archi-
tecture. Experimental results show that our algorithm improves
up to 46% performance compared to a state-of-the-art coarse-
grain implementation of the FFT application on Cyclops-64.

Keywords—FFT; fine grain; execution model; memory band-
width.

I. INTRODUCTION

Chip multiprocessors (CMPs) have rekindled a strong inter-
est for efficient parallelization of well-known algorithms. With
CMP systems, the infamous “memory wall” [33], [41], [48]
has been on the mind of high-performance programmers more
than ever. An impressive literature has emerged since 2005.
Papers describe how to better characterize shared-memory
multiprocessing on symmetric multiprocessor (SMP) and/or
CMP systems [2], [29], [31]; how to parallelize specifically for
one or more CMP sharing the same memory (SMP/CMP), [9],
[38]; etc. Moreover, the current architectural features (out-of-
core execution, hardware prefetchers, branch predictors, etc.)
contrast a lot with current so-called many-core processors
which feature much simpler core architectures.

Indeed, numerous so-called general purpose “many-core
chips” have been announced or are already available on
the market [1], [6], [14], [17], [37], [40], [43]. All these
architectures, while different on many levels, also feature one
important characteristic: the amount of (local) memory per
core is drastically lower than on current mainstream CMP

systems.

The conventional wisdom for parallelizing algorithms for
shared-memory SMP/CMP systems is to use coarse-grain
synchronization in the form of barriers. This works reasonably
well on a system with a low core count, but becomes cumber-
some as the number of cores on a chip increases [24], [36].
This is in part due to the competition for shared resources that
is becoming fiercer between cores as their number increases.
Hence many-core chips require a different approach to high-
performance computing, as not only is memory scarce on a
per-core basis, but it also means that the conventional coarse-
grain approach to synchronizing tasks is showing its limits.

A very important piece of software in signal processing is
the Fast Fourier Transform (FFT). Many very clever algorithms
and implementations have been proposed over the years (see
Section VI). However, most of these parallelization schemes
still rely on coarse-grain synchronization between threads.
There are a few FFT studies based on fine-grain execution
models. Those works focus on how fine-grain models achieve
more balanced workload comparing to the coarse-grain ap-
proaches.

We intend to demonstrate that, besides achieving more
balanced workload, fine-grain execution models also improve
the utilization of memory bandwidth comparing to the coarse-
grain execution models. A fine-grain execution model allows
more freedom to reorder the execution of tasks. Since each task
may have different workload on the memory bandwidth, the
freedom of reordering enables the system to better balance the
memory bandwidth usage required by the running application.
To address our point, we use FFT as a case study on the
IBM Cyclops-64 (C64) many-core architecture to show the
advantage of the fine-grain execution model. This paper makes
three main contributions:

1) The design of a fine-grain FFT algorithm with a
heuristic guidance of the execution order of the
codelets to reduce memory contention for general
purpose many-core architectures. It is implemented
on the IBM Cyclops-64 many-core architecture.

2) Using the codelet execution model [49] as a basis,
we performed extensive experimentations to study
the behavior of FFT depending on the granularity
of synchronization. Three versions are compared:
coarse-grain (using barriers), fine-grain (using point-
to-point synchronization), and guided fine-grain (fine-

Fig. 1: Access rates of the 4 off-chip memory banks in the coarse-
grain FFT algorithm. Bank 0 is accessed three times more than the
other banks, causing contention.

grain with the heuristic guidance). We show that our
algorithm improves up to 46% performance compar-
ing to a state-of-the-art implementation on the same
system.

3) We compare our fine-grain approach to an alternative
solution that reduces memory contention via random-
izing memory addresses. We show that the fine-grain
approach outperforms the address randomization ap-
proach when the input data size is large enough.
Moreover, the performance gap will enlarge along
with the increment of the input data size.

This paper proposes the following structure: Section II
gives a motivating example which illustrates the reasons behind
the proposed research; Section III provides the necessary
background to understand the proposed FFT study; Section IV
describes the followed methodology; Section V describes the
obtained experimental results; Section VI examines the related
work for FFT parallelization; finally, Section VII gives our
conclusions for this study.

II. MOTIVATING EXAMPLE

The coarse-grain computation of FFT on C64 is a multi-
stage algorithm. In each stage, the cores execute many parallel
tasks to apply butterfly computations on the intermediate data.
At the end of each stage, all the cores wait for a barrier. Each
task loads some data and twiddle factors1, computes, and stores
computed data in place. This algorithm has shown good on-
chip performance in Chen et al.’s work [11].

However, this technique does not work well in the case that
the data and twiddle factors are stored in the off-chip memory.
We found that the problem is caused by the unbalanced
memory accesses to the off-chip memory banks.

The interconnection network on a C64 chip has four
ports connecting four off-chip memory banks, respectively.
In the coarse-grain FFT algorithm, we found that only the
memory accesses in the last few stages are equally distributed
to the four memory banks. The C64 hardware interleaves
data across the four memory banks in a round-robin fashion,
switching banks every 64 bytes (or 4 double precision complex
elements). In early stages of the FFT computation, the twiddle
factor array is accessed with a stride of a multiple of 4 elements

1In the FFT algorithm, twiddle factors are pre-computed constant trigono-
metric coefficients that are multiplied by the data in the course of the
algorithm.

Fig. 2: Access rates of the 4 off-chip memory banks in the fine-grain
FFT algorithm. Compared to Fig. 1, traffic is much more balanced
across the memory banks as the computation reaches the second half
of the program execution. This leads to lower contention.

as well. This in turn creates contention on bank 0 for those
early stages as the same bank holds the required elements.
Fig. 1 shows access rates (number of memory accesses per
3× 106 cycles) of the 4 memory banks. We can see that bank
0 has much higher access rate than the other three memory
banks in the first 2/3 of the execution time. In the last 1/3 of
the execution time, the access rates of the four memory banks
are more balanced because the stride of the accessed addresses
in the last few stages is less than 64.

In fine-grain execution models, an interesting finding is that
a task in a later stage may be executed prior to a task in an
early stage. Therefore, it is possible to reorder the execution of
the tasks to get more balanced accesses to the memory banks.
For example, the tasks in early stages have heavy memory
contention on bank 0. If one moves some of these tasks to the
end of the computation, the access rate may be reduced on
bank 0. On the other hand, bank 1,2 and 3 have light access
rates in early stages. So we may execute some tasks of last
few stages earlier since they have more accesses on bank 1,2
and 3. Fig. 2 shows the access rates of the off-chip memory
banks in our designed fine-grain FFT algorithm. We can see
that the access rate of bank 0 is decreasing and those of the
other 3 banks are increasing starting around the middle of the
program execution.

An alternative solution to balance the memory access work-
load is to randomize the memory addresses of the elements in
the twiddle factor array. However, the software randomizing
apporach may introduce extra overhead. On the other hand, the
hardware randomizing approach such as the memory address
hashing feature on Cray XMT [10] may reduce the generality
of the architecure because it is hard to exploit locality for
regular applications.

III. BACKGROUND

This section introduces the Cyclops-64 architecture, which
is used as the testbed in our study, the existing study of the
FFT algorithm on the architecture, and a fine-grain dataflow-
inspired execution model (called the codelet model) as the
basis of our fine-grain algorithm design.

A. The Cyclops-64 Architecture

Fig. 3 shows a block-diagram of a C64 node. Each node is
a 160-core processor, clocked at 500 MHz. Each pair of cores

Fig. 3: The Cyclops-64 node block-diagram. Note that al-
though scratchpads (SP) are logically separate from SRAM,
in practice they are physically part of the same 30 kB bank.

(called thread units, or TUs) share a floating-point unit, able
to issue one fused multiply-add instruction (FMA) per cycle.
Hence a single C64 chip yields a theoretical 80 GFLOPS peak
performance. Each TU features a very simple in-order RISC
architecture, and a register file composed of 64 64-bit registers.
One TU normally runs one thread since it does not support
context switching. A C64 chip features about 5 MB of on-
chip memory, divided in 160 memory banks of 30 kB each. By
default, these banks are equally divided into SRAM (accessible
to all TUs) and scratchpad (local to a single TU)2. All TUs
access the on-chip memory through a 96-port crossbar switch.
The bandwidth to access SRAM (which totals around 2.5 MB)
is 320 GB/s (640 GB/s in the case of scratchpad memory
access). Each C64 board is equipped with 1 GB off-chip
DRAM memory. Off-chip accesses to DRAM are significantly
slower (16 GB/s). This is due to the fact that off-chip memory
is only accessible through four banks: if one is not careful how
DRAM is accessed, distributing data evenly on all four banks,
then an imbalance can occur, saturating some ports and not
some other. Load imbalance on DRAM ports for C64 is the
reason behind the present work: balancing requests to access
DRAM probably means reducing the biggest bottleneck during
an application’s life on C64.

B. Implementation of FFT on Cyclops-64

Chen et al. [11] have demonstrated how to implement 1D
and 2D FFT on C64. They started from the classical Cooley-
Tukey algorithm in an iterative fashion. They ensured that all
threads were computing with the correct values by using the
hardware barrier provided by C64 at various stages of the
computation. Using only SRAM and the register file of each
C64’s thread unit, they then proceeded to expand the initial 2-
point butterfly into an 8-point butterfly, as shown in Fig. 4. In
the figure, the first step is called “bit reversal permutation”
which changes the permutation of the initial input data in
order to guarantee correct permutation of the final output
data. This step is applied once and only once in the whole
FFT computation. After that, the computation is partitioned
into many small parallel tasks (called “work units” in [11]).

2In practice, the amount of shared SRAM vs scratchpad memory can be
configured at boot-time.

Fig. 4: An 8-point butterfly, as described by Chen et al. [11].

Each work unit takes 8 data points as input, applies the 3-
stage butterfly computation as shown in Fig. 4, and then store
the result into memory (SRAM). The 8-point FFT algorithm
brought several benefits which in turn improved performance:

1) The ratio between the amount of floating-point op-
erations and data movement increased, thus keeping
TUs busy doing useful work for a longer time.

2) By fetching 8 points of data instead of 2, there
are fewer stages required to perform the FFT, thus
requiring to use fewer barriers for synchronization.

3) Further observations of the behavior of FFT on C64
showed that for several stages of the computation,
the same twiddle factors were used by all butterflies,
doubling the number of different twiddle factors for
each new computation stage. They exploited this fact
to show how to save registers and use a 16-point
butterfly as a single work unit.

Chen et al. assumed that all the data are stored in the on-
chip memory. With this assumption, they figured out that an
8-point butterfly is the best work unit size because a larger
size would require more registers than C64 provided. However,
a large FFT problem may need to store data in the off-chip
memory due to the limited on-chip memory space. In such a
circumstance, we found that 64-point FFT performs better than
the 8-point FFT because it reduces the total amount of off-chip
memory accesses. The details are explained in Section IV .

C. The Codelet Model

The threading model followed by this study is inspired
by the codelet program execution model (codelet PXM) [49].
While it does not exactly stick to the base model, the unit of
computation (the codelet) is the same.

1) The Codelet Abstract Machine: Codelets are based on
an abstract machine (AMM), which exposes a hierarchical,
heterogenous topology. As Fig. 5 shows, the codelet AMM is
made out of compute nodes linked by some interconnect. Each
node is made out of at least one many-core chip. Each chip
is composed of clusters of cores. Each cluster is composed
of a few computation units (CUs), which are dedicated to
the execution of codelets (and which can hold at least one

Fig. 5: The codelet abstract machine model. Computation units
execute one of the ready codelets held in one of their codelet contexts.
Synchronization units handle codelet scheduling at the cluster level.
There is a memory module at each level of the hierarchy, shared by
all components belonging to the same level.

codelet context, but can potentially hold more), and at least one
synchronization unit (SU) which schedules codelets, handles
interrupts, as well as off-cluster requests. At each level of the
hierarchy, there is some memory available–e.g. each CU has
some local memory available, each cluster has some “cluster
memory” available to all CUs/SUs belonging to it, each chip
has some memory accessible by all clusters, etc.

2) Definition and Operational Semantics of Codelets: The
codelet PXM is a hybrid Von Neumann/dataflow based model
[15]. A codelet is a sequence of non-preemptive machine
instructions: they run until completion. It is associated with a
synchronization slot which is updated to reflect the availability
of data and/or resources required by a given codelet to start
executing.

The operational semantics of codelets (also called firing
rules) mainly follow dataflow semantics: they are enabled
when all the data they require to run have been produced.
However, codelets go one step further and also use resource
availability as tokens: a codelet is ready when both its data and
resource tokens are available to it. Then and only then can a
codelet fire (i.e. start executing).

3) Codelet Graphs: Codelets are grouped into graphs,
very much like dataflow graphs: the codelet graphs (CDGs).
Codelet graphs are akin to data flow schemas [15]: if a codelet
graph is well-behaved (i.e. there is no “structural” deadlock
such as forming a cycle between regular codelets), then the
computation will be determinate, i.e. for a given set of inputs
fed to the CDG, the resulting outputs will always be the same;
however the order in which the different intermediate steps
are executed to reach the result may vary from execution to
execution, depending on events occurring at run-time.

While in general CDGs are not necessarily completely
statically defined, a property of the codelet model is to produce
CDGs which feature at least some codelets and their dependen-
cies statically. Other subgraphs can be spawned dynamically
by active codelets if necessary. Our fine-grain FFT algorithms
implicitly construct the CDG at the beginning of the execution
once the input data size is known.

Algorithm 1: The pseudo code of the coarse-grain
64-point FFT algorithm

input : Array D with input data
Array W with pre-computed twiddle factors

output: Array D with final results

PSEUDO CODE:
Bit_reversal(D) in parallel;
N←D.length;
last stage←dlog2N/6e − 1;
for stage = 0 to last stage do

if stage 6= last stage then
for t id = 0 to N/64 - 1 in parallel do

FFT_64p_kernel(D,W,stage,t id);

else
for t id = 0 to N/64 - 1 in parallel do

FFT_last_stage_kernel(D,W,stage,t id);

barrier;

IV. METHODOLOGY

This section presents the methodology and various associ-
ated techniques which are the basis of our research. Section
IV-A present the 64-point butterfly used to compute FFTs,
using coarse-grain, fine-grain, and guided fine-grain method-
ologies; Section IV-B explains how we managed to ensure
the randomization of off-chip memory addresses for balanced
accesses to the off-chip memory banks. Each section describes
pros and cons for these techniques.

A. Computing 64-Point FFTs

1) Coarse-Grain Algorithm: The 64-point FFT coarse-
grain algorithm is a simple extension of Chen et al.’s 8-point
FFT algorithm that is introduced in Section III-B.

The pseudo code of the 64-point FFT algorithm is shown
in Alg. 1. At the beginning, the parallel bit-reversal process
rearranges the position of the data to guarantee the correctness
of the final result as done in the other Cooley-Tukey based
FFT algorithms such as [11]. After that, the computation is
partitioned into dlog2N/6e stages, where N is the length of
the input data array3. In each stage, there are N/64 tasks. Each
task is a 64-point FFT kernel that loads 64 data points and 63
twiddle factors, applies butterfly computation on 6 levels, and
stores 64 computed data in place. At the end of each stage, all
the threads need to wait for a barrier. Tasks in the last stage
may apply less than 6 levels of butterfly computation because
log2N may not be a multiple of 6. In such a case, tasks in
the last stage only applies log2N mod 6 levels of butterfly
computation.

Each task loads 64 data in the following way: Suppose
that the task is the ith one in stage j. The thread will load
data0,...,data63 from the data array D where

datak = D[64j+1 × bi/64jc+ i mod 64j + k × 64j]

3Without loss of generality, we assume that N is a power of two because
an input size can always be adjusted to a power of two by appending enough
amount of zero data.

Algorithm 2: The pseudo code of the fine-grain 64-
point FFT algorithm

input : Array D with input data
Array W with pre-computed twiddle factors

output: Array D with final results
Data: Q is a codelet pool that stores all the ready

codelets
cnt is a 2-D array that counts the satisfied
dependency of each codelet

PSEUDO CODE:
Bit_reversal(D) in parallel;
N←D.length;
last stage←dlog2N/6e − 1;
for t id = 0 to N/64 - 1 do Q← Q ∪ {(0, t id)};
for each element e of cnt do e←0;
while Q 6= ∅ in parallel do

(stage, t id)←Q.pop();
if stage 6= last stage then

FFT_64p_kernel(D,W,stage,t id);
for child=0 to 63 do

child id=Get_child_id(t id,child);
cnt[stage+ 1, child id] + +;
if cnt[stage+1,child id] == 64 then

Q←Q ∪ {(stage+ 1, child id)};

else
FFT_last_stage_kernel(D,W,stage,t id);

Moreover, the task also loads twiddle factors for each level of
the FFT computation. At level l, the mth butterfly computation
needs the twiddle factor

ωlm = W [m mod 2l × 2log2N−l−1]

2) Fine-Grain Algorithm: In the coarse-grain FFT algo-
rithm, each task only needs 64 data and 63 pre-computed
twiddle factors as input. The 64 inputs are provided by the 64
parent tasks in the prior stage. This implies that the barriers in
the coarse-grain FFT algorithm may be removed. For example,
a task in stage 1 can start as long as its 64 parent tasks in stage
0 have finished. It does not care about the completion of other
tasks in stage 0. Based on this observation, we propose the
fine-grain FFT algorithm as shown in Alg. 2. In the algorithm,
the two for loops preceding the while loop take insignificant
execution time. So we execute them sequentially.

We use the codelet model to represent the fine-grain
FFT algorithm. As expressed in the model, each task in the
coarse-grain FFT algorithm is a codelet in the fine-grain FFT
algorithm. Each codelet is assigned a counter to count the
number of dependencies that have been satisfied. There is
a concurrent codelet pool to store all the codelets that have
satisfied all the dependencies. Initially, the codelets in stage 0
are all in the pool because their input data are ready. During the
execution, once a thread completes a codelet, it will increase
the dependency counters of all the children of the codelet. The
child codelet that reaches 64 on its counter becomes ready
and will be put into the codelet pool. The thread will then
take the next codelet from the codelet pool. The algorithm
terminates when the codelet pool becomes empty and all the

threads complete their work. In practice, we found that this
termination condition guarantees balanced workload as long
as the total number of codelets are much larger than the total
number of threads.

Let the parent codelet be the ith codelet in stage j, and its
kth child be the lth codelet in stage j + 1, then

l = b i

64j+1
c × 64j+1 + i mod 64j+1 mod 64j + k × 64j

In practice, we observe that every 64 children codelets
share the same 64 parent codelets. That is, if codelets
A0,. . . ,A63 are the 64 parent codelets of codelet B0, then
there will be another 63 codelets B1,. . . ,B63 whose parents
are also A0,. . . ,A63. For example, the 80th codelet in stage
3 is the 0th child of its 64 parent codelets in stage 2 if we
apply j = 2, k = 0 and the following i to the above formula.
The t id (or i in the above formula) of its 64 parents are
80 + 4096 × m where m = 0, 1, . . . , 63. Using the above
formula again, we can verify that the 4176th codelet in stage
3 is the next child of the same 64 parent codelets by applying
j = 2, k = 1, and l = 4176. Therefore, every 64 codelets may
share a counter. In our implementation, the sharing greatly
reduces the overhead of updating and checking the counters,
as well as the storage requirement.

In the fine-grain FFT algorithm, codelet scheduling doesn’t
have to follow stage order as long as data dependencies
are respected. Since the codelets in early stages have heavy
memory contention on bank 0, executing them later reduces
the bandwidth requirement on bank 0 and improves the overall
memory throughput.

3) Guided Fine-Grain Algorithm: Following the codelet
execution model, the fine-grain FFT algorithm is determinate
(see Section III-C3). However, the execution order of the
codelets may be various in different runs. Both the initial
arrangement of the codelets in the codelet pool and the
execution speed of the codelets may affect the execution order.
A good execution order may achieve more balanced memory
accesses to the off-chip memory banks than a bad one. So an
interesting question is how to guarantee a good execution order
of the codelets. In this section, we discuss a guided approach
to achieve the goal.

A good execution order implies more balanced access rates
across the DRAM ports. Since only the codelets in the last
few stages (especially the last stage) have a balanced work-
load to the off-chip memory banks, a good execution order
should execute those codelets as early as possible. However,
those late-stage codelets cannot be executed too early because
they depend on the completion of many parent and ancestor
codelets. On the other hand, the codelets in early stages have
little chance to be executed very late. For example, a codelet
c in stage 0 is an ancestor of all the codelets in the last stage.
Therefore, c has no chance to be executed last since many
other codelets directly or indirectly depend on its completion.

Based on the above observation, we propose a guided fine-
grain approach. We first partition the stages into two parts: We
choose an integer i. Stages 0 to i are called early stages and
the rest are called late stages. Then we apply two steps of the
fine-grain FFT algorithm. The first step completes the codelets
in the early stages. Then all the threads wait for a barrier

Algorithm 3: The pseudo code of the guided fine-grain
64-Point FFT algorithm

input : Array D with input data
Array W with pre-computed twiddle factors

output: Array D with final results
Data: Q is a concurrent LIFO codelet pool that stores

all the ready codelets
cnt is a 2-D array that counts the satisfied
dependency of each codelet

PSEUDO CODE:
Bit_reversal(D) in parallel;
last stage←dlog2N/6e − 1;
last early stage←last stage− 2;
for t id = 0 to N/64 - 1 do Q← Q ∪ {(0, t id)};
for each element e of cnt do e←0;
while Q 6= ∅ in parallel do

(stage, t id)←Q.pop();
FFT_64p_kernel(D,W,stage,t id);
if stage 6= last early stage then

for child=0 to 63 do
child id=Get_child_id(t id,child);
cnt[stage+ 1, child id] + +;
if cnt[stage+1,child id] == 64 then

Q←Q ∪ {(stage+ 1, child id)};

barrier;
for every 64 codelets t id0,...t id63 of (last stage - 1)
that have the same child codelets do

Q← Q ∪ {(last stage−
1, t id0), ..., (last stage− 1, t id63};

for each element e of cnt do e←0;
while Q 6= ∅ in parallel do

(stage, t id)←Q.pop();
if stage 6= last stage then

FFT_64p_kernel(D,W,stage,t id);
for child=0 to 63 do

child id=Get_child_id(t id,child);
cnt[stage+ 1, child id] + +;
if cnt[stage+1,child id] == 64 then

Q←Q ∪ {(stage+ 1, child id)};

else
FFT_last_stage_kernel(D,W,stage,t id);

to ensure the completion of all those codelets. In the second
step, we use a last-in-first-out (LIFO) codelet pool to store
the codelets of stage i+1 with a properly designed order that
helps the codelets in the last stage to satisfy their dependencies
as soon as possible. In such a way, the codelets in the last
stage have higher chance to be executed earlier. It improves
the memory access balance on the four off-chip memory banks.
Alg. 3 shows our guided approach with the selection of the
last two stages as the late stage. We execute the short for
loops sequentially as in Alg. 2 because they take insignificant
execution time.

Fig. 6: Access rates of the 4 off-chip memory banks in the fine-grain
FFT algorithm with randomized twiddle factor addresses. Using the
hash function, all banks are accessed in a uniform manner.

B. Using a Hash Function to Randomize Bank Accesses in
DRAM

An alternative technique to reduce the memory contention
is to randomize the memory addresses of the elements in the
twiddle factor array W . The randomization can be achieved
by a perfect hash function

f : X → X

where X = {0, 1, ...,M − 1} and M is the total number of
elements in W . Now the ith element of W will be stored in
W [f(i)]. In such a way, the addresses of all the elements in
W are randomized. The accesses to them have the balanced
workload on the four off-chip memory banks.

In practice, a perfect hash function is too expensive to
implement. Instead, we use the bit reversal function BR to
replace f . Let i = (b0b1...bk)2, then BR is defined as follows:

BR(i) = (bk...b1b0)2

We choose bit reversal as the hash function because it is
supported by hardware instructions on C64.

Fig. 6 shows the access rates of the 4 off-chip memory
banks after the randomization of the twiddle factor addresses
with the bit reversal function. We can see that the memory
accesses on the four memory banks are balanced. However, it
does not mean that the address randomization approach always
achieves better performance due to the overhead of the hash
function. The detailed experimental results will be explained
in Section V .

V. EXPERIMENTAL RESULTS

This section reports our experimental results, observations,
and analyses on various FFT algorithms that are introduced in
Section IV .

A. Task Size and Theoretical Peak Performance

In this section, we calculate the theoretical peak perfor-
mance of the FFT application on the C64 chip. We assume that
the input data size is large. So both the data array and twiddle
factor array are located in the off-chip memory. The task (or
codelet) size affects the theoretical peak performance because
larger size has less amount of off-chip memory accesses. We

Fig. 7: The best performance of the fine-grain FFT algorithm
for 156 threads units running in parallel and a global input data
set of 219. 64-point FFT codelets perform best. The X axis
shows the number of data points given as input to each codelet.
The Y axis features the resulting performance (in GFLOPS).

choose 64 as the task (or codelet) size because a size over 64
may need too much on-chip space and exceed the scratchpad
limit.

Fig. 7 shows the best performance of the fine-grain FFT
algorithm under various codelet sizes. As we expected, 64-
point FFT outperforms the algorithms with smaller codelet
sizes.

The theoretical peak performance can be calculated as
follows:

peak =
of floating point operations

theoretical exectime

=
5×N × log2N

exectime per task ×# of tasks
(1)

of tasks =
N

64
× d log2N

log264
e (2)

exectime per task =
(64 + 64 + 63)× 16Bytes

DRAM bandwidth
(3)

where N is the total number of data elements. To simplify
the computation, we remove the ceiling function in (2). The
removal does not reduce the theoretical peak performance
because it will decrease the denominator in (1). Equation
(3) is calculated as follows: Each task needs to load 64
elements from the data array, load 63 elements from the
twiddle factor array, and store 64 elements to the data array.
Each element takes 16 bytes because it is a double-precision
complex number. When we assume that the off-chip memory
is fully busy, we get the best execution time of a task as
shown in (3). The DRAM bandwidth on C64 is 16 GB/sec
as shown in [23], [24]. So we get the following theoretical
peak performance from (1), (2), and (3).

peak =
5×N × log2N × 64× 6× 16G

N × log2N × (64 + 64 + 63)× 16
= 10GFLOPS (4)

As shown in (4), the theoretical peak performance of the
FFT algorithm on C64 is 10 GFLOPS when the data array and
twiddle factor array are located in the off-chip memory.

TABLE I: Description of the various methods used to perform FFT
on C64. fine best and fine worst are results reported for
the fine algorithm. Other results are named after the algorithm
described in the right hand side column.

Name Description
coarse Coarse-grain synchronization (see Section

IV-A1)
coarse hash Coarse-grain synchronization with hashed

twiddle factor array (see Section IV-B)
fine worst Worst execution time for fine-grain

synchronization (see Section IV-A2)
fine best Best execution time for fine-grain

synchronization (see Section IV-A2)
fine hash Fine-grain synchronization with hashed

twiddle factor array (see Section IV-B)
fine guided Guided fine-grain synchronization (see

Section IV-A3)

B. Experimental Setup

We implement FFT on the FAST simulator [11] which is a
functionally-accurate simulator. It models the memory hierar-
chy of the C64 architecture, including the latencies and band-
width of each memory segment. The input data are double-
precision complex numbers and put into off-chip DRAM. The
twiddle factors are pre-computed and stored in DRAM as well.
We choose 64 as task size and vary input size from 215 to
222 using 156 threads. Besides, 20, 40, . . . , 140, 156 threads
are used to run 219 as the input size. We use 156 of the 160
threads because the remaining 4 thread units are reserved for
the OS kernel.

In the experiments, we tested 5 versions of the FFT
algorithms, and we report their results using 6 types of results.
They are described in Table I: coarse, coarse hash,
fine (divided between fine worst and fine best),
fine hash and fine guided. In the fine-grain algorithm,
we found that the initial order of the ready codelets in the
concurrent pool may affect the performance a lot. So we
show both the worst case and the best case of the fine-grain
algorithm in Fig. 8 and 9 as fine worst and fine best,
respectively.

C. Major Observations

From our experimental results, we made the following
major observations:

1) The performance of fine best, fine hash, and
fine guided are close and outperforms coarse,
coarse hash and fine worst which also per-
form close;

2) fine best performs the best and coarse hash
performs the worst;

3) When the input data size is small, fine hash
outperforms fine guided. However, when input
data size is large, fine guided outperforms fine
hash.

The detailed results and analyses are explained in the
following sections.

Fig. 8: Performance of 5 versions of FFT algorithms on C64.
The X axis shows the various input sizes fed to FFT. The Y
axis features the resulting performance (in GFLOPS). Higher
is better.

D. Performance of the Various FFT Algorithms

Fig. 8 shows the performance of the 5 versions when
the input data size varies from 215 to 222. From Fig. 8, we
observed that:

1) fine guided always performs between fine
best and fine worst and close to fine best.
This is because fine guided takes advantage of
a proper codelet execution order that improves the
memory access balance.

2) fine hash performs better than fine guided
when the data input size is small. For example, when
the data input size is 218, fine hash is 7% faster
than fine guided. However, when the data size
increases the fine guided becomes faster (e.g.,
1% faster for 222 input size) than fine hash.
This is because the overhead of the bit reversal
function increases on larger input sizes due to the
work of handling more bits for each element. So our
conjecture is that the performance gap between the
fine guided and the fine hash will increase
as the input data set gets higher. However, we are
unable to test larger input sizes due to the time it
takes to run our program on the simulator.

3) coarse hash always performs the worst, because
of the combined overheads of the hash function and
of the barrier which lead to unnecessary stalls in the
codelet execution.

E. Scalability and Speedup

Fig. 9 shows the performance of the 5 versions of FFT
algorithms on various number of working thread units. We
tested from 20 to 156 thread units on the data input size 219.
We do not test with fewer than 20 threads units or with larger
input sizes due to the limitations of real-life execution time
when using the simulator. From the figure we can see that:

• The fine hash and fine guided scale bet-
ter than the other algorithms. They reach near lin-
ear speedup in our tests. fine hash and fine
guided perform almost the same, with less than 1%
difference. This is because both of the algorithms have
more balanced workloads on the off-chip memory
banks than the others. In fact, fine hash has an

Fig. 9: Performance of 5 versions of FFT algorithms on C64
for an input size of 219 data elements and 64-point butterfly
codelets. The X axis represents the number of thread units
used in the computation. The Y axis features the resulting
performance (in GFLOPS). Higher is better.

almost perfect balanced workload. However, it does
not outperform fine guided due to the overhead
of the hash function.

• coarse and coarse hash perform worst. For
example, fine guided is about 46% faster than
coarse whatever number of thread units we use.
The reason are analyzed in Section IV-A1 and Sec-
tion IV-B. coarse suffers from memory contention
on bank 0 in the early stages of the computation.
coarse hash, however, suffers from the overhead
of the hash function computation. Moreover, both
algorithms suffer from the overhead of the barriers.

• fine exhibits unstable performance. When we ex-
change the initial order of the codelets, the perfor-
mance fluctuates a lot. We found that fine best
reaches more or less the same performance as fine
hash and fine guided. Moreover, fine worst
has more or less the same performance as coarse
and coarse hash. This is because the different
initial order affects the workload balance of the off-
chip memory banks.

VI. RELATED WORK

Efficiently computing FFT has been studied extensively in
the past, both for sequential and parallel computations. One
of the most famous works on this topic is FFTW [20]–[22]. It
features a planner to decompose a (possibly multi-dimensional)
FFT computation in a cache-oblivious (and architecture inde-
pendent) way.

FFTW decomposes a given FFT computation into
fragments called codelets. An FFTW codelet is some
generated straight-line code which performs a specific
fragment of an overall FFT computation. Hence, in FFTW
linguo, codelets can perform real-inputs-only or complex-
input-only FFTs, etc. However it is important to note that
while the name is identical, the specification of what is a
codelet differs from ours. Codelets, in the context of FFTW
are units of work to perform FFT computations. As explained
in section III-C, the codelets of the codelet execution
model are dataflow-inspired: they obey specific rules to start
executing, such as readiness of data, and explicitly define data

dependencies between themselves.

Other work also includes autotuning libraries such as
UHFFT [3], [34] which reuses some techniques demonstrated
in FFTW, and attempt to provide the best plan scheduling
for multi-core systems. Of note is also PFFT [39] which uses
FFTW as a core library, but enables the computation to run
on large-scale systems.

Choi et al. demonstrate how a careful FFT algorithm,
coupled with a specific multi-core architecture (using simple
SIMD processing element arrays) can lead to better efficiency
both for energy and performance [12]. Takahashi describes
how to combine SIMD instructions with blocking on general
purpose multi-core processors for 2D FFT by alternating
transpose phases with computation phases [44]. Spiral is
a digital signal processing program generator [19]. This
framework performs code generation based on a domain-
specific language for DSPs, and performs the appropriate C
code generation according to the properties of the transforms
described in the DSL: loop interchange, unrolling, etc. Spiral
was extended to deal with FFT on multi-core systems and
provide better work load-balancing and reduce false-sharing.

Additional research on FFT was applied to network-
on-chips (NoC). Bahn compares the reference parallel FFT
algorithm to two new algorithms applied to NoCs organized
as a mesh-of-processing-elements [5]. Their study documents
very well the requirements for work load-balancing on
massively parallel chips. Mattson ports several compute and
memory intensive kernels on Intel’s experimental Terascale
chip–among them, FFT [32]. However, due to architectural
constraints (limited branching and indexing), the Cooley-
Tukey algorithm was not chosen for their implementation.
They instead chose the Pease FFT algorithm, which features
fixed memory access patterns and lends itself well to systolic
arrays–and therefore to mesh-like configurations.

As general purpose GPU (GPGPU) computing started
to rise a few years ago, extensive research also looked into
applying FFT to GPUs. Moreland showed early results of FFT
computations on GPGPUs [35] (before the advent of Cuda
and OpenCL). Because GPUs were still very constrained
at the time, the study was done on single-precision values.
Moreland uses classical techniques such as preliminary
bit-reversal (also described by [11] and shown as the first step
of a butterfly computation in Fig. 4) to reduce memory copies
among the butterfly computations, frequency compression,
etc. More recently, Volkov has shown how modern GPUs
can be exploited to run FFT computations [47]. Volkov
identifies a limitation of the G80 architecture: the bandwidth
of non unit-stride memory accesses is significantly lower
than than unit-stride ones. They evoke the possibility to
perform additional reshufflings to circumvent this problem
but did not implement it for their research (they instead laid
the memory for FFT in a specific, predetermined order).
Following their work on UHFFT, Franchetti et al. provided
an overview of performing FFT computation on various multi
and many-core architectures, including GPUs, FPGAs, and
generic purpose multi-core systems [18]. Among other things,
they use a different machine model for the GPUs/FPGAs

than generic SMP/CMP systems. Lloyd and Govindaraju
applied the radix-2 Stockham algorithm (which avoids the
bit reversal preliminary stage of FFT) on GPUs [26], [30].
Garland et al. describe their implementation of various
computation-intensive kernels, including FFT, on Cuda [25].
Dotsenko et al. propose an auto-tuning library on GPUs for
generic FFT computations [16].

In a way closer to the C64 is the Cell Broad Engine hybrid
multi-core microprocessor. Several efforts were produced to
port FFT on Cell [4], [7], [13], [28]. Bader et al. implemented
FFT on IBM Cell BE by applying barriers at every stage [4].
The Cell/B.E. architecture has many common features with
C64–among them, the use of a scratchpad for SPEs. However,
some fundamental differences (such as the availability of
a DMA engine for the Cell/B.E.) make the methodology
to perform computations on those two architectures very
different.

FFT computations were also performed on FPGA systems
[8], [27]. The implementations have notable differences, as
the size of words is not necessarily comparable to the work
presented in this paper (e.g. 16-bit words for Kamalizad’s
work [27]).

Whether they target small-scale multi-core systems (FFTW,
UHFFT, FFTC) or large-scale ones (PFFT, Bahn’s work for
instance, or work on GPUs), the authors of these works rely
on statically scheduling the units of work on a given machine,
while trying to reduce the synchronization overhead. However,
they still rely on coarse-grain synchronization (barriers) to go
from one stage of the FFT to the other.

By contrast, the work described in this paper achieves
high performance thanks to the dataflow-inspired semantics
provided by the codelet model w.r.t. data availability, as well
as a careful expression of data dependencies between 64-point
butterfly computations. This in turn means using fine-grain
synchronization instead of barriers on top of the dynamic
scheduling scheme used at run-time.

The work that is most related to ours was performed by
Saybasili [42] and Thulasiraman [46]. Saybasili et al. show
how to efficiently port the radix-2 Cooley-Tukey algorithm
on the heavily threaded XMT processor. The XMT proposes
a hardware randomized address space, which is similar to
our (software) hash-based implementation to access twiddle
factors, but is applied to the whole system. The XMT’s
memory subsystem allows for a balanced workload, and thus
a high throughput. Their algorithm is a fine-grain approach in
the sense that it has 2-level parallelism. That is, the algorithm
applies parallel 1-D FFT computation on every dimension of
the 2-D data. However, their parallel 1-D FFT computation
still needs barriers at the end of every stage. Our algorithm is
more fine-grain because barriers between stages are eliminated
by dataflow-driven synchronization.

It is worth noting that, at the time it was written, the XMT
was implemented on an FPGA system, and was unable to
perform floating-point operations, forcing the authors to use
fixed-point arithmetic, which skews the comparison a bit, as

extra computations are required in the case of the XMT. Also,
the implementation only considers on-chip performance.

Thulasiraman et al. compare fine-grain methodologies to
express FFT algorithms using the EARTH model [45], the
ancestor of the codelet model [49]. The major difference of
the two approaches: Receive-Initiated and Sender-Initiated in
[45] is the direction to establish dependency. However, both
algorithms can only propagate one level at a time which is
the same as our algorithm when task size is two. Due to
the multi-level propagation in our algorithm, it saves remote
accesses between two adjacent levels. Our own work not
only guarantees good workload-balancing, but also efficient
memory access balancing.

Finally, Long Chen’s work on 8-point FFT butterflies has
already been discussed in Section III-B. The main differences
are that we extended Chen’s work to 64-point butterflies using
C64’s scratchpad memory, and that our work reports perfor-
mance for off-chip memory accesses. Finally, our approach
uses fine-grain synchronization.

VII. CONCLUSIONS

In this paper, we use FFT as a case study to show the
advantage of fine-grain execution models. We found that these
models (such as the codelet model) allow for more freedom
to reorder the execution of tasks than coarse-grain execution
models. Since each task may have a different workload on
the memory bandwidth, the freedom of reordering enables the
system to better balance the memory bandwidth usage required
by the running application. We designed and implemented
a fine-grain FFT algorithm with a heuristic guidance of the
execution order of the codelets to achieve good utilization
of the memory bandwidth on the IBM Cyclops-64 many-core
architecture. We show that our algorithm improves up to 46%
performance comparing to a state-of-the-art implementation on
the same system.

ACKNOWLEDGMENTS

This research was made possible by the generous support
of the NSF through grants CCF-0833122, CCF-0925863, CCF-
0937907, CNS-0720531, and OCI-0904534. This research was
also based upon work supported by the Department of Energy
(National Nuclear Security Administration) under the Award
Number DE-SC0008717. Moreover, this work was partly sup-
ported by European FP7 project TERAFLUX, id. 249013.

REFERENCES

[1] A. Agarwal. The tile processor: A 64-core multicore for embedded
processing. In Proceedings of HPEC Workshop, 2007.

[2] S. Alarm, R. Barrett, J. Kuehn, P. Roth, and J. Vetter. Characterization
of Scientific Workloads on Systems with Multi-Core Processors. In
Workload Characterization, 2006 IEEE International Symposium on,
pages 225 –236, oct. 2006.

[3] A. Ali, L. Johnsson, and J. Subhlok. Scheduling FFT computation
on SMP and multicore systems. In Proceedings of the 21st annual
international conference on Supercomputing, ICS ’07, pages 293–301,
New York, NY, USA, 2007. ACM.

[4] D. A. Bader and V. Agarwal. FFTC: Fastest Fourier Transform for the
IBM Cell Broadband Engine. In S. Aluru, M. Parashar, R. Badrinath,
and V. Prasanna, editors, High Performance Computing HiPC 2007,
volume 4873 of Lecture Notes in Computer Science, pages 172–184.
Springer Berlin Heidelberg, 2007.

[5] J. H. Bahn, J. Yang, and N. Bagherzadeh. Parallel FFT Algorithms on
Network-on-Chips. In Information Technology: New Generations, 2008.
ITNG 2008. Fifth International Conference on, pages 1087 –1093, april
2008.

[6] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks,
D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64 - Processor:
A 64-Core SoC with Mesh Interconnect. In Solid-State Circuits
Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE
International, pages 88 –598, feb. 2008.

[7] P. Bientinesi, N. P. Pitsianis, and X. Sun. Parallel 2d ffts on the
cell broadband engine. Submitted to International Journal of High
Performance Computing Applications, 2007.

[8] M. Butts. Synchronization through Communication in a Massively
Parallel Processor Array. Micro, IEEE, 27(5):32 –40, sept.-oct. 2007.

[9] L. Chai, Q. Gao, and D. Panda. Understanding the Impact of Multi-Core
Architecture in Cluster Computing: A Case Study with Intel Dual-Core
System. In Cluster Computing and the Grid, 2007. CCGRID 2007.
Seventh IEEE International Symposium on, pages 471 –478, may 2007.

[10] D. Chavarria-Miranda, A. Marquez, J. Nieplocha, K. Maschhoff, and
C. Scherrer. Early experience with out-of-core applications on the cray
xmt. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1 –8, april 2008.

[11] L. Chen, Z. Hu, J. Lin, and G. R. Gao. Optimizing the Fast Fourier
Transform on a Multi-core Architecture. In IPDPS, pages 1–8, 2007.

[12] J. Choi, J. Kim, and C.-H. Kim. Parallel implementation of the
FFT algorithm using a multi-core processor. In Strategic Technology
(IFOST), 2010 International Forum on, pages 19 –22, oct. 2010.

[13] A. C. Chow, G. C. Fossum, and D. A. Brokenshire. A programming
example: Large FFT on the Cell Broadband Engine. Global Signal
Processing Expo (GSPx), 2005.

[14] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation and
improvements of programming models for the Intel SCC many-core
processor. In High Performance Computing and Simulation (HPCS),
2011 International Conference on, pages 525 –532, july 2011.

[15] J. B. Dennis, J. B. Fosseen, and J. P. Linderman. Data flow schemas. In
International Sympoisum on Theoretical Programming, pages 187–216,
1972.

[16] Y. Dotsenko, S. Baghsorkhi, B. Lloyd, and N. Govindaraju. Auto-
tuning of fast fourier transform on graphics processors. In Proceedings
of the 16th ACM symposium on Principles and practice of parallel
programming, pages 257–266. ACM, 2011.

[17] D. Foley, P. Bansal, D. Cherepacha, R. Wasmuth, A. Gunasekar,
S. Gutta, and A. Naini. A Low-Power Integrated x86–64 and Graphics
Processor for Mobile Computing Devices. Solid-State Circuits, IEEE
Journal of, 47(1):220 –231, jan. 2012.

[18] F. Franchetti, M. Puschel, Y. Voronenko, S. Chellappa, and J. Moura.
Discrete Fourier transform on multicore. Signal Processing Magazine,
IEEE, 26(6):90–102, 2009.

[19] F. Franchetti, Y. Voronenko, and M. Püschel. FFT program generation
for shared memory: SMP and multicore. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, SC ’06, New York, NY,
USA, 2006. ACM.

[20] M. Frigo. A fast Fourier transform compiler. In Proc. 1999 ACM SIG-
PLAN Conf. on Programming Language Design and Implementation,
volume 34, pages 169–180. ACM, May 1999.

[21] M. Frigo and S. Johnson. FFTW: an adaptive software architecture for
the FFT. In Acoustics, Speech and Signal Processing, 1998. Proceedings
of the 1998 IEEE International Conference on, volume 3, pages 1381
–1384 vol.3, may 1998.

[22] M. Frigo and S. G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue
on “Program Generation, Optimization, and Platform Adaptation”.

[23] E. Garcia, D. Orozco, R. Khan, I. Venetis, K. Livingston, and G. R.
Gao. Dynamic Percolation: A case of study on the shortcomings of
traditional optimization in Many-core Architectures. In Proceedings of
2012 ACM International Conference on Computer Frontiers (CF 2012),
Cagliari, Italy, May 2012. ACM.

[24] E. Garcia, I. E. Venetis, R. Khan, and G. Gao. Optimized Dense Matrix
Multiplication on a Many-Core Architecture. In Proceedings of the 16th
International European Conference on Parallel Computing (Euro-Par
2010), Part II, volume 6272 of Lecture Notes in Computer Science,
pages 316–327, Ischia, Italy, August 2010. Springer-Verlag.

[25] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Y. Zhang, and V. Volkov. Parallel computing
experiences with CUDA. Micro, IEEE, 28(4):13–27, 2008.

[26] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli.
High performance discrete Fourier transforms on graphics processors.
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
page 2. IEEE Press, 2008.

[27] A. H. Kamalizad, C. Pan, and N. Bagherzadeh. Fast parallel FFT on
a reconfigurable computation platform. In Computer Architecture and
High Performance Computing, 2003. Proceedings. 15th Symposium on,
pages 254 – 259, nov. 2003.

[28] Y. Li, J. R. Diamond, X. Wang, H. Lin, Y. Yang, and Z. Han. Large-
scale fast Fourier transform on a heterogeneous multi-core system.
International Journal of High Performance Computing Applications,
26(2):148–158, 2012.

[29] L. Liu, Z. Li, and A. H. Sameh. Analyzing memory access intensity
in parallel programs on multicore. In Proceedings of the 22nd annual
international conference on Supercomputing, ICS ’08, pages 359–367,
New York, NY, USA, 2008. ACM.

[30] D. Lloyd, C. Boyd, and N. Govindaraju. Fast computation of general
Fourier Transforms on GPUS. In Multimedia and Expo, 2008 IEEE
International Conference on, pages 5 –8, 23 2008-april 26 2008.

[31] A. Mandal, R. Fowler, and A. Porterfield. Modeling memory concur-
rency for multi-socket multi-core systems. In Performance Analysis of
Systems Software (ISPASS), 2010 IEEE International Symposium on,
pages 66 –75, march 2010.

[32] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin. Programming
the Intel 80-core network-on-a-chip terascale processor. In Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages
38:1–38:11, Piscataway, NJ, USA, 2008. IEEE Press.

[33] S. A. McKee. Reflections on the memory wall. In Proceedings of the
1st conference on Computing frontiers, CF ’04, pages 162–, New York,
NY, USA, 2004. ACM.

[34] D. Mirković, R. Mahasoom, and L. Johnsson. An adaptive software
library for fast Fourier transforms. In Proceedings of the 14th inter-
national conference on Supercomputing, ICS ’00, pages 215–224, New
York, NY, USA, 2000. ACM.

[35] K. Moreland and E. Angel. The FFT on a GPU. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
HWWS ’03, pages 112–119, Aire-la-Ville, Switzerland, Switzerland,
2003. Eurographics Association.

[36] D. Orozco, E. Garcia, R. Khan, K. Livingston, and G. Gao. Toward
high-throughput algorithms on many-core architectures. ACM Trans-
actions on Architecture and Code Optimization (TACO), 8(4):49:1–21,
January 2012.

[37] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips.
GPU Computing. Proceedings of the IEEE, 96(5):879 –899, may 2008.

[38] F. Petrini, G. Fossum, J. Fernandez, A. Varbanescu, N. Kistler, and
M. Perrone. Multicore Surprises: Lessons Learned from Optimizing
Sweep3D on the Cell Broadband Engine. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, pages
1 –10, march 2007.

[39] M. Pippig. An Efficient and Flexible Parallel FFT Implementation
Based on FFTW. In C. Bischof, H.-G. Hegering, W. E. Nagel, and
G. Wittum, editors, Competence in High Performance Computing 2010,
pages 125–134. Springer Berlin Heidelberg, 2012.

[40] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote,
S. Vangal, G. Ruhl, and N. Borkar. A 2 Tb/s 6 × 4 Mesh Network for a
Single-Chip Cloud Computer With DVFS in 45 nm CMOS. Solid-State
Circuits, IEEE Journal of, 46(4):757 –766, april 2011.

[41] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the Memory Wall:
The Case for Processor/Memory Integration. In Computer Architecture,
1996 23rd Annual International Symposium on, page 90, may 1996.

[42] A. Saybasili, A. Tzannes, B. Brooks, and U. Vishkin. Highly Parallel
Multi-Dimensional Fast Fourier Transform on Fine-and Coarse-Grained

Many-Core Approaches. In Proceedings of the 21st IASTED Interna-
tional Conference, volume 668, page 107, 2009.

[43] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for
visual computing. ACM Trans. Graph., 27(3):18:1–18:15, Aug. 2008.

[44] D. Takahashi. Implementation and Evaluation of Parallel FFT Using
SIMD Instructions on Multi-core Processors. In Innovative architecture
for future generation high-performance processors and systems, 2007.
iwia 2007. international workshop on, pages 53 –59, jan. 2007.

[45] K. B. Theobald. EARTH: an efficient architecture for running threads.
PhD thesis, McGill University, Montreal, Que., Canada, Canada, May
1999. AAINQ50269.

[46] P. Thulasiraman, K. B. Theobald, A. A. Khokhar, and G. R. Gao.
Multithreaded algorithms for the fast Fourier transform. In Proceedings
of the twelfth annual ACM symposium on Parallel algorithms and
architectures, SPAA ’00, pages 176–185, New York, NY, USA, 2000.
ACM.

[47] V. Volkov and B. Kazian. Fitting FFT onto the G80 architecture.
University of California, Berkeley, 40, 2008.

[48] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications
of the obvious. SIGARCH Comput. Archit. News, 23(1):20–24, Mar.
1995.

[49] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao. Using a
”Codelet” Program Execution Model for Exascale Machines: Position
Paper. In Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era, EXADAPT ’11,
pages 64–69, New York, NY, USA, 2011. ACM.

	Introduction
	Motivating Example
	Background
	The Cyclops-64 Architecture
	Implementation of FFT on Cyclops-64
	The Codelet Model
	The Codelet Abstract Machine
	Definition and Operational Semantics of Codelets
	Codelet Graphs

	Methodology
	Computing 64-Point FFTs
	Coarse-Grain Algorithm
	Fine-Grain Algorithm
	Guided Fine-Grain Algorithm

	Using a Hash Function to Randomize Bank Accesses in DRAM

	Experimental Results
	Task Size and Theoretical Peak Performance
	Experimental Setup
	Major Observations
	Performance of the Various FFT Algorithms
	Scalability and Speedup

	Related Work
	Conclusions
	References

