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Abstract. Current shared-memory systems can feature tens of process-
ing elements. The old assumption that coarse-grain synchronization is
enough in a shared-memory system thus becomes invalid. To efficiently
take advantage of such systems, we propose to use fine grain synchroniza-
tion, with event-driven multithreading. To illustrate our point, we study
a näıve 5-point 2D stencil kernel. We provide several synchronization
variants using our fine-grain multithreading environment, and compare
it to a näıve coarse-grain implementation using OpenMP. We conducted
experiments on three different many-core compute nodes, with speedups
ranging from 1.2× to 1.75×.

1 Introduction

In the past decade, the number of processing elements (PEs) found in general-
purpose high-performance processors has increased between fourty and a hun-
dred times, as demonstrated by, e.g., Intel R©’s Xeon and IBM R©’s POWER8
processors. Further, so-called accelerators have reached even higher PE counts
in recent years.

In the meantime, the programming models and program execution models
(PXMs) used by application scientists are mostly the same: MPI is used for inter-
node communication, and OpenMP is still favored for shared-memory computa-
tions. However, while the OpenMP standard has evolved to include finer-grain
tasks with OpenMP 3, and even provide ways to define task-dependence graphs
in OpenMP 4 [6], a large majority of application programmers still rely on a
coarse-grain style to express parallelism, i.e., they mostly use constructs tied to
parallel for loops, which in turn require the use of global barriers.

While the core count remained low in compute nodes, this approach was
still reasonable. However as we explained above, assuming a low core count is
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not realistic anymore. Synchronization usually leverages the use of atomic oper-
ations, which can seriously hamper performance in a multi-core, multi-socket
environment. In particular, memory-bound workloads tend to tax the intercon-
nection network linking sockets together. In general, high-performance based
synchronization constructs rely on some sophisticated variation of busy-waiting
(potentially mitigated with a sleep policy) which can hog the memory subsystem,
as the system software designer expects contention to be low and the workload
to be well-balanced—particularly in the case of embarrassingly parallel algo-
rithms and programs. Specifically, memory-bound workloads may suffer from
load imbalance due to saturated resources, e.g., FPUs shared by multiple PEs,
or contention on a given memory level. One such example is the use of partial dif-
ferential equation iterative solvers for linear equation systems, in particular the
application of Jacobi or Gauss-Seidel methods to a linear system by resorting to
a stencil-based iterative solver: every element of an n-dimensional grid depends
on its immediate neighbors, and potentially more remote ones. Such algorithms
are used in a multitude of applications, e.g., to solve Laplace equations used in
heat conduction and computational fluid dynamics solvers.

In this paper, we propose to demonstrate the need for fine-grain synchro-
nization even in the presence of rather coarse-grained workload partitioning. We
compare the coarse-grain parallelization of a 5-point stencil application imple-
mented with OpenMP to several variants using a fine-grain event-driven execu-
tion model. While there are various ways to optimize stencil codes, our intent is
to demonstrate that in a dependence-heavy context, yet with a uniform amount
of work per thread, fine-grain synchronization matters, even in “regular” general-
purpose systems1.

Our experiments show that even with a simple hierarchical scheme, the reduc-
tion in atomic operations and memory traffic in general benefits the overall exe-
cution of the program. We then further modify our variant so that parallel tasks
only communicate with their neighbors. The process itself is made easier thanks
to the integration in the task-definition semantics of event dependencies. More-
over, while we hand-coded our stencil computations using an implementation of
the Codelet Model, the process to parallelize such a workload in a hierarchical
manner is rather systematic and easy to follow.

We run our experiments on three different types of machines featuring ×86
processors, with a different number of processing elements per chip, but also a
different number of sockets per node. Our results show an improvement of up to
1.75× on the speedup obtained with OpenMP.

Section 2 presents the codelet model and its runtime implementation, which
we used to carry our experiments. Section 3 describes our approach to parallelize
our stencil application. Section 4 describes our experimental results. Section 5
describes other work related to fine-grain multithreading and stencil computa-
tions. Finally, we conclude in Sect. 6.

1 Note that we do not claim that our own environment is better than OpenMP 4.
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2 The Codelet Model

The Codelet Model [21] is a fine-grain event-driven program execution
model which targets current and future multi- and many-core architectures
(A short introduction is available at http://www.capsl.udel.edu/codelets.shtml).
In essence, it is inspired by dataflow models of computation [8].

2.1 General Principles

Codelets: Definition and Firing Rules. The quantum of execution is the codelet, a
fine-grain task that executes a sequence of machine instructions until completion,
and runs on a von Neumann type of computation core. A codelet fires when all
its dependencies (data and resource requirements) are met. A codelet cannot be
preempted while it is firing, i.e., while it is executing on a computation core.

Codelet Graphs and Threaded Procedures. Each time a codelet produces data
items or releases a shared resource, it signals the other codelets that depend on
such data item(s) and/or resource(s). Such a group of codelets and their depen-
dencies can be modeled as a directed graph called a codelet graph (CDG). In
general, a given CDG statically specifies the dependencies between the codelets
it contains.

A Threaded Procedure (TP) is a container that comprises a CDG and data
to be accessed by the codelets it contains. A TP is essentially an asynchronous
function: once it has invoked a TP, its caller resumes its execution. The TP itself
can run anywhere on the machine once it has been scheduled for execution.

2.2 The Codelet Abstract Machine

The codelet model relies on a Codelet Abstract Machine (CAM), which models a
general purpose many-core architecture with two types of cores: synchronization
units (SUs) and computation units (CUs). A CAM is composed of clusters of
cores: each cluster contains at least one SU, one or more CUs, and some local
memory. Clusters are grouped together to form a chip, which itself has access to
some memory modules. Multiple chips can be grouped into a node, and multiple
nodes form a full machine. At each level of the hierarchy, an interconnection
network is assumed in order to allow for memory transfers.

A CAM is meant to be mapped on real hardware: the number of clusters, and
computation units per cluster will be directly influenced by the actual hardware
architecture on which a codelet program should be running. Further, different
configurations may be used on the same target hardware, depending on the
nature of the application.

2.3 A Codelet Runtime System

Our work relies on DARTS, a faithful implementation of the codelet model [19]. It
targets shared-memory nodes (there is no distributed memory implementation at
the time of this writing). DARTS executes on regular multi-core chips and assigns
a role to each core: a core is either a synchronization unit or a computation unit.

http://www.capsl.udel.edu/codelets.shtml
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3 Applying Fine-Grain Parallelism to Embarrasingly
Parallel Problems

This section describes how we started from an OpenMP coarse-grain implemen-
tation of a simple, naive 5-point stencil computation and reproduced its overall
structure using a codelet runtime system, to gradually refine the stencil code
parallelization and leverage finer-grain synchronization.

3.1 Basic Implementation of a Parallel Coarse-Grain 5-Point Stencil

The code presented in Listing 1.1 is a näıve OpenMP version of a coarse-grain
multithreaded 5-point stencil computation. To simplify the problem, we do not
consider the convergence test and only rely on a given number of time steps.
This version of the stencil code privatizes everything, so that each thread can
perform all computations (including pointer swapping and moving forward to
the next time step). The computation itself is located in a parallel for loop
(see line 15). We removed the implicit barrier at the end of the loop so that
threads that finish processing their own iteration chunk may proceed to swap
their source and destination pointers for the next time step. The only required
synchronization is the global barrier (line 17) before looping to the next iteration
in the while loop, to ensure that all threads have properly swapped their array
pointers before resuming the computation.

1void stencil_5pt(double* restrict dst , double* restrict src ,
2const size t n_rows , const size t n_cols ,
3size t n_steps)
4{
5typedef double (* Array2D )[ n_cols];
6# pragma omp parallel default(none) shared(src , dst) \
7firstprivate(n_rows , n_cols , n_tsteps)
8{
9Array2D D = (Array2D) dst , S = (Array2D) src;
10size t n_ts = n_tsteps;
11while (n_ts -- > 0) {
12# pragma omp for nowait
13for ( size t i=1; i<n_rows -1; ++i)
14for ( size t j=1; j<n_cols -1; ++j)
15D[i][j] = 0.25 * (S[i-1][j]+S[i+1][j] + S[i][j-1]+S[i][j+1]);
16SWAP_PTR (&D,&S);
17# pragma omp barrier
18}
19}
20}

Listing 1.1. Näıve 5-Point Stencil kernel—OpenMP version. Everything has been
privatized, but threads can only proceed to the next time step if they all have swapped
their array pointers.

We first adapted the code of Listing 1.1 to our DARTS framework. The defin-
ition of codelets and threaded procedures is shown in Listing 1.2. The codelets
are defined with default dependence counts (0 for Compute, and 2 for Barrier),
but they can be overriden when they are effectively instantiated. The Stencil
TP is essentially a C++ struct which allocates the right amount of codelets for
a given cluster of cores, and holds the data which the codelets can access.
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Table 1. Codelet Model macros and their meaning.

Keyword Description

DEF TP Defines a new threaded procedure

DEF CODELET Defines a new codelet

DEF CODELET ITER Defines a new codelet with a specific ID

SYNC Signals a codelet within the same TP frame

SIGNAL Signals a codelet in another TP frame

SIGNAL CODELET Signals a codelet from a TP setup phase

LOAD FRAME Loads the threaded procedure frame

FIRE(CodeletName) Code to run when CodeletName is fired

INVOKE(TPName,...) Invokes a new TP from a codelet

The listing of the first variant we implemented, which we call Naive in our
experiments (see Sect. 4), is not shown here due to lack of space. The Compute
codelet proceeds to execute the stencil operation for one time step over a chunk of
the data. When it is done firing, it signals the Barrier codelet, which collects all
the signals of all firing Computes. Barrier then proceeds to invoke a new Stencil
TP where the source and destination arrays are swapped in the parameters
list, and the time step is decreased. This variant performs poorly compared to
OpenMP, as we require DARTS to allocate a new codelet graph for each new time
step. The second variant still implements a coarse-grain synchronization scheme,
but this time, it has Compute codelets reset their dependence count when they
are fired. Barrier signals the end of the computation if there are no more time
steps, or it resets itself, and then signals Compute codelets. The code is provided
in Listing 1.32.

Fig. 1. A coarse-grain version of a näıve stencil computation. Each codelet resets itself
if there are remaining iteration steps.

2 Obviously, as we are writing directly using a runtime system API, the code has to
be more verbose than its OpenMP counterpart.
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The various keywords emphasized in bold red are macros defined to simplify
the writing of DARTS programs. A short description of the various keywords
is provided in Table 1. A graphical illustration of the codelet program (Näıve
Stencil-DARTS with reset function) is shown in Fig. 1.

1DEFCODELETITER ( Compute , 0, NO_META_DATA );
2DEFCODELET ( Barrier , 2, NO_META_DATA );
3DEFTP(Stencil) {
4// Data
5double *dst , *src;
6size t n_rows , n_cols , n_tsteps;
7// Code
8Compute* compute;
9Barrier barrier;
10
11Stencil(double* restrict p_dst , double* restrict p_src ,
12size t p_nRows , size t p_nCols ,
13size t p_nTSteps)
14: dst(p_dst), src(p_src)
15, n_rows(p_nRows), n_cols(p_nCols), n_tsteps(p_nTSteps)
16, compute(new Compute[g_nCU])
17, barrier(g_nCU ,g_nCU ,this ,NO_META_DATA)
18{
19for ( size t cid = 0; i < g_nCU; ++cid) {
20compute[cid] = Compute{1,1,this ,NO_META_DATA ,cid};
21SIGNALCODELET(compute[cid]);
22}
23}
24};

Listing 1.2. Coarse-Grain 5-Point Stencil kernel—DARTS version. Stencil TP defi-
nition and its associated codelets.

1FIRE(Compute) {
2LOADFRAME(Stencil );
3typedef double (* Array2D )[ n_cols];
4Array2D D = (Array2D) FRAME(dst), S = (Array2D) FRAME(src);
5const size t n_rows = FRAME(n_rows), n_cols = FRAME(n_cols),
6n_steps = FRAME(n_steps );
7
8size t cid = getID(), // current codelet ’s ID
9lo = lower_bound(n_cols ,cid),
10hi = upper_bound(n_cols ,cid);
11
12RESET(compute[cid]);
13for ( size t i = lo; i < hi -1; ++i)
14for ( size t j = 1; j < n_cols -1; ++j)
15D[i][j] = 0.25 * (S[i-1][j]+S[i+1][j] + S[i][j-1]+S[i][j+1]);
16SYNC(barrier );
17EXITTP();
18}
19
20FIRE(Barrier) {
21LOADFRAME(Stencil );
22i f ( FRAME(n_tstep) == 0 ) SIGNAL(done), EXITTP();
23
24RESET(barrier );
25for ( size t i = 0; i < g_nCU; ++i) SYNC(compute[i]);
26EXITTP();
27}

Listing 1.3. Coarse-Grain 5-Point Stencil kernel—DARTS version. Codelets reset
themselves until the last iteration step is reached.
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3.2 Description of Parallel Stencil Computation Variants

Distributing the Computation Over Multiple Clusters in the Codelet Abstract
Machine. The code presented in Listing 1.3 is sufficient in case we map a codelet
abstract machine (CAM) which features only a single Synchronization Unit (SU,
see Sect. 2). However, this configuration centralizes all codelet graph creations
onto a single processing element. Further, it creates a single unique synchroniza-
tion object which will be accessed by all codelets to signal the end of their com-
putation. This will force the whole compute node to serialize memory accesses
when performing the synchronization step. As a result, we implemented a new
variant inspired by the very first näıve one, which partitions the codelet graph
into sub-graphs, and each contained within its own threaded procedure featur-
ing a local Barrier codelet, and each confined to a given cluster of cores to
maintain locality. Note that, following the original code, new TPs are invoked
for each new time step in the computation. However, to avoid paying the cost of
dynamically allocating the various codelets involved per cluster, the same array
of codelets is passed from invocation to invocation: the codelets are destroyed
only once the last iteration step has been reached. Figure 2 provides a high-level
view of the resulting codelet graph.

Fig. 2. A medium-grain version of a naive 5-point stencil computation. The computa-
tion is decomposed into several sub-codelet graphs, allowing a machine to hold multiple
synchronization units for a better workload balance.

Toward a Finer-Grain Approach. Our goal is to allow portions of work to proceed
with the next iteration step, as long as the shared rows they require to update
their portion of the matrix are up-to-date. We are still decomposing the work
along the rows of the matrices, but this time, each codelet simply signals its
neighbors when it is done updating the rows they depend on to move to the
next iteration step. Hence, some codelets may proceed to update the system at
step St+1 while others are still finishing step St. Figure 3 provides a diagram of
the resulting codelet graph. In this case, we create a single TP holding the whole
codelet graph, where all dependencies are statically determined. The stress on
the memory subsystem is not expected to be excessive, since signals are now
only sent between “neighboring” cores, thus confining atomic operations to PEs
that are physically close.
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Fig. 3. A fine-grain version of a naive stencil computation. A single TP is generated,
which holds the full codelet graph. Codelets only signal the neighbors which read and
write shared rows.

Reducing the Stencil Computation’s Footprint. The fine-grain approach we fol-
lowed in the previous section also makes it easier to reduce the memory footprint
of the computation. Rather than systematically using two matrices to iteratively
compute new values at each time step (subsequently requiring to exchange array
pointers), it is possible to allocate a small buffer per codelet in each invoked
TP. Each buffer must be large enough to hold a set of at least three full rows in
the matrix. The original naive loop thus becomes more complex, as each codelet
must now first write the new values of the system to its local buffer first, then
must write the newly updated row(s) back to the original matrix. However, this
scheme lends itself well to fine-grain synchronization. Indeed, as Fig. 3 only fea-
tures TPs, codelets, and their dependencies, but not the actual code or data
that are held in the TP frames, then it is also an adequate representation of
an “in-place” version of a fine-grain version of an n-point stencil computation.
However, this version suffers from the same limitation as the previous fine-grain
variant: it requires to invoke a single threaded procedure, thus forcing the codelet
abstract machine to be mapped with a single SU for the whole machine, and, in
turn, to accept that all TP creations will involve a potentially heavy serial step.

Fig. 4. A fine-grain in-place version of a näıve stencil computation. Multiple TPs can
be generated, which hold a portion of the overall codelet graph. Codelets only signal
the neighbors which read and write shared rows. A single matrix is required.
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Hence, a final refinement is to allow for the distribution of the fine-grain
“in-place” variant over multiple TPs. While the previous variants, including the
initial fine-grain one, were relatively easy to implement, this specific implemen-
tation requires some careful coding when setting up the overall codelet graph, as
codelets will reset themselves and signal each other not only within the same TP
frame, but also across frames. However, the basic structure remains the same,
and it clearly can be automated by a compiler. The resulting codelet graph is
shown in Fig. 4. In this last variant, each codelet graph features three types of
codelets: Compute performs the actual computation, as before. The CheckDown
and CheckUp codelets are signaled when rows shared by “upper” and/or “lower”
neighbors are ready to be updated. In turn, they also signal other compute
codelets to let them know that the rows they are sharing with their neighbors
are cleared for reading.

4 Experimental Results

4.1 Experimental Setup

The hardware platforms characteristics are described in Table 2.

Table 2. Compute nodes characteristics. “PE” = “Processing element.” L2 and L3
caches are all unified. Hyperthreaded cores feature two threads per core. Platform A
features 64 GiB of DRAM; architectures B and C feature 128 GiB.

Platform Processor

type

# Sockets # PEs

per

Socket

Total PEs L1D (KiB) L2 (KiB) L3 (MiB) Comments

A Intel Sandy

Bridge

2 16 32 32 256 20 Private

L2; hyper-

threading

B Intel Sandy

Bridge

4 12 48 32 256 15 Private

L2; hyper-

threading

C AMD

bulldozer

interlagos

4 12 48 16 2048 12 L2 & FPU

are shared

by 2 cores

Table 3 provides the information related to the system software running on
each compute node where we ran our experiments. Each platform offers a rela-
tively varied system software layer, with compilers and OS kernels being slightly
(or even widely) different from node to node. All experiments are run by pinning
threads to a given processing element (hardware thread or core), by setting the
OMP PROC BIND environment variable to true (for OpenMP). DARTS automati-
cally pins its work queues to the underlying processing elements.
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Table 3. System software stack used for the experiments.

Platform Linux distribution Kernel version GCC version

A CentOS 7.1 3.10.0 4.8.3

B Ubuntu 14.04.3 LTS 3.13.0 4.8.4

C Scientific Linux 6.1 2.6.32 4.9.3

4.2 Experimental Protocol
Platform A

Platform B

Platform C

Fig. 5. 5-point 2D stencil. Strong scal-
ing for a 3000×3000 input matrix. The
baseline is the pure sequential code.
We only show the two best perform-
ing DARTS variants.

We ran seven different variants of our sten-
cil code: Seq is our baseline and is a bench-
mark that runs sequentially; OMP runs the
same code as Seq with added OpenMP
directives; Naive is a single threaded
procedure implementation of the stencil
computation (see Sect. 3.1), NaiveTPsPtr
implements the same logic as Naive, but
distributes the work across several TPs;
FineGrain implements the fine-grain syn-
chronization scheme described in Sect. 3.2;
InPlace implements our in-place strategy
to run the stencil computation, using a sin-
gle TP; and InPlaceTPs implements the
same in-place variant, but distributes the
computation across multiple TPs which
then must issue inter-TP signals to satisfy
dependencies.

We ran our experiments using the fol-
lowing protocol: (1) All stencil computa-
tions run for 30 time steps, (2) Each vari-
ant instance is run 20 times to increase the
stability of the run, then the accumulated
times are averaged after removing the 2
most extreme values (min and max), and
(3) Each binary containing a variant is run
10 times from the command line, and we
average the accumulated times once again
(this is due to system-induced noise in
sequential, codelet, or OpenMP variants—
in particular for small input sizes).

4.3 Results

The results for strong scaling are shown
in Fig. 5. The default CAM is used in the
case of DARTS, which maps compute units
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to PEs that are physically close to each other. As a result, we do not use the
entirety of the available aggregated cache capacity. In the OpenMP case, we
used OMP PROC BIND, to make sure that threads are pinned to a given PE. How-
ever they are assigned in a more random fashion (left to the discretion of the
OpenMP runtime and the OS), thus making better use of the overall caches.
Still, when resources start to be saturated, i.e., when more than half of the
processing elements are used, and start to compete for FPUs, caches, etc., the
DARTS variants outperform the OpenMP version. As the PE count increases, so
does the performance gap.

Platform A

Platform B

Platform C

Fig. 6. 5-point stencil computation. Weak
scaling. The baseline is the pure sequential
code.

In the weak scaling case, the results
for all variants are shown in Fig. 6. As
with the strong scaling case, FineGrain
and NaiveTPsPtr achieve the best per-
formance on Intel-based architectures
(A and B), with speedups reaching
up to 1.75× compared to OpenMP. The
OpenMP variant has a clear advan-
tage over DARTS when the workload fits
in the caches (i.e., when the matrix
size is 1000, or possibly 2000, as it
still partially fits in the caches). In
the OpenMP case, loops are statically
scheduled, thus ensuring that the same
PE processes the same chunk of data,
thus minimizing cache misses. In con-
trast, codelets in DARTS can be run by
any PE belonging to the same cluster
of cores. Hence a given data chunk may
be processed by different PEs over two
successive iteration steps, resulting in
additional cache trashing.

Once the data grows beyond the
capacity of L3 caches, DARTS gets
the upper hand: the finer-grain vari-
ants either issue “local” atomic oper-
ations between neighbors (as with the
FineGrain variant), or at least pro-
vide a hierarchical way to maintain
some locality within their cluster of
cores, thus reducing the overall mem-
ory traffic. In particular in the Intel
compute nodes (Platforms A and B),
the inclusive nature of the caches allows
the hardware to recognize when a
given memory location is owned by the
“local” L3, and thus avoids a costly
request for ownership across sockets.
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Unfortunately, Platform C features exclusive caches, thus forcing the hardware
to issue a broadcast to flush write buffers across the whole node, as it does not
know which other caches own a copy of the data [17].

4.4 Discussion

Coarse-grain synchronizations (e.g., barriers) tend to be implemented with a sin-
gle memory location. This has several negative consequences: (1) all processing
elements issue an atomic operation to the same location, forcing the other PEs
to flush their write buffers, sometimes more than once; (2) there is a “natural”
contention due to the target single location. By contrast, finer-grain synchro-
nization makes use of more locations with better locality effects. Write buffer
flushes still occur, but tend to be limited to writing back in L3 (at least in the
Intel case). In addition, codelets can better exploit the “slack” that exists when
a core is done running a thread, due to their event-driven nature.

Finer-grain synchronization clearly does provide better results on general-
purpose many-core systems, as shown in Figs. 5 and 6. However, which variant
works best varies significantly depending on which platform we run our tests. On
Intel-based compute nodes, our most refined variants did not perform very well
in the end: the InPlace and InPlaceTPs variants underperformed compared to
their most simple counterparts, and even compared to the coarse-grain OpenMP
version. We attribute this to too naive an implementation: while the InPlace
variant does require less memory than the original code, its implementation is too
simplistic: it makes use of dynamic allocation each time a computation codelet
is being fired, which in turn invokes the OS to perform the allocation itself. As
most codelets are fired within a very small time range, some serialization while
trying to access the OS’s memory allocator results in wasted time. As Intel-
based nodes feature inclusive caches, the data can only be as big as the L3s of
the system.

By contrast, as Platform C is AMD-based, caches are exclusive: the aggre-
gated size of the L2 caches equals the aggregated size of the L3s, effectively
doubling the overall size of the data that can be held in the caches. It also helps
with the InPlace and InPlaceTPs variants, as the local buffer allocated for the
fine-grain update of the matrix is held in a separate cache than the original
matrix. This is compared to the näıve, 2-array version which requires to con-
stantly read and write from and to memory through the L1 and L2 caches. The
AMD system also relies on write-through L1D caches (compared to Intel’s write-
back L1Ds), which allows for a better utilization of the L1D (there is roughly
four times more reads than writes in the stencil computation).

Moreover, as we intended to show the benefits of “pure” fine-grain synchro-
nization, without resorting to classical loop transformations, such as tiling or
loop skewing, even the allocation of just three complete rows is enough to quickly
fill L1D caches. For example, our smallest input size for a matrix, 1000 × 1000,
requires three rows of a thousand elements to implement the current in-place
variants. However, this represents already 2/3 of the L1D cache of the Intel-
based compute nodes, and overflows into the L2 cache in the case of the AMD
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compute node. Hence, to obtain an efficient in-place variant, additional blocking
and tiling techniques are required. We intend to explore this research venue, but
to be fair to coarse-grain models, we must do the same for the näıve OpenMP
code.

5 Related Work

Fine-Grain Multithreading Program Execution Models. In recent years, several
attempts at providing more dynamic ways to create parallel work have been
proposed. Many such attempts are inspired by dataflow models of computation.
Among them, we can mention Concurrent Collection [11], an implementation of
dynamic macro-dataflow. It has shown encouraging results, including on stencil-
like computations [14]. XKaapi [9], OCR [15], and SWARM [12] all propose a
dataflow (or even codelet) inspired way to deal with multithreading. However,
they do not provide an explicit way to group dataflow tasks to ensure they
execute on a specific portion of the hardware (for example, to maintain spacial
and temporal locality), contrary to DARTS (which uses threaded procedures to
enforce codelet grouping). Other frameworks provide fine-grain multithreading
without being directly tied to dataflow. Chief among them are Cilk [5] and
Habanero [3].

Finally, the latest version of the OpenMP standard proposes a way to describe
task dependencies in a program [6], by describing dataflow-like dependencies in
the code. The resulting task dependence graph is obtained in a fully dynamic
manner. By contrast, DARTS’s codelet graphs tend to dynamically allocate chunks
of codelets which feature statically-defined dependencies.

Frameworks and Transformations for Stencil Computations. While this paper’s
intent is to advocate for finer-grain synchronization for large-scale general-
purpose compute nodes, and uses stencil kernels only as an example, we provide
a short description of related techniques and frameworks to optimize stencil
computations.

Classical loop optimization techniques provide very efficient ways to improve
sequential stencil computation. Loop tiling, locality optimization and paralleliza-
tion are the main methodology to improve stencil computation performance.
Loop tiling [1] manipulates hyperplanes from the iteration space to determine
the tile shapes for a given computation, as well as the scheduling order. Further
transformations include diamond tiling [2,4]. More recently, the manipulation of
the iteration space has led to better work scheduling for many-core devices. For
example, Shrestha et al. propose to perform transformations on the iteration
space using jagged-tiling to allow for a better concurrent start for processing
tiles in parallel [18].

Pochoir is a domain-specific language relying on Cilk that allows the user to
specify a given type of stencil computation to be generated automatically for
parallel execution [20]. Kamil et al. [7,10] propose a code generation and auto-
tuning framework for stencil computations targeted at multi- and many-core
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processors. Muranushi and Makino introduced the PiTCH tiling method [16],
which leverages a temporal blocking methodology which can achieve a target’s
optimal memory bandwidth ratio well-suited for multidimensional stencil compu-
tations. Lesniak introduced a block-based wave-front synchronization technique
for parallel stencil calculation [13].

6 Conclusion and Future Work

We have presented a study of a dependence-heavy application to advocate for
finer-grain and hierarchical synchronization in current high-performance general
purpose many-core compute nodes. Leveraging a runtime system implementation
of a fine-grain event-driven execution model, we have devised several variants to
study the best way to leverage fine-grain synchronization, and demonstrated that
by using finer-grained synchronization, even embarrassingly parallel workloads
can see their performance improve by up to 1.75× using regular work distribution
among cores.

Our future work includes rewriting the original näıve OpenMP code using
OpenMP 4.5’s task dependence constructs, and compare the resulting perfor-
mance with our own environment’s. While the fine-grain variants we have pre-
sented in this paper were hand-written, most of them can be implemented in a
compiler, using a syntax close or identical to OpenMP 4’s. We are in the process
of developing a compiler that translates OpenMP code to fine-grain event-driven
tasks, and generates automatically a multi-level synchronization scheme—we
believe OpenMP’s programming model is enough to express parallelism, but
that the Codelet Model provides a better program execution model.
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