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The improvements in semiconductor technologies are gradually enabling extreme-scale systems such as
teradevices (i.e., chips composed by 1000 billion of transistors), most likely by 2020. Three major
challenges have been identified: programmability, manageable architecture design, and reliability. TER-
AFLUX is a Future and Emerging Technology (FET) large-scale project funded by the European Union,
which addresses such challenges at once by leveraging the dataflow principles. This paper presents an
overview of the research carried out by the TERAFLUX partners and some preliminary results. Our
platform comprises 1000+ general purpose cores per chip in order to properly explore the above chal-
lenges. An architectural template has been proposed and applications have been ported to the platform.
Programming models, compilation tools, and reliability techniques have been developed. The evaluation
is carried out by leveraging on modifications of the HP-Labs COTSon simulator.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Silicon manufacturing technologies, such as FinFET [1]
transistors and 3D-die stacking [2] that are currently available, will
allow new chips (that we call teradevices) with a huge number of
transistors (for current ITRS [3] projections, 1 Tera or 1012 transis-
tors), therefore opening the doors to the possibility of exploiting
the extremely large amount of parallelism in different ways. It is
expected that such systems will be able to perform at least one
Exa-FLOPS or 1018 floating-point operations per second.

In such future exascale machines, the number of general pur-
pose cores (i.e., compute elements) per die will exceed those of
current systems by far. This suggests a major change in the soft-
ware layers that are responsible of using all such cores. The three
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Fig. 1. The TERAFLUX transformation hierarchy.
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major challenges: programmability, reliability and complexity of
design are here briefly introduced. Also, a new Program eXecution
Model [4–6] seems suited in order to address such challenges.

Given the large number of transistors and the diversity in the
requirements for different applications, it is natural to expect that
these massively parallel (or concurrent teradevice) systems will be
composed of heterogeneous cores. Thus, programmability of such
large-scale systems will be a major challenge. Moreover, such large
systems are expected to become more and more susceptible to
failures, due to the increasing sensibility to process variations
and manufacturing defects. Thus, this extreme scale of device inte-
gration represents a second major concern, in terms of reliability,
for future many-core systems. Finally, the software industry is lag-
ging behind as general purpose applications cannot take advantage
of more than a handful number of cores compared to the larger
degree of parallelism offered by the current and future processors.
Starting from this premise, there is the need for new ways to
exploit the large parallelism offered by future architectures as
expected to be a reality beyond the year 2020.

The dataflow concept is known to overcome the limitations of
the traditional control-flow model by exploring the maximum par-
allelism and reducing the synchronization overhead. As recalled by
Jack Dennis [7], dataflow is ‘‘A Scheme of Computation in which an
activity is initiated by presence of the data it needs to perform its
function’’. The dataflow paradigm is not new, but recently it has
met mature silicon technology and architectural models to take
advantage from the large intrinsic parallelism.

TERAFLUX [8] is a Future Emerging Technologies (FET) large-
scale project funded by the European Union. The aim is to exploit
the dataflow paradigm in order to address the three major chal-
lenges presented above (i.e., programmability, reliability, and man-
ageable architecture design). Since we are targeting 1000+ core
systems, the dataflow paradigm enables us to use the increased
degree of parallelism which emerges in future teradevices.

The rest of the paper is organized as follows. Section 2 provides
a general overview of the project. Remaining sections are focused
on describing the concepts together with the major achievements
resulting from our research activity. In particular, Section 3 describes
possible applications based on the OmpSs programming model,
while Section 4 details a further possibility of using a productivity
language such as Scala thanks to a dataflow runtime called DFScala.
Another common layer (OpenStream, presented in Section 5) is used
for mapping feed-forward dataflow into lower-level dataflow
threads as expressed by the T� Instruction Set Extension, described
in Section 6, together with the architecture of our target system. Sec-
tion 7 describes the Fault Detection Units (FDUs), which provide
fault detection management through monitoring techniques and
redundant execution of dataflow threads. The experiments are inte-
grated into a common simulator based on the HPLabs COTSon [9] ,
presented in Section 8. Finally, Section 9 introduces the codelet
model, while Section 10 concludes the paper.

2. General overview of the TERAFLUX project

To investigate our concepts, we use dataflow principles at any
level of a complete transformation hierarchy, starting from general
complex applications (able to load properly a teradevice system)
through programming models, compilation tools, reliability tech-
niques and architecture. Fig. 1 shows the TERAFLUX layered
approach.

Different layers allow to transform application source code into
a dataflow-style binary, and to execute it on the target architecture
(which is at the current moment based on off-the-shelf cores like
x86_64, even if our approach is Instruction Set agnostic—see
Section 8 for more details). The top level of this hierarchy is
represented by real world applications, which allow us to stress
the underlying teradevice hardware. In the TERAFLUX project,
implicit parallelism refers to the set of constraints on the concur-
rent execution of threads, and the expression of these constraints
in the source code. These constraints can be dependencies, atomic
transactions, synchronization barriers, privatization attributes,
memory layout and extent properties, and a wide variety of hints.
An explicitly parallel program, on the other hand, is made of concur-
rency constructs making the thread creation, termination, and possi-
bly some target-specific aspects of the execution explicit [10–12].

A dataflow oriented programming model allows expressing
data dependencies among the concurrent tasks of an application.
Such concurrent tasks can be subdivided even more—at lower lev-
els—into DataFlow Threads (or DF-Threads), also simply referred as
threads when clear from the context. Nevertheless, applications use
large data structures with in-place updates, for efficient memory
management [13–15] and copy avoidance. Such applications may
require a mechanism to express the non-interference of concurrent
updates to shared data. To meet such need, we selected Transactional
Memory (TM), as the most promising programming construct and
concurrency mechanism for specifying more general forms of syn-
chronization among threads, while preserving the composability of
parallel dataflow programs and promising a high level of scalability
[16]. We achieve this by defining a specific layer for studying the inte-
gration between the TM and dataflow programming models [17–19].

Besides the programming model, implicit parallelism must be
exploited by a compilation tool-chain [20–22], being able to convert
dependencies and transactions, into scalable target-specific parallel-
ism. It is also responsible for properly managing the inter-node com-
munications and a novel memory model. Compiler effectiveness is
guaranteed by the implementation of a generalization of the state-
of-the-art algorithms to expose fine-grained dataflow threads from
task-parallel OpenMP-, StarSs- or HMPP-annotated [23,24] pro-
grams. The algorithm generalization leverages a new dependence-
removal technique to avoid the artificial synchronizations induced
by in-place updates in the source program [25,26].

Our goals in designing an efficient compilation tool-chain are to
capture the important data reuse patterns, to optimize locality and
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reduce communication bandwidth, and to provide compiler
support for transaction semantics embedded into a dataflow
programming model, such as OpenStream [27]. Both productivity
and efficiency programming layers are supported. Compiler direc-
tives are used to lower the abstraction penalty of the productivity
layer, and to explicitly exploit parallelism and locality.

As mentioned in the Section 1 reliability will be a major concern
for future many-cores architectures. With the aim of limiting the
impact of faults in the target architecture, dedicated hardware
modules are devoted to monitor the health of the system, and drive
specific counteractive measures [28,29]. To achieve this goal in
TERAFLUX, we focused on inter-core fault detection techniques
using Fault Detection Units (FDUs) [30]. We considered different
FDU variants (push, pull, alert mechanisms for heartbeat mes-
sages), FDU implementations, and interfaces.

We propose a functional FDU specification based on the MAPE
(Monitoring, Analysis, Planning, and Execution) [31] cycle. Abstract
message interfaces of the FDU to all communication units (e.g.,
FDU-core, FDU-operating system, etc.) were specified for push,
pull, and alert messages. Core health is monitored by exploiting
currently available performance monitoring and machine check
hardware features (e.g., machine check architecture of current
AMD/Intel processor families).

System resources are managed at the highest level by the operat-
ing system. The main objective of the operating system is to balance
the workload among the nodes while keeping an acceptable level of
fault tolerance. The control of scheduling and the resource managing
are hierarchically performed: distributed FDUs are used to guarantee
the characteristics of the basic nodes by accessing the different
resources such as the cores, and local memories. Similarly to the
FDU, the other resources of the TERAFLUX system are hierarchically
organized, mainly resembled to a set of nodes interconnected with
each other. Each node contains hardware structures for scheduling
the medium/fine-grain dataflow threads (TSUs or Thread Scheduling
Units) generated by the compilation tool-chain, and execute them.

The TERAFLUX architecture is designed in order to support the
programming and execution models developed by the higher level
layers. At this point the project focuses on defining the basic archi-
tecture modules as well as the necessary instruction extensions to
support the programming and execution model. The basic architec-
ture consists of a number of multi-core nodes. We are ISA agnostic,
in principle, but we wanted to demonstrate our concept with a well-
known ISA such as the x86_64. The nodes are interconnected
through a Network on Chip (NoC). TERAFLUX supports a global
address space across the whole system. For producer-consumer pat-
terns, there is no need for traditional coherency because the data-
flow model is based on the single assignment semantics. Different
memory types (e.g. shared and non-shared) are defined as to store
particular data and metadata of the programs, while non-determin-
ism in accessing the shared data is guaranteed through transactions.

The aim of the lowest layer of the TERAFLUX hierarchical
approach is to the provide software and hardware infrastructures
capable of simulating all the modules composing the target sys-
tem. For the simulation and evaluation of the system we chose a
state of the art many-core simulation infrastructure (HPLabs COT-
Son [9]), which is able to scale up the number of cores to two
orders of magnitudes larger than what is currently available. This
simulation infrastructure represents a common point for all the
partners, allowing them to test their research ideas and integrating
them in a common platform.
3. Leveraging dataflow through the task-based approach

One of the key aspects of the TERAFLUX project is the proposal
of a new programming and execution model [32–34] based on
dataflow instead of the traditional control-flow paradigm. Data-
flow is known to overcome the limitations of the traditional con-
trol-flow model by exploring the maximum parallelism and
reducing the synchronization overhead. We leverage such dataflow
principle with the combination of OpenStream [27] and StarSs/
OmpSs [10–12].

OpenStream compiler — GCC based — is an entry point to TER-
AFLUX compilation toolchain: applications parallelized with TERA-
FLUX programming models need to be translated manually or
automatically to code annotated with OpenStream directives. We
use StarSs memory regions [35] as a case study for translation to
OpenStream. OpenStream and StarSs have different features with
regard to how data used for computation are represented and
how data dependencies are handled:

� OpenStream’s basic unit of computation is a dataflow stream
whereas StarSs applications use dynamic memory regions speci-
fied by the programmer for communication between tasks
� OpenStream requires explicit task dependencies to maintain

correctness of parallel execution whereas data dependencies
of StarSs tasks are inferred at runtime.

The comparison shows that translation, when manually done,
requires the programmer to identify data dependencies between
StarSs tasks and express them with OpenStream streaming
constructs. As it is stated in [27], the idea behind StarSs-Open-
Stream translation scheme is to encode StarSs memory regions
as a set of streams that contain versions of memory locations
accessed by tasks. The most recent versions in the set of streams
are calculated by modified StarSs dependence resolver, and
determine live data identified by StarSs memory regions at the
given point of application execution. The set of streams is
attached to each OpenStream task, and is used by OpenStream
runtime to determine data dependencies between tasks and to
synchronize concurrent memory accesses. Detailed explanation
of the translation scheme and proof of correctness of the algo-
rithm is found in [27].

A source-to-source translator is being developed that carries
out StarSs-OpenStream translation at compile time. The key
components of the translator are a parser that parses StarSs
pragmas to identify memory regions and their directionalities
further used to calculate their live versions, and a code generator
that generates call expressions to aforementioned StarSs depen-
dence resolver. The code generator also generates OpenStream
task pragmas with the set of version streams. Generated code
is further passed to OpenStream compiler. A prototype version
of this translator is publicly available and has been tested with
some sample applications. It can be downloaded from http://
openstream.info website.

The StarSs programming model [35] provides a paradigm for
the development of applications following the sequential pro-
gramming paradigm but based on an execution model that
exploits the inherent concurrency of the applications taking into
account the existing data dependencies. The code is developed in
a standard, sequential language, such as C or FORTRAN. On the
users side there are no explicit parallel constructs, like in thread
or stream models.

Since the paradigm is task-based, the programmer needs to
add annotations or compiler directives to the code to mark those
pieces of code which are to be considered a task and the
directionality of key arguments of the tasks. At runtime, this
information about the directionality of the task data is used to
build a task data-dependence graph that exhibits the inherent
data dependencies of the application as well as its potential task
parallelism. Recently, an extention of OpenMP was proposed.
OmpSs [36,37] is an implementation of StarSs which extends

http://openstream.info
http://openstream.info
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the OpenMP explicit tasks [38] with dependence clauses that
indicate the directionality of the tasks arguments, and on the
Task Superscalar design [39,40].

Fig. 2 shows an example of OmpSs code. The example imple-
ments a Cholesky factorization. The kernels of the factorization
have been annotated with OmpSs compiler directives. The direc-
tionality clauses (input, output, inout) indicate whether the
given parameter is read, write or read and write in the scope of
the task.

Within the framework of TERAFLUX, OmpSs has been used as a
high level programming model to develop applications. The OmpSs
coarse-grained tasks are then translated to finer dataflow threads
that are executed in the dataflow architecture. OmpSs is available
as open source and can be downloaded from http://pm.bsc.es/
ompss website.
3.1. Parallel Updates in StarSs/OmpSs

Although independent tasks from the dependence graph are
scheduled for execution, StarSs also provides annotations for
simultaneous updates to memory locations shared by multiple
tasks. The programmer is responsible to protect such parallel
updates. StarSs provides a lock-based synchronization mechanism
for concurrency control, and to deal with such concurrent updates.
But the use of locks opens the door to deadlock, livelock, non-
determinism, and lost compositionality.

In order to avoid such problems, Software Transactional Mem-
ory (STM), an alternative method to lock based synchronization
has been used to access shared memory locations. TinySTM
[41,42], a lightweight STM library has been integrated into the
StarSs framework with this purpose. Instead of introducing a
new pragma into the StarSs framework, the implementation of
the existing lock pragma was modified to generate transactions
which update the shared memory locations. When a lock pragma
is encountered StarSs starts a transaction and saves the stack con-
text. If the transaction encounters a conflict at a later stage in the
execution then the saved stack context is used to restart the trans-
action. The critical memory location which is being updated is then
loaded into a local variable using TinySTM library calls. The
updates are performed on this local copy. At the end the value in
Fig. 2. Example of code annotated w
this local copy is stored back to the main memory location shared
between tasks. In case of a conflict the transaction is restarted from
the point where the stack context has been saved. In case of no
conflicts the transaction is committed and the results made
permanent.

The idea of optimistic STM based synchronization versus pessi-
mistic lock based concurrency control has been tested on applica-
tions where parallel updates are performed on memory locations
by tasks. The results prove that we obtain higher performance with
STM in applications with high lock contention. The overhead of
using STM is in the aborts and restarts of transactions in case of
a conflict. Hence an analysis has been performed on the time spent
by transactions in rollbacks. The results [18] show that in cases
where lock based synchronization performs better than STM, the
overhead incurred due to rollbacks play a major role. Analysis
has been also done on executing longer transactions versus smaller
transactions. The trade-off is to create multiple smaller transac-
tions and thus spend more time in start and commit of transactions
versus longer transactions and hence longer time in rollbacks in
case of a conflict [18].
4. DFScala: constructing and executing dataflow graphs

One part of this project is the construction of a high level data-
flow framework which serves two purposes: Overall goals of TER-
AFLUX included: (i) to provide a high productivity language in
which to construct dataflow programs, and (ii) to provide a high
level platform for experimenting with new ideas such as using
the type system to enforce different properties of the dataflow
graph and different memory models. With these goals in mind,
we constructed a high level dataflow framework called DFScala.

DFScala provides a key foundation and implements the base
functionality of this research platform. One distinguishing feature
of DFScala is the static checking of the dynamically constructed
DF graph.

In a dataflow program the computation is split into sections.
Depending on the granularity of the program these vary from a sin-
gle instruction to whole functions which can include calls to other
functions, allowing arbitrarily large computation units. All of these
sections are deterministically based on their input and side-effect
ith OmpSs compiler directive.

http://pm.bsc.es/ompss
http://pm.bsc.es/ompss


Fig. 4. On the left a node in the dataflow graph containing a transaction, on the
right how this can be viewed as three nodes by the memory system.
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free. The execution of the program is then orchestrated through the
construction of a directed acyclic graph where the nodes are the
sections of computation and the vertices are the data dependencies
among these. An example of this can be seen in Fig. 3. Once all the
inputs of a node in the graph have been computed the node can be
scheduled for execution.

The DFScala library is open source and provides the functional-
ity to construct and execute DF graphs in Scala. The nodes in the
graph are dynamically constructed over the course of a program
and each node executes a function which is passed as an argument.
The arcs between nodes are all statically typed. More details are in
recent works [43–45]. DFScala is available at http://apt.cs.man.a-
c.uk/projects/TERAFLUX/DFScala website.

4.1. Combining dataflow and transactional memory

Transactional memory and dataflow are a good combination of
paradigms because of transactions isolation. The detection of con-
flict and possible retrying is taken care of wholly by the underlying
system. As far as the user code is concerned a particular thread sees
no evidence of interaction with any other thread, other than a pos-
sible increase in execution time. This isolation leads to specific
coherency and data dependency properties that fit very well with
dataflow programming.

4.2. Coherency

The isolation properties of transactional memory ensure that
state updates only become visible at the point that a transaction
commits. This means that, unlike with shared state and locks, the
coherence model is the same for a transaction as it is for a node
Fig. 3. An instance of a dataflow grap
of a dataflow computation. As such a transaction can be treated
by the memory model as a distinct node of a dataflow graph, so
the addition of state does not require a fine grained understanding
of the interleaving of operation by the programmer, or strengthen-
ing the coherency model in the hardware. A graphical example of
this effect can be seen in Fig. 4.
h for a circuit routing algorithm.

http://apt.cs.man.ac.uk/projects/TERAFLUX/DFScala
http://apt.cs.man.ac.uk/projects/TERAFLUX/DFScala


Fig. 5. The two possible formulations of a section of the dataflow graph containing two conflicting transactions. The dashed data dependency will be inserted and enforced at
runtime by the transactional memory system, making the relationship between transactions part of the dataflow graph.
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4.3. Data dependencies

Isolation also means that transactions can be viewed as
dataflow tasks whose data dependencies are determined as the
program executes. This is possible because for any two transac-
tions that access the same state and at least one transaction mod-
ifies it, they will appear to execute serially. Effectively the TM is
adding a dependency to the dataflow graph at runtime. An
example of this can be seen in Fig. 5.

The combination of these two features means that transactions
can be viewed as nodes in the dataflow graph. This means that we
are now describing a family of dataflow graphs which maintain
dataflow semantics instead of the weakened dataflow graphs
provided by lock based solutions. As such, this combination is
deadlock free, like a pure dataflow graph and offers a far smaller
number of possible execution paths. This makes it far less invasive
to the correctness of the dataflow model while still providing a
clean and efficient way to modify state. For example, if we have
two transactions each containing 5 lines of code that access shared
state, with conventional solutions there would be 252 possible
interleavings of the accesses to shared stat ð5� 2Þ!=5!2Þ, which
would have to be accounted for and locks added to protect them,
with transactions there would be 2 possible dataflow graphs. Fur-
thermore if we make an error in our design and use a variable
through some back channel, this may cause a performance hit in
the form of a bottleneck, but the transaction memory will prevent
it causing a race condition.
5. The OpenStream extension to OpenMP

A key point of TERAFLUX is the compilation flow, which has
been vastly remodeled to target the reference architecture. In
particular, such compilation flow has been implemented as a front-
and middle-end extension to GCC 4.7.1. Starting from a program-
ming model which extends OpenMP to support streaming task
directives, called OpenStream [46,27,47], the compiler is able to
expand streaming task directives into dataflow threads and
point-to-point communications. Programs written in higher level
languages such as StarSs can be translated source-to-source to
OpenStream using slightly modified implementations of their
dependence resolver. The rationale for designing such streaming
extension is motivated by the need to capture dataflow dependen-
cies explicitly in a parallel language, by the quest for increased
productivity in parallel programming, and by the strong evidence
that has been gathered on the importance of pipeline parallelism
for scalability and efficiency.

The OpenStream syntactic extension to the OpenMP language
specification consists of two additional clauses for task constructs:
the input and output clauses, both taking a list of items, describ-
ing the stream and its behavior. For example, within the body of a
task, one can need to access each element of the stream one at a
time (hence, the stream abbreviated form can be adopted), or mul-
tiple elements at a time through sliding windows (the forms
adopting the << and >> stream operators are the most suitable).
The syntax of the additional clauses (a) and an example of stream
accessed via sliding window (b) is shown in Fig. 6. OpenStream
supports dynamic voltage and frequency scaling under real-time
constraints.

We conducted numerous performance evaluations with Open-
Stream. One key objective of the TERAFLUX project is to confirm
the scalability advantages of a dataflow execution model. We study
the scalability relative to the number of concurrent tasks created
by the program, and relative to the number of cores. We selected
the Gauss-Seidel benchmark for its dependence pattern highlight-
ing the benefits of decoupled pipelines for load balancing and
scalability. We consider three parallel versions: (1) the manually
optimized OpenStream implementation, (2) the systematic conver-
sion of the benchmark to OpenStream using a generic dependence
resolver, and (3) the original StarSs benchmark.

The three versions expose the same degree parallelism and their
execution unfolds into the same dynamic dependence graph.

The execution time of the three parallel versions as well as the
sequential execution, running on 12 cores is shown in Fig. 7. The
three parallel versions scale well, and show a slight advantage to
dataflow execution with the OpenStream runtime. The reason for
the performance difference is not related to the StarSs language
or to the implementation of the benchmark. The default StarSs run-
time behaves similarly to a token-based dataflow model: it needs
to scan for ready tasks. More specifically, the StarSs runtime has
a large shared data structure, the tree of regions, which is used
to determine whether tasks are ready to execute. When the
number of tasks increases, the time spent looking for ready tasks
increases, as well as the contention on this data structure. In



Fig. 6. Syntax for input and output clauses (a) and illustration of stream access
through windows (b).

Fig. 7. Gauss-Seidel experiment for a 256� 256 matrix, with 64� 64 blocks. The
benchmark was run on 12 cores. Four versions executed: OpenStream (‘stream’);
StarSs (‘starss’); an OpenStream-StarSs combination (‘starss_to_stream’); and a
sequential version (‘seq’), used as the baseline.
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contrast, the target execution model of OpenStream is feed-for-
ward dataflow, with a scheduler using one ready queue per core
and work-stealing. This is possible because the OpenStream com-
piler generates code spending the extra effort at task creation to
find the producer-consumer matching. The producers will then
know when consumer tasks become ready, without any polling
operation or any lookup in a shared data structure. Once a pro-
ducer determines that one of its consumers has become ready, it
adds it to its core-local, work-stealing ready queue. The systematic
translation from the StarSs source code demonstrates that the per-
formance bottlenecks are intrinsic to the runtime implementation
and scheduling policy. The task-parallel language design and
benchmark implementations can be transparently mapped to a
more scalable, dataflow execution model, benefitting from its
efficiency and scalability.

6. The TERAFLUX reference architecture

An important aspect of TERAFLUX is represented by the execu-
tion model and architecture framework [48] including hardware
modules to support the execution model. The proposed template
for the TERAFLUX architecture is shown in Fig. 8.

Besides using mostly off-the shelf parts, following the principle
of ‘‘not reinventing the wheel’’, the architecture is designed to sup-
port an execution model that is a combination of fine- and corse-
grain threaded dataflow models including DTA [4], DDM [49],
StarSs [32]. In addition, the transactional support has been added
to the dataflow model, which allow covering those applications
that modify the shared state. Combining dataflow with transac-
tions is a unique feature of this project.

In particular, Data-Driven Multithreading (DDM) [49] is one of
the dataflow models studied in TERAFLUX. DDM is a multithreaded
model that applies Dynamic Dataflow principles for communica-
tion among threads and exploits highly efficient control-flow exe-
cution within a thread. The core of DDM is the Thread Scheduling
Unit (TSU, see Fig. 8) that provides the Data-Driven scheduling of
the threads. DDM does not need traditional memory coherence
because it enforces the single assignment semantics for data
exchange among threads. Furthermore, it employs prefetching of
input data before a thread is scheduled for execution by the TSU.
DDM prefetching is deterministic and can be close to optimal
because the TSU knows at any time which threads can be executed
on which core and thus can initiate the necessary prefetching.
DDM based processors can achieve high performance with simpler
designs, as they do not need complex and expensive modules like
out-of-order execution.

DDM was applied to three linear algebra HPC applications:
Matrix Multiplication, LU decomposition and Cholesky decomposi-
tion. The scalability of DDM over a large number of cores was thus
tested, and shows encouraging results [50]: DDM can handle the
parallelization required for linear algebra applications for present
and future multi- and many-core systems, and is thus a viable can-
didate for HPC.

A distributed version of DDM was also developed [51]. The main
difference between single-node and distributed/multi-node DDM
execution is the introduction of remote memory accesses resulting
from producer and consumer threads running on different nodes.
To this end, data forwarding is employed to the node where the
consumer is scheduled to run. This is facilitated by supporting a
Global Address Space (GAS) across all the nodes. A network inter-
face unit has been implemented in the DDM-TSU to handle the
low-level communication operations. In terms of the distribution
of threads across the cores of the system nodes, this work explores
a static scheme, in which the mapping is determined at compile
time and does not change during the execution. The initial results
on some kernel like matrix multiplication are very encouraging,
leading to an almost linear speedup in configurations up to 32
x86_64 cores.

The TSU design has been also explored in the context of DTA [4].
In this case the TSus are organized in a 2-level hierarchy: one D-
TSU at node level and one L-TSU besides each processing unit
(standard core). Globally D-TSUs and L-TSUs form what is called
the Distributed Thread Scheduler (DTS). In order to support the
execution of DF-Threads, a minimalistic extension of the x86_64
ISA was designed, called T-Star (or T-�) [52].

The key-points of the T-Star Instruction Set Extension (ISE) are:
(i) it enables an asynchronous execution of threads, that will exe-
cute not under the control-flow of the program but under the data-
flow of it; (ii) the execution of a DF-thread is decided by the
Distributed Thread Scheduler, which monitors the availability of
resources and enforces the higher level policies on power and per-
formance constraints; (iii) it enables the usage and management
by the DF-Threads of four types of memory regions as requested
by the higher levels of the software to support 1-to-1 communica-
tion or Thread Local Storage (TLS), N-to-1 communication or Frame
Memory (FM), 1-to-N communication or Owner Writable Memory
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(OWM), and N-to-N communication or Transactional Memory
(TM).

One feature of DF-Threads supported by the T-Star is their
totally dynamic dataflow but without the burden of explicitely
managing tokens [53]. The evaluation of this ISE has been carried
out in the COTSon simulator: the initial programs were a recursive
Fibonacci with input n ¼ 40 and a Matrix Multiplication with
matrix size 1024� 1024 with the initial assumption of executing
one instruction per cycle. The results of these test have demono-
strated the full scalability of the TERAFLUX architecture up to
1024 cores organized as 32 nodes by 32 cores. The T-Star is avail-
able as part of COTSon at http://sf.net/p/cotson/code website.
Fig. 9. Interaction between TERAFLUX Nodes, Service Node, Distributed-TSU (D-
TSU) and Distributed FDU (D-FDU).
7. Improving reliability by leveraging dataflow properties

The tera-scale level transistor integration capacity of future
devices will make them orders of magnitude more vulnerable to
faults. Without including mechanisms that dynamically detect
and mask faults, such devices will suffer from uneconomic high
failure rates. Four levels of reliability aspects are the focus of the
TERAFLUX architecture, in order to assemble a reliable system
out of unreliable components. These levels are (i) the cores; (ii)
the nodes; (iii) the interconnection network; and (iv) the operating
system.

At core and node level, we design specific units responsible for
(i) monitoring the health state of the cores; and (ii) providing infor-
mation to the hardware scheduler about the detected faults. We
call such units Distributed Fault Detection Unit (D-FDU, operating
at node-level) and Local Fault Detection Unit (L-FDU, at core-level).
How the D-FDUs relate to a TERAFLUX node is shown in Fig. 9.

In TERAFLUX, the various D-FDUs detect faults by means of the
Double Execution mechanism [54,31,55], a redundant execution
scheme for DF-threads that we designed by leveraging the side-
effect-free semantic of the dataflow execution. In particular, our
mechanism duplicates the execution of each DF-Thread, and com-
pares the results of both executions to check for correctness: L-
FDUs are responsible for calculating a CRC-32 signature of both
write sets, which will be sent to the D-FDU when the thread termi-
nates. If the two signatures differ, a faulty execution is assumed,
and the D-TSU is notified. Consequently, the results of the compu-
tation are discarded and the DF-threads may re-execute on differ-
ent cores. The static dependency graph of a T� program (left) and
the dynamically created dependency graph of the same program
during a Double Execution run (right) is shown in Fig. 10. It can
be seen that the original program first executes T0. Since this part
of the program is sequential, the TERAFLUX runtime may exploit
under-utilized cores for spatial redundant execution of T0. In case
of a fault-free execution of T0, the synchronization counts of the
successor threads are decremented, and the subsequent threads
(T1T10), . . . , (TnTn0) can be executed.

At the interconnection level, efficient methods have been
designed to localize faults within the network (router and link)
[56–58]. The localization technique utilizes the knowledge of the

http://sf.net/p/cotson/code


Fig. 10. Dependency graph for regular dataflow execution (left graph) and double execution (right graph).

Fig. 11. Overall picture of the ‘‘simulator illusion’’. A number n of VCPUs can be
used as ‘‘workers’’ or ‘‘x86_64 crunchers’’ or ‘‘Auxiliary Cores’’ or ‘‘Service Cores’’; a
generic kth VCPU can be used as service core. L- and S-threads represent Legacy and
System Threads, that our system is able to execute.
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existing heartbeat messages and extracts inherent information
from them. For this, the knowledge of timing information gained
from a special message sending pattern is combined with the mes-
sage path information derived from the routing strategy. The tim-
ing pattern was originally designed to isolate heartbeat messages
and avoid collisions between them. The pattern regulates the net-
work access for the L-FDUs and is based on the Time Division Mul-
tiple Access (TDMA) concept for concurrent media access in
computer networks or real time bus systems. In conjunction with
the Quality of Service, where heartbeat messages are transferred
with the highest priority, it supports a precise estimation of the
arrival time of all heartbeat messages at the D-FDU. Supposing that
a message was delivered with a delay, indicated by an increased
hop count, the receiving D-FDU can conclude that the message
was transmitted over a bypass due to a faulty network element.

The routing information is then used to determine where the
faulty network component is located. Since the D-FDU investigates
an unusual timing behavior of one or more heartbeat messages, the
path of these messages is marked as suspicious. Therefore, the D-
FDU is holding a network status matrix, which encodes the fault
information of the NoC. The suspicious path elements in this
matrix are set by incrementing each entry by ‘‘1’’ for each suspi-
cious component. Each heartbeat message arriving in time at the
D-FDU ensures that the values corresponding to the message’s
path are decremented within this matrix. In that manner, a value
of smaller than ‘‘1’’ stands for a fault-free component. With this
process of elimination, the D-FDU is able to locate faulty network
elements.

Finally, the D-FDUs forward the gathered node health states to
the operating system to provide additional information for global
scheduling decisions.

8. The common evaluation platform

The TERAFLUX project relies on a common evaluation platform
[9,59] that is used by the partners with two purposes: (i) evaluate
and share their research by using such integrated, common plat-
form, and (ii) transfer to the other partners the reciprocal knowl-
edge of such platform.

The common platform includes not only the COTSon simulator,
but it also encompasses the compiler that is being developed in the
project, as well as support tools (e.g., McPAT [60] for power estima-
tion) and libraries (for StarSs region matching) that we integrated
to meet our research needs.

An overall picture that highlights what the software sees—as a
simulated machine—is shown in Fig. 11. The relevant point is that
the software should not look inside the COTSon simulated
machine, or make any assumption about the developing
architecture: the exact purpose is to decouple the process of soft-
ware design and hardware design (while keeping a ‘‘contract’’
between them) [61,62].

Therefore the simulation software exposes a number of virtual
processors where the guest software can run unmodified (called
VCPUs). From the software point of view all these VCPUs could
be both considered as full x86_64 virtual machines or as simple
‘‘x86_64 ISA crunchers’’ (or ‘‘Auxiliary Cores’’). The simulator may
expose the latter capability to the Operating System (OS), but for
the sake of generality the application software should not presume
the availability of any OS-service: each VCPU is just a bare
machine. COTSon, on the other side, can implement any virtualiza-
tion trick to make this illusion becoming available.

One or more VCPUs assume the role of ‘‘Service Cores’’ (e.g., the
kth) and runs a guest Linux OS that provides the necessary support
to load both TERAFLUX Applications (TFX APPS for short) and run
LEGACY APPS (such as the Oracle DBMS). The only support
required by the OS is a modification of the internal scheduler (this
could be provide as a ‘‘driver’’ in the future) in order to set the high
level policies for the TSUs. The TSUs will enforce such policies and
take care of the global bookkeping of the various types of threads
(DF-Threads, Legacy-Threads (such as from legacy applications),
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System-Threads (supporting OS services on the Service Core —
respectiely DF-, L-, S-Threads).

We extended the COTSon platform in order to support the TER-
AFLUX dataflow execution models (both DDM and T�). In particu-
lar, we added the full support for the T� extension to the x86_86
ISA, by implementing a model for the TSU. We also added a
fault-injection model for evaluating the overhead introduced by
the Double Execution mechanism, which was also modeled with
the FDU. Finally, we extended the platform in order to pass from
a cluster-based view of the target teradevice system, to a many-
nodes-per-chip one, by realizing a communication mechanism
via the host shared memory, considering appropriate timing model
[63]. More recent steps deal with the further refinement of the T�
Instruction Set Extension and its integration with the Transactional
Memory.
9. The Codelet model

As a further extension of the TERAFLUX program execution
model, the University of Delaware joined our project bringing its
expertise on the codelet model. The Codelet Model [6] is a hybrid
Von Neumann-dataflow execution model, aimed at providing a
fine-grain parallel execution model. Its quantum of computation
is called a codelet. A codelet (pictured in Fig. 12) is an event-driven
sequence of machine instructions, which run until completion.
Foremost among those events is data availability, which is the
prime reason to trigger the execution of a codelet (which we call
firing). All events are explicitly expressed when defining the cod-
elets. Besides the required data (following dataflow semantics),
events on which a codelet may wait until it is fired include band-
width requirements, core frequency (including a given maximal
temperature or power expenditure), etc. Codelets are expected to
be generated by a compiler. Previous experience with the codelet
model’s ancestor, EARTH [64], have shown that automatic parti-
tioning programs into threads that follow dataflow semantics is
indeed possible [65].

The codelet execution model relies on an Abstract Machine
Model (AMM). It features a hierarchical topology, as well as a
heterogeneous architecture. From a high-level point of view the
codelet AMM is rather close to the TERAFLUX architectural
template. The important part is located at the chip level: the sched-
uling part is delegated to a dedicated unit (the scheduling unit,
equivalent of the TSU in the TERAFLUX architectural template),
while the computational part is performed by the computation
units (which are called cores in TERAFLUX). As a principal schedul-
ing quantum, a codelet, once allocated and scheduled to a core,
keeps the computation unit usefully busy, and cannot be pre-
empted (however it can voluntarily yield, provided that more than
one codelet context can be held within the same core—thus
allowing for overhead-less context switches). One feature of the
codelet execution is the efficient support of a non-preemptive
Fig. 12. The Codelet: a Fine-Grain Piece of Computation. A codelet is fired when all
inputs are available. Inputs can be data (square inputs) or resource conditions (gray
circle).
event-driven thread model. If the system software deems it neces-
sary, it can clock-gate (or even power-gate) selected cores. The
codelets running on those cores must thus be suspended for the
duration of the core suspension—and subsequently resumed once
the TSU it depends on decides to turn the core on again. Codelets
running on cores that are power-gated must be restarted (either
on the same core or on another).

The codelet model features asynchronous functions, called
Threaded Procedures. They are called in a control-flow manner,
and act as containers for codelet graphs. A threaded procedure
(TP) features a frame which is shared by all the codelets. Following
the precepts of dataflow, when possible, most data is written in a
‘‘write once, read many times’’ manner: data is produced by a given
codelet, and consumed by one or more depending codelets.
Threaded procedures provide a second level of parallelism, as well
as a locality constraint: all codelets contained within a given TP
must run on the same group of cores within a node. Therefore,
while there is nothing to prevent the grouping of unrelated cod-
elets within a given TP, locality requirements tend to ensure that
TPs are containers for a logical grouping of codelets, much like
traditional functions are logical groupings of instructions. The
availability of the TP frame to all its contained codelets implies that
all codelets can read and write all its data: two codelets executing
in parallel may potentially read and/or write to the same frame
location simultaneously. Therefore a memory consistency model
must be provided to handle those cases.

The codelet memory model is based on Location Consistency
(LC) [66]. LC does not require a global ordering of memory opera-
tions on the same memory location visible to all processors. Conse-
quently, a memory model based on LC should provide better
scalability than other existing cache-coherent based models and
protocols.

We have provided an implementation of the Codelet model as a
runtime system: the Delaware Adaptive Run-Time System (DARTS)
[67]. It is written in C++, and can run on any POSIX-compliant sys-
tem. In addition, we have ported DARTS to the TERAFLUX simula-
tor, thus taking advantage of the TERAFLUX instruction set
extension to schedule dataflow threads. The codelet and DF-Thread
models are sufficiently close that we can try to find a converging
path toward a new dataflow-inspired execution model, of which
the port of DARTS on the TERAFLUX machine (the COTSon simula-
tor) is a first significant step. Codelets are mapped to DF-Threads,
thus allowing DARTS to make use of the TSU on COTSon. We are
also studying different percolation techniques for teradevices. Per-
colation [68] is a mechanism that determines how code and/or
data should be located, and where, on a given machine. It also takes
into account the bandwidth availability. Its goal is to guarantee as
much locality as possible for the on-going computation. Other
research is currently under way to combine the Codelet model
with streaming. Preliminary results are encouraging [69,70].

Other projects seem to move along similar directions [71,72].
10. Conclusions

We presented TERAFLUX, a Future Emerging Technology Large-
Scale Project funded by the EU. TERAFLUX is at the forefront of
major research challenges such as programmability, manageable
architecture design, and reliability of many-core or 1000+ cores
chips. We described the project’s transformation hierarchy and
its major scientific contributions. These contributions include scal-
able parallel applications, programming models for large-scale sys-
tems exploiting the dataflow principles, compiler techniques and
tools to harness a dynamic, thread-level dataflow execution model,
fault-detection and -tolerance techniques, the actual architecture,
and the simulation infrastructure needed for the evaluation of



986 R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990
the proposed research. The preliminary results demonstrate solid
performance scalability and reliable execution over unreliable
components. The TERAFLUX architecture builds on top of classical
microarchitecture principles for the individual cores and their clos-
est local memories, and combines a large number of them with
simple modules such as the Thread Scheduling Units and Fault
Detection Units. Among the notable contributions, StarSs-inpired
dependent tasking construct have been integrated into the Open-
MP4 specification, and the project released a simulator able to per-
form experiments with more the 1000 general purpose cores and
full system simulation (COTSon).
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