
Microprocessors and Microsystems 38 (2014) 976–990
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
TERAFLUX: Harnessing dataflow in next generation teradevices
http://dx.doi.org/10.1016/j.micpro.2014.04.001
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +39 0577 191 5182; fax: +39 0577 195 9064.
E-mail addresses: giorgi@dii.unisi.it (R. Giorgi), rosa.m.badia@bsc.es (R.M. Badia),

francois.bodin@caps-entreprise.com (F. Bodin), albert.cohen@inria.fr (A. Cohen),
skevos@cs.ucy.ac.cy (P. Evripidou), paolo.faraboschi@hp.com (P. Faraboschi),
bernhard.fechner@informatik.uni-augsburg.de (B. Fechner), ggao@capsl.udel.edu
(G.R. Gao), arne.garbade@informatik.uni-augsburg.de (A. Garbade), sylvain.
girbal@thalesgroup.com (S. Girbal), koliai@eecis.udel.edu (S. Koliaï), josh@eecis.
udel.edu (J. Landwehr), mikel.lujan@manchester.ac.uk (M. Lujàn), avi.
mendelson@tce.technion.ac.il (A. Mendelson), laurent.morin@caps-entreprise.com
(L. Morin), nacho@bsc.es (N. Navarro), antoniu.pop@inria.fr (A. Pop), pedro@cs.ucy.
ac.cy (P. Trancoso), theo.ungerer@informatik.uni-augsburg.de (T. Ungerer),
watson@cs.man.ac.uk (I. Watson), sebastian.weis@informatik.uni-augsburg.de (S.
Weis), szuckerm@eecis.udel.edu (S. Zuckerman), mateo.valero@bsc.es (M. Valero).
Roberto Giorgi a,⇑, Rosa M. Badia b, François Bodin c, Albert Cohen d, Paraskevas Evripidou e,
Paolo Faraboschi f, Bernhard Fechner g, Guang R. Gao h, Arne Garbade g, Rahul Gayatri b, Sylvain Girbal i,
Daniel Goodman j, Behran Khan j, Souad Koliaï h, Joshua Landwehr h, Nhat Minh Lê d, Feng Li d,
Mikel Lujàn j, Avi Mendelson k, Laurent Morin c, Nacho Navarro b, Tomasz Patejko b, Antoniu Pop d,
Pedro Trancoso e, Theo Ungerer g, Ian Watson j, Sebastian Weis g, Stéphane Zuckerman h, Mateo Valero b

a Dip. di Ingegneria dell’Informazione e Scienze Matematiche, Universitá di Siena, Italy
b Barcelona Supercomputing Center, Spain
c CAPS Enterprise, France
d INRIA, France
e Dept. of Computer Science, University of Cyprus, Nicosia, Cyprus
f Intelligent Infrastructure Lab, Hewlett Packard, Barcelona, Spain
g University of Augsburg, Germany
h University of Delaware, DE, USA
i THALES, France
j University of Manchester, United Kingdom
k Technion, Israel

a r t i c l e i n f o
Article history:
Received 4 November 2013
Revised 5 March 2014
Accepted 7 April 2014
Available online 18 April 2014

Keywords:
Dataflow
Programming model
Compilation
Reliability
Architecture
Simulation
Many-cores
Exascale computing
Multi-cores
a b s t r a c t

The improvements in semiconductor technologies are gradually enabling extreme-scale systems such as
teradevices (i.e., chips composed by 1000 billion of transistors), most likely by 2020. Three major
challenges have been identified: programmability, manageable architecture design, and reliability. TER-
AFLUX is a Future and Emerging Technology (FET) large-scale project funded by the European Union,
which addresses such challenges at once by leveraging the dataflow principles. This paper presents an
overview of the research carried out by the TERAFLUX partners and some preliminary results. Our
platform comprises 1000+ general purpose cores per chip in order to properly explore the above chal-
lenges. An architectural template has been proposed and applications have been ported to the platform.
Programming models, compilation tools, and reliability techniques have been developed. The evaluation
is carried out by leveraging on modifications of the HP-Labs COTSon simulator.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Silicon manufacturing technologies, such as FinFET [1]
transistors and 3D-die stacking [2] that are currently available, will
allow new chips (that we call teradevices) with a huge number of
transistors (for current ITRS [3] projections, 1 Tera or 1012 transis-
tors), therefore opening the doors to the possibility of exploiting
the extremely large amount of parallelism in different ways. It is
expected that such systems will be able to perform at least one
Exa-FLOPS or 1018 floating-point operations per second.

In such future exascale machines, the number of general pur-
pose cores (i.e., compute elements) per die will exceed those of
current systems by far. This suggests a major change in the soft-
ware layers that are responsible of using all such cores. The three

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.04.001&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.04.001
mailto:giorgi@dii.unisi.it
mailto:rosa.m.badia@bsc.es
mailto:francois.bodin@caps-entreprise.com
mailto:albert.cohen@inria.fr
mailto:skevos@cs.ucy.ac.cy
mailto:paolo.faraboschi@hp.com
mailto:bernhard.fechner@informatik.uni-augsburg.de
mailto:ggao@capsl.udel.edu
mailto:arne.garbade@informatik.uni-augsburg.de
mailto:sylvain.girbal@thalesgroup.com
mailto:sylvain.girbal@thalesgroup.com
mailto:koliai@eecis.udel.edu
mailto:josh@eecis.udel.edu
mailto:josh@eecis.udel.edu
mailto:mikel.lujan@manchester.ac.uk
mailto:avi.mendelson@tce.technion.ac.il
mailto:avi.mendelson@tce.technion.ac.il
mailto:laurent.morin@caps-entreprise.com
mailto:nacho@bsc.es
mailto:antoniu.pop@inria.fr
mailto:pedro@cs.ucy.ac.cy
mailto:pedro@cs.ucy.ac.cy
mailto:theo.ungerer@informatik.uni-augsburg.de
mailto:watson@cs.man.ac.uk
mailto:sebastian.weis@informatik.uni-augsburg.de
mailto:szuckerm@eecis.udel.edu
mailto:mateo.valero@bsc.es
http://dx.doi.org/10.1016/j.micpro.2014.04.001
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


Fig. 1. The TERAFLUX transformation hierarchy.

R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990 977
major challenges: programmability, reliability and complexity of
design are here briefly introduced. Also, a new Program eXecution
Model [4–6] seems suited in order to address such challenges.

Given the large number of transistors and the diversity in the
requirements for different applications, it is natural to expect that
these massively parallel (or concurrent teradevice) systems will be
composed of heterogeneous cores. Thus, programmability of such
large-scale systems will be a major challenge. Moreover, such large
systems are expected to become more and more susceptible to
failures, due to the increasing sensibility to process variations
and manufacturing defects. Thus, this extreme scale of device inte-
gration represents a second major concern, in terms of reliability,
for future many-core systems. Finally, the software industry is lag-
ging behind as general purpose applications cannot take advantage
of more than a handful number of cores compared to the larger
degree of parallelism offered by the current and future processors.
Starting from this premise, there is the need for new ways to
exploit the large parallelism offered by future architectures as
expected to be a reality beyond the year 2020.

The dataflow concept is known to overcome the limitations of
the traditional control-flow model by exploring the maximum par-
allelism and reducing the synchronization overhead. As recalled by
Jack Dennis [7], dataflow is ‘‘A Scheme of Computation in which an
activity is initiated by presence of the data it needs to perform its
function’’. The dataflow paradigm is not new, but recently it has
met mature silicon technology and architectural models to take
advantage from the large intrinsic parallelism.

TERAFLUX [8] is a Future Emerging Technologies (FET) large-
scale project funded by the European Union. The aim is to exploit
the dataflow paradigm in order to address the three major chal-
lenges presented above (i.e., programmability, reliability, and man-
ageable architecture design). Since we are targeting 1000+ core
systems, the dataflow paradigm enables us to use the increased
degree of parallelism which emerges in future teradevices.

The rest of the paper is organized as follows. Section 2 provides
a general overview of the project. Remaining sections are focused
on describing the concepts together with the major achievements
resulting from our research activity. In particular, Section 3 describes
possible applications based on the OmpSs programming model,
while Section 4 details a further possibility of using a productivity
language such as Scala thanks to a dataflow runtime called DFScala.
Another common layer (OpenStream, presented in Section 5) is used
for mapping feed-forward dataflow into lower-level dataflow
threads as expressed by the T� Instruction Set Extension, described
in Section 6, together with the architecture of our target system. Sec-
tion 7 describes the Fault Detection Units (FDUs), which provide
fault detection management through monitoring techniques and
redundant execution of dataflow threads. The experiments are inte-
grated into a common simulator based on the HPLabs COTSon [9] ,
presented in Section 8. Finally, Section 9 introduces the codelet
model, while Section 10 concludes the paper.

2. General overview of the TERAFLUX project

To investigate our concepts, we use dataflow principles at any
level of a complete transformation hierarchy, starting from general
complex applications (able to load properly a teradevice system)
through programming models, compilation tools, reliability tech-
niques and architecture. Fig. 1 shows the TERAFLUX layered
approach.

Different layers allow to transform application source code into
a dataflow-style binary, and to execute it on the target architecture
(which is at the current moment based on off-the-shelf cores like
x86_64, even if our approach is Instruction Set agnostic—see
Section 8 for more details). The top level of this hierarchy is
represented by real world applications, which allow us to stress
the underlying teradevice hardware. In the TERAFLUX project,
implicit parallelism refers to the set of constraints on the concur-
rent execution of threads, and the expression of these constraints
in the source code. These constraints can be dependencies, atomic
transactions, synchronization barriers, privatization attributes,
memory layout and extent properties, and a wide variety of hints.
An explicitly parallel program, on the other hand, is made of concur-
rency constructs making the thread creation, termination, and possi-
bly some target-specific aspects of the execution explicit [10–12].

A dataflow oriented programming model allows expressing
data dependencies among the concurrent tasks of an application.
Such concurrent tasks can be subdivided even more—at lower lev-
els—into DataFlow Threads (or DF-Threads), also simply referred as
threads when clear from the context. Nevertheless, applications use
large data structures with in-place updates, for efficient memory
management [13–15] and copy avoidance. Such applications may
require a mechanism to express the non-interference of concurrent
updates to shared data. To meet such need, we selected Transactional
Memory (TM), as the most promising programming construct and
concurrency mechanism for specifying more general forms of syn-
chronization among threads, while preserving the composability of
parallel dataflow programs and promising a high level of scalability
[16]. We achieve this by defining a specific layer for studying the inte-
gration between the TM and dataflow programming models [17–19].

Besides the programming model, implicit parallelism must be
exploited by a compilation tool-chain [20–22], being able to convert
dependencies and transactions, into scalable target-specific parallel-
ism. It is also responsible for properly managing the inter-node com-
munications and a novel memory model. Compiler effectiveness is
guaranteed by the implementation of a generalization of the state-
of-the-art algorithms to expose fine-grained dataflow threads from
task-parallel OpenMP-, StarSs- or HMPP-annotated [23,24] pro-
grams. The algorithm generalization leverages a new dependence-
removal technique to avoid the artificial synchronizations induced
by in-place updates in the source program [25,26].

Our goals in designing an efficient compilation tool-chain are to
capture the important data reuse patterns, to optimize locality and



978 R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990
reduce communication bandwidth, and to provide compiler
support for transaction semantics embedded into a dataflow
programming model, such as OpenStream [27]. Both productivity
and efficiency programming layers are supported. Compiler direc-
tives are used to lower the abstraction penalty of the productivity
layer, and to explicitly exploit parallelism and locality.

As mentioned in the Section 1 reliability will be a major concern
for future many-cores architectures. With the aim of limiting the
impact of faults in the target architecture, dedicated hardware
modules are devoted to monitor the health of the system, and drive
specific counteractive measures [28,29]. To achieve this goal in
TERAFLUX, we focused on inter-core fault detection techniques
using Fault Detection Units (FDUs) [30]. We considered different
FDU variants (push, pull, alert mechanisms for heartbeat mes-
sages), FDU implementations, and interfaces.

We propose a functional FDU specification based on the MAPE
(Monitoring, Analysis, Planning, and Execution) [31] cycle. Abstract
message interfaces of the FDU to all communication units (e.g.,
FDU-core, FDU-operating system, etc.) were specified for push,
pull, and alert messages. Core health is monitored by exploiting
currently available performance monitoring and machine check
hardware features (e.g., machine check architecture of current
AMD/Intel processor families).

System resources are managed at the highest level by the operat-
ing system. The main objective of the operating system is to balance
the workload among the nodes while keeping an acceptable level of
fault tolerance. The control of scheduling and the resource managing
are hierarchically performed: distributed FDUs are used to guarantee
the characteristics of the basic nodes by accessing the different
resources such as the cores, and local memories. Similarly to the
FDU, the other resources of the TERAFLUX system are hierarchically
organized, mainly resembled to a set of nodes interconnected with
each other. Each node contains hardware structures for scheduling
the medium/fine-grain dataflow threads (TSUs or Thread Scheduling
Units) generated by the compilation tool-chain, and execute them.

The TERAFLUX architecture is designed in order to support the
programming and execution models developed by the higher level
layers. At this point the project focuses on defining the basic archi-
tecture modules as well as the necessary instruction extensions to
support the programming and execution model. The basic architec-
ture consists of a number of multi-core nodes. We are ISA agnostic,
in principle, but we wanted to demonstrate our concept with a well-
known ISA such as the x86_64. The nodes are interconnected
through a Network on Chip (NoC). TERAFLUX supports a global
address space across the whole system. For producer-consumer pat-
terns, there is no need for traditional coherency because the data-
flow model is based on the single assignment semantics. Different
memory types (e.g. shared and non-shared) are defined as to store
particular data and metadata of the programs, while non-determin-
ism in accessing the shared data is guaranteed through transactions.

The aim of the lowest layer of the TERAFLUX hierarchical
approach is to the provide software and hardware infrastructures
capable of simulating all the modules composing the target sys-
tem. For the simulation and evaluation of the system we chose a
state of the art many-core simulation infrastructure (HPLabs COT-
Son [9]), which is able to scale up the number of cores to two
orders of magnitudes larger than what is currently available. This
simulation infrastructure represents a common point for all the
partners, allowing them to test their research ideas and integrating
them in a common platform.
3. Leveraging dataflow through the task-based approach

One of the key aspects of the TERAFLUX project is the proposal
of a new programming and execution model [32–34] based on
dataflow instead of the traditional control-flow paradigm. Data-
flow is known to overcome the limitations of the traditional con-
trol-flow model by exploring the maximum parallelism and
reducing the synchronization overhead. We leverage such dataflow
principle with the combination of OpenStream [27] and StarSs/
OmpSs [10–12].

OpenStream compiler — GCC based — is an entry point to TER-
AFLUX compilation toolchain: applications parallelized with TERA-
FLUX programming models need to be translated manually or
automatically to code annotated with OpenStream directives. We
use StarSs memory regions [35] as a case study for translation to
OpenStream. OpenStream and StarSs have different features with
regard to how data used for computation are represented and
how data dependencies are handled:

� OpenStream’s basic unit of computation is a dataflow stream
whereas StarSs applications use dynamic memory regions speci-
fied by the programmer for communication between tasks
� OpenStream requires explicit task dependencies to maintain

correctness of parallel execution whereas data dependencies
of StarSs tasks are inferred at runtime.

The comparison shows that translation, when manually done,
requires the programmer to identify data dependencies between
StarSs tasks and express them with OpenStream streaming
constructs. As it is stated in [27], the idea behind StarSs-Open-
Stream translation scheme is to encode StarSs memory regions
as a set of streams that contain versions of memory locations
accessed by tasks. The most recent versions in the set of streams
are calculated by modified StarSs dependence resolver, and
determine live data identified by StarSs memory regions at the
given point of application execution. The set of streams is
attached to each OpenStream task, and is used by OpenStream
runtime to determine data dependencies between tasks and to
synchronize concurrent memory accesses. Detailed explanation
of the translation scheme and proof of correctness of the algo-
rithm is found in [27].

A source-to-source translator is being developed that carries
out StarSs-OpenStream translation at compile time. The key
components of the translator are a parser that parses StarSs
pragmas to identify memory regions and their directionalities
further used to calculate their live versions, and a code generator
that generates call expressions to aforementioned StarSs depen-
dence resolver. The code generator also generates OpenStream
task pragmas with the set of version streams. Generated code
is further passed to OpenStream compiler. A prototype version
of this translator is publicly available and has been tested with
some sample applications. It can be downloaded from http://
openstream.info website.

The StarSs programming model [35] provides a paradigm for
the development of applications following the sequential pro-
gramming paradigm but based on an execution model that
exploits the inherent concurrency of the applications taking into
account the existing data dependencies. The code is developed in
a standard, sequential language, such as C or FORTRAN. On the
users side there are no explicit parallel constructs, like in thread
or stream models.

Since the paradigm is task-based, the programmer needs to
add annotations or compiler directives to the code to mark those
pieces of code which are to be considered a task and the
directionality of key arguments of the tasks. At runtime, this
information about the directionality of the task data is used to
build a task data-dependence graph that exhibits the inherent
data dependencies of the application as well as its potential task
parallelism. Recently, an extention of OpenMP was proposed.
OmpSs [36,37] is an implementation of StarSs which extends

http://openstream.info
http://openstream.info


R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990 979
the OpenMP explicit tasks [38] with dependence clauses that
indicate the directionality of the tasks arguments, and on the
Task Superscalar design [39,40].

Fig. 2 shows an example of OmpSs code. The example imple-
ments a Cholesky factorization. The kernels of the factorization
have been annotated with OmpSs compiler directives. The direc-
tionality clauses (input, output, inout) indicate whether the
given parameter is read, write or read and write in the scope of
the task.

Within the framework of TERAFLUX, OmpSs has been used as a
high level programming model to develop applications. The OmpSs
coarse-grained tasks are then translated to finer dataflow threads
that are executed in the dataflow architecture. OmpSs is available
as open source and can be downloaded from http://pm.bsc.es/
ompss website.
3.1. Parallel Updates in StarSs/OmpSs

Although independent tasks from the dependence graph are
scheduled for execution, StarSs also provides annotations for
simultaneous updates to memory locations shared by multiple
tasks. The programmer is responsible to protect such parallel
updates. StarSs provides a lock-based synchronization mechanism
for concurrency control, and to deal with such concurrent updates.
But the use of locks opens the door to deadlock, livelock, non-
determinism, and lost compositionality.

In order to avoid such problems, Software Transactional Mem-
ory (STM), an alternative method to lock based synchronization
has been used to access shared memory locations. TinySTM
[41,42], a lightweight STM library has been integrated into the
StarSs framework with this purpose. Instead of introducing a
new pragma into the StarSs framework, the implementation of
the existing lock pragma was modified to generate transactions
which update the shared memory locations. When a lock pragma
is encountered StarSs starts a transaction and saves the stack con-
text. If the transaction encounters a conflict at a later stage in the
execution then the saved stack context is used to restart the trans-
action. The critical memory location which is being updated is then
loaded into a local variable using TinySTM library calls. The
updates are performed on this local copy. At the end the value in
Fig. 2. Example of code annotated w
this local copy is stored back to the main memory location shared
between tasks. In case of a conflict the transaction is restarted from
the point where the stack context has been saved. In case of no
conflicts the transaction is committed and the results made
permanent.

The idea of optimistic STM based synchronization versus pessi-
mistic lock based concurrency control has been tested on applica-
tions where parallel updates are performed on memory locations
by tasks. The results prove that we obtain higher performance with
STM in applications with high lock contention. The overhead of
using STM is in the aborts and restarts of transactions in case of
a conflict. Hence an analysis has been performed on the time spent
by transactions in rollbacks. The results [18] show that in cases
where lock based synchronization performs better than STM, the
overhead incurred due to rollbacks play a major role. Analysis
has been also done on executing longer transactions versus smaller
transactions. The trade-off is to create multiple smaller transac-
tions and thus spend more time in start and commit of transactions
versus longer transactions and hence longer time in rollbacks in
case of a conflict [18].
4. DFScala: constructing and executing dataflow graphs

One part of this project is the construction of a high level data-
flow framework which serves two purposes: Overall goals of TER-
AFLUX included: (i) to provide a high productivity language in
which to construct dataflow programs, and (ii) to provide a high
level platform for experimenting with new ideas such as using
the type system to enforce different properties of the dataflow
graph and different memory models. With these goals in mind,
we constructed a high level dataflow framework called DFScala.

DFScala provides a key foundation and implements the base
functionality of this research platform. One distinguishing feature
of DFScala is the static checking of the dynamically constructed
DF graph.

In a dataflow program the computation is split into sections.
Depending on the granularity of the program these vary from a sin-
gle instruction to whole functions which can include calls to other
functions, allowing arbitrarily large computation units. All of these
sections are deterministically based on their input and side-effect
ith OmpSs compiler directive.

http://pm.bsc.es/ompss
http://pm.bsc.es/ompss


Fig. 4. On the left a node in the dataflow graph containing a transaction, on the
right how this can be viewed as three nodes by the memory system.

980 R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990
free. The execution of the program is then orchestrated through the
construction of a directed acyclic graph where the nodes are the
sections of computation and the vertices are the data dependencies
among these. An example of this can be seen in Fig. 3. Once all the
inputs of a node in the graph have been computed the node can be
scheduled for execution.

The DFScala library is open source and provides the functional-
ity to construct and execute DF graphs in Scala. The nodes in the
graph are dynamically constructed over the course of a program
and each node executes a function which is passed as an argument.
The arcs between nodes are all statically typed. More details are in
recent works [43–45]. DFScala is available at http://apt.cs.man.a-
c.uk/projects/TERAFLUX/DFScala website.

4.1. Combining dataflow and transactional memory

Transactional memory and dataflow are a good combination of
paradigms because of transactions isolation. The detection of con-
flict and possible retrying is taken care of wholly by the underlying
system. As far as the user code is concerned a particular thread sees
no evidence of interaction with any other thread, other than a pos-
sible increase in execution time. This isolation leads to specific
coherency and data dependency properties that fit very well with
dataflow programming.

4.2. Coherency

The isolation properties of transactional memory ensure that
state updates only become visible at the point that a transaction
commits. This means that, unlike with shared state and locks, the
coherence model is the same for a transaction as it is for a node
Fig. 3. An instance of a dataflow grap
of a dataflow computation. As such a transaction can be treated
by the memory model as a distinct node of a dataflow graph, so
the addition of state does not require a fine grained understanding
of the interleaving of operation by the programmer, or strengthen-
ing the coherency model in the hardware. A graphical example of
this effect can be seen in Fig. 4.
h for a circuit routing algorithm.

http://apt.cs.man.ac.uk/projects/TERAFLUX/DFScala
http://apt.cs.man.ac.uk/projects/TERAFLUX/DFScala


Fig. 5. The two possible formulations of a section of the dataflow graph containing two conflicting transactions. The dashed data dependency will be inserted and enforced at
runtime by the transactional memory system, making the relationship between transactions part of the dataflow graph.

R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990 981
4.3. Data dependencies

Isolation also means that transactions can be viewed as
dataflow tasks whose data dependencies are determined as the
program executes. This is possible because for any two transac-
tions that access the same state and at least one transaction mod-
ifies it, they will appear to execute serially. Effectively the TM is
adding a dependency to the dataflow graph at runtime. An
example of this can be seen in Fig. 5.

The combination of these two features means that transactions
can be viewed as nodes in the dataflow graph. This means that we
are now describing a family of dataflow graphs which maintain
dataflow semantics instead of the weakened dataflow graphs
provided by lock based solutions. As such, this combination is
deadlock free, like a pure dataflow graph and offers a far smaller
number of possible execution paths. This makes it far less invasive
to the correctness of the dataflow model while still providing a
clean and efficient way to modify state. For example, if we have
two transactions each containing 5 lines of code that access shared
state, with conventional solutions there would be 252 possible
interleavings of the accesses to shared stat ð5� 2Þ!=5!2Þ, which
would have to be accounted for and locks added to protect them,
with transactions there would be 2 possible dataflow graphs. Fur-
thermore if we make an error in our design and use a variable
through some back channel, this may cause a performance hit in
the form of a bottleneck, but the transaction memory will prevent
it causing a race condition.
5. The OpenStream extension to OpenMP

A key point of TERAFLUX is the compilation flow, which has
been vastly remodeled to target the reference architecture. In
particular, such compilation flow has been implemented as a front-
and middle-end extension to GCC 4.7.1. Starting from a program-
ming model which extends OpenMP to support streaming task
directives, called OpenStream [46,27,47], the compiler is able to
expand streaming task directives into dataflow threads and
point-to-point communications. Programs written in higher level
languages such as StarSs can be translated source-to-source to
OpenStream using slightly modified implementations of their
dependence resolver. The rationale for designing such streaming
extension is motivated by the need to capture dataflow dependen-
cies explicitly in a parallel language, by the quest for increased
productivity in parallel programming, and by the strong evidence
that has been gathered on the importance of pipeline parallelism
for scalability and efficiency.

The OpenStream syntactic extension to the OpenMP language
specification consists of two additional clauses for task constructs:
the input and output clauses, both taking a list of items, describ-
ing the stream and its behavior. For example, within the body of a
task, one can need to access each element of the stream one at a
time (hence, the stream abbreviated form can be adopted), or mul-
tiple elements at a time through sliding windows (the forms
adopting the << and >> stream operators are the most suitable).
The syntax of the additional clauses (a) and an example of stream
accessed via sliding window (b) is shown in Fig. 6. OpenStream
supports dynamic voltage and frequency scaling under real-time
constraints.

We conducted numerous performance evaluations with Open-
Stream. One key objective of the TERAFLUX project is to confirm
the scalability advantages of a dataflow execution model. We study
the scalability relative to the number of concurrent tasks created
by the program, and relative to the number of cores. We selected
the Gauss-Seidel benchmark for its dependence pattern highlight-
ing the benefits of decoupled pipelines for load balancing and
scalability. We consider three parallel versions: (1) the manually
optimized OpenStream implementation, (2) the systematic conver-
sion of the benchmark to OpenStream using a generic dependence
resolver, and (3) the original StarSs benchmark.

The three versions expose the same degree parallelism and their
execution unfolds into the same dynamic dependence graph.

The execution time of the three parallel versions as well as the
sequential execution, running on 12 cores is shown in Fig. 7. The
three parallel versions scale well, and show a slight advantage to
dataflow execution with the OpenStream runtime. The reason for
the performance difference is not related to the StarSs language
or to the implementation of the benchmark. The default StarSs run-
time behaves similarly to a token-based dataflow model: it needs
to scan for ready tasks. More specifically, the StarSs runtime has
a large shared data structure, the tree of regions, which is used
to determine whether tasks are ready to execute. When the
number of tasks increases, the time spent looking for ready tasks
increases, as well as the contention on this data structure. In



Fig. 6. Syntax for input and output clauses (a) and illustration of stream access
through windows (b).

Fig. 7. Gauss-Seidel experiment for a 256� 256 matrix, with 64� 64 blocks. The
benchmark was run on 12 cores. Four versions executed: OpenStream (‘stream’);
StarSs (‘starss’); an OpenStream-StarSs combination (‘starss_to_stream’); and a
sequential version (‘seq’), used as the baseline.

982 R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990
contrast, the target execution model of OpenStream is feed-for-
ward dataflow, with a scheduler using one ready queue per core
and work-stealing. This is possible because the OpenStream com-
piler generates code spending the extra effort at task creation to
find the producer-consumer matching. The producers will then
know when consumer tasks become ready, without any polling
operation or any lookup in a shared data structure. Once a pro-
ducer determines that one of its consumers has become ready, it
adds it to its core-local, work-stealing ready queue. The systematic
translation from the StarSs source code demonstrates that the per-
formance bottlenecks are intrinsic to the runtime implementation
and scheduling policy. The task-parallel language design and
benchmark implementations can be transparently mapped to a
more scalable, dataflow execution model, benefitting from its
efficiency and scalability.

6. The TERAFLUX reference architecture

An important aspect of TERAFLUX is represented by the execu-
tion model and architecture framework [48] including hardware
modules to support the execution model. The proposed template
for the TERAFLUX architecture is shown in Fig. 8.

Besides using mostly off-the shelf parts, following the principle
of ‘‘not reinventing the wheel’’, the architecture is designed to sup-
port an execution model that is a combination of fine- and corse-
grain threaded dataflow models including DTA [4], DDM [49],
StarSs [32]. In addition, the transactional support has been added
to the dataflow model, which allow covering those applications
that modify the shared state. Combining dataflow with transac-
tions is a unique feature of this project.

In particular, Data-Driven Multithreading (DDM) [49] is one of
the dataflow models studied in TERAFLUX. DDM is a multithreaded
model that applies Dynamic Dataflow principles for communica-
tion among threads and exploits highly efficient control-flow exe-
cution within a thread. The core of DDM is the Thread Scheduling
Unit (TSU, see Fig. 8) that provides the Data-Driven scheduling of
the threads. DDM does not need traditional memory coherence
because it enforces the single assignment semantics for data
exchange among threads. Furthermore, it employs prefetching of
input data before a thread is scheduled for execution by the TSU.
DDM prefetching is deterministic and can be close to optimal
because the TSU knows at any time which threads can be executed
on which core and thus can initiate the necessary prefetching.
DDM based processors can achieve high performance with simpler
designs, as they do not need complex and expensive modules like
out-of-order execution.

DDM was applied to three linear algebra HPC applications:
Matrix Multiplication, LU decomposition and Cholesky decomposi-
tion. The scalability of DDM over a large number of cores was thus
tested, and shows encouraging results [50]: DDM can handle the
parallelization required for linear algebra applications for present
and future multi- and many-core systems, and is thus a viable can-
didate for HPC.

A distributed version of DDM was also developed [51]. The main
difference between single-node and distributed/multi-node DDM
execution is the introduction of remote memory accesses resulting
from producer and consumer threads running on different nodes.
To this end, data forwarding is employed to the node where the
consumer is scheduled to run. This is facilitated by supporting a
Global Address Space (GAS) across all the nodes. A network inter-
face unit has been implemented in the DDM-TSU to handle the
low-level communication operations. In terms of the distribution
of threads across the cores of the system nodes, this work explores
a static scheme, in which the mapping is determined at compile
time and does not change during the execution. The initial results
on some kernel like matrix multiplication are very encouraging,
leading to an almost linear speedup in configurations up to 32
x86_64 cores.

The TSU design has been also explored in the context of DTA [4].
In this case the TSus are organized in a 2-level hierarchy: one D-
TSU at node level and one L-TSU besides each processing unit
(standard core). Globally D-TSUs and L-TSUs form what is called
the Distributed Thread Scheduler (DTS). In order to support the
execution of DF-Threads, a minimalistic extension of the x86_64
ISA was designed, called T-Star (or T-�) [52].

The key-points of the T-Star Instruction Set Extension (ISE) are:
(i) it enables an asynchronous execution of threads, that will exe-
cute not under the control-flow of the program but under the data-
flow of it; (ii) the execution of a DF-thread is decided by the
Distributed Thread Scheduler, which monitors the availability of
resources and enforces the higher level policies on power and per-
formance constraints; (iii) it enables the usage and management
by the DF-Threads of four types of memory regions as requested
by the higher levels of the software to support 1-to-1 communica-
tion or Thread Local Storage (TLS), N-to-1 communication or Frame
Memory (FM), 1-to-N communication or Owner Writable Memory



Fig. 8. TERAFLUX architecture template.

R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990 983
(OWM), and N-to-N communication or Transactional Memory
(TM).

One feature of DF-Threads supported by the T-Star is their
totally dynamic dataflow but without the burden of explicitely
managing tokens [53]. The evaluation of this ISE has been carried
out in the COTSon simulator: the initial programs were a recursive
Fibonacci with input n ¼ 40 and a Matrix Multiplication with
matrix size 1024� 1024 with the initial assumption of executing
one instruction per cycle. The results of these test have demono-
strated the full scalability of the TERAFLUX architecture up to
1024 cores organized as 32 nodes by 32 cores. The T-Star is avail-
able as part of COTSon at http://sf.net/p/cotson/code website.
Fig. 9. Interaction between TERAFLUX Nodes, Service Node, Distributed-TSU (D-
TSU) and Distributed FDU (D-FDU).
7. Improving reliability by leveraging dataflow properties

The tera-scale level transistor integration capacity of future
devices will make them orders of magnitude more vulnerable to
faults. Without including mechanisms that dynamically detect
and mask faults, such devices will suffer from uneconomic high
failure rates. Four levels of reliability aspects are the focus of the
TERAFLUX architecture, in order to assemble a reliable system
out of unreliable components. These levels are (i) the cores; (ii)
the nodes; (iii) the interconnection network; and (iv) the operating
system.

At core and node level, we design specific units responsible for
(i) monitoring the health state of the cores; and (ii) providing infor-
mation to the hardware scheduler about the detected faults. We
call such units Distributed Fault Detection Unit (D-FDU, operating
at node-level) and Local Fault Detection Unit (L-FDU, at core-level).
How the D-FDUs relate to a TERAFLUX node is shown in Fig. 9.

In TERAFLUX, the various D-FDUs detect faults by means of the
Double Execution mechanism [54,31,55], a redundant execution
scheme for DF-threads that we designed by leveraging the side-
effect-free semantic of the dataflow execution. In particular, our
mechanism duplicates the execution of each DF-Thread, and com-
pares the results of both executions to check for correctness: L-
FDUs are responsible for calculating a CRC-32 signature of both
write sets, which will be sent to the D-FDU when the thread termi-
nates. If the two signatures differ, a faulty execution is assumed,
and the D-TSU is notified. Consequently, the results of the compu-
tation are discarded and the DF-threads may re-execute on differ-
ent cores. The static dependency graph of a T� program (left) and
the dynamically created dependency graph of the same program
during a Double Execution run (right) is shown in Fig. 10. It can
be seen that the original program first executes T0. Since this part
of the program is sequential, the TERAFLUX runtime may exploit
under-utilized cores for spatial redundant execution of T0. In case
of a fault-free execution of T0, the synchronization counts of the
successor threads are decremented, and the subsequent threads
(T1T10), . . . , (TnTn0) can be executed.

At the interconnection level, efficient methods have been
designed to localize faults within the network (router and link)
[56–58]. The localization technique utilizes the knowledge of the

http://sf.net/p/cotson/code


Fig. 10. Dependency graph for regular dataflow execution (left graph) and double execution (right graph).

Fig. 11. Overall picture of the ‘‘simulator illusion’’. A number n of VCPUs can be
used as ‘‘workers’’ or ‘‘x86_64 crunchers’’ or ‘‘Auxiliary Cores’’ or ‘‘Service Cores’’; a
generic kth VCPU can be used as service core. L- and S-threads represent Legacy and
System Threads, that our system is able to execute.

984 R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990
existing heartbeat messages and extracts inherent information
from them. For this, the knowledge of timing information gained
from a special message sending pattern is combined with the mes-
sage path information derived from the routing strategy. The tim-
ing pattern was originally designed to isolate heartbeat messages
and avoid collisions between them. The pattern regulates the net-
work access for the L-FDUs and is based on the Time Division Mul-
tiple Access (TDMA) concept for concurrent media access in
computer networks or real time bus systems. In conjunction with
the Quality of Service, where heartbeat messages are transferred
with the highest priority, it supports a precise estimation of the
arrival time of all heartbeat messages at the D-FDU. Supposing that
a message was delivered with a delay, indicated by an increased
hop count, the receiving D-FDU can conclude that the message
was transmitted over a bypass due to a faulty network element.

The routing information is then used to determine where the
faulty network component is located. Since the D-FDU investigates
an unusual timing behavior of one or more heartbeat messages, the
path of these messages is marked as suspicious. Therefore, the D-
FDU is holding a network status matrix, which encodes the fault
information of the NoC. The suspicious path elements in this
matrix are set by incrementing each entry by ‘‘1’’ for each suspi-
cious component. Each heartbeat message arriving in time at the
D-FDU ensures that the values corresponding to the message’s
path are decremented within this matrix. In that manner, a value
of smaller than ‘‘1’’ stands for a fault-free component. With this
process of elimination, the D-FDU is able to locate faulty network
elements.

Finally, the D-FDUs forward the gathered node health states to
the operating system to provide additional information for global
scheduling decisions.

8. The common evaluation platform

The TERAFLUX project relies on a common evaluation platform
[9,59] that is used by the partners with two purposes: (i) evaluate
and share their research by using such integrated, common plat-
form, and (ii) transfer to the other partners the reciprocal knowl-
edge of such platform.

The common platform includes not only the COTSon simulator,
but it also encompasses the compiler that is being developed in the
project, as well as support tools (e.g., McPAT [60] for power estima-
tion) and libraries (for StarSs region matching) that we integrated
to meet our research needs.

An overall picture that highlights what the software sees—as a
simulated machine—is shown in Fig. 11. The relevant point is that
the software should not look inside the COTSon simulated
machine, or make any assumption about the developing
architecture: the exact purpose is to decouple the process of soft-
ware design and hardware design (while keeping a ‘‘contract’’
between them) [61,62].

Therefore the simulation software exposes a number of virtual
processors where the guest software can run unmodified (called
VCPUs). From the software point of view all these VCPUs could
be both considered as full x86_64 virtual machines or as simple
‘‘x86_64 ISA crunchers’’ (or ‘‘Auxiliary Cores’’). The simulator may
expose the latter capability to the Operating System (OS), but for
the sake of generality the application software should not presume
the availability of any OS-service: each VCPU is just a bare
machine. COTSon, on the other side, can implement any virtualiza-
tion trick to make this illusion becoming available.

One or more VCPUs assume the role of ‘‘Service Cores’’ (e.g., the
kth) and runs a guest Linux OS that provides the necessary support
to load both TERAFLUX Applications (TFX APPS for short) and run
LEGACY APPS (such as the Oracle DBMS). The only support
required by the OS is a modification of the internal scheduler (this
could be provide as a ‘‘driver’’ in the future) in order to set the high
level policies for the TSUs. The TSUs will enforce such policies and
take care of the global bookkeping of the various types of threads
(DF-Threads, Legacy-Threads (such as from legacy applications),



R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990 985
System-Threads (supporting OS services on the Service Core —
respectiely DF-, L-, S-Threads).

We extended the COTSon platform in order to support the TER-
AFLUX dataflow execution models (both DDM and T�). In particu-
lar, we added the full support for the T� extension to the x86_86
ISA, by implementing a model for the TSU. We also added a
fault-injection model for evaluating the overhead introduced by
the Double Execution mechanism, which was also modeled with
the FDU. Finally, we extended the platform in order to pass from
a cluster-based view of the target teradevice system, to a many-
nodes-per-chip one, by realizing a communication mechanism
via the host shared memory, considering appropriate timing model
[63]. More recent steps deal with the further refinement of the T�
Instruction Set Extension and its integration with the Transactional
Memory.
9. The Codelet model

As a further extension of the TERAFLUX program execution
model, the University of Delaware joined our project bringing its
expertise on the codelet model. The Codelet Model [6] is a hybrid
Von Neumann-dataflow execution model, aimed at providing a
fine-grain parallel execution model. Its quantum of computation
is called a codelet. A codelet (pictured in Fig. 12) is an event-driven
sequence of machine instructions, which run until completion.
Foremost among those events is data availability, which is the
prime reason to trigger the execution of a codelet (which we call
firing). All events are explicitly expressed when defining the cod-
elets. Besides the required data (following dataflow semantics),
events on which a codelet may wait until it is fired include band-
width requirements, core frequency (including a given maximal
temperature or power expenditure), etc. Codelets are expected to
be generated by a compiler. Previous experience with the codelet
model’s ancestor, EARTH [64], have shown that automatic parti-
tioning programs into threads that follow dataflow semantics is
indeed possible [65].

The codelet execution model relies on an Abstract Machine
Model (AMM). It features a hierarchical topology, as well as a
heterogeneous architecture. From a high-level point of view the
codelet AMM is rather close to the TERAFLUX architectural
template. The important part is located at the chip level: the sched-
uling part is delegated to a dedicated unit (the scheduling unit,
equivalent of the TSU in the TERAFLUX architectural template),
while the computational part is performed by the computation
units (which are called cores in TERAFLUX). As a principal schedul-
ing quantum, a codelet, once allocated and scheduled to a core,
keeps the computation unit usefully busy, and cannot be pre-
empted (however it can voluntarily yield, provided that more than
one codelet context can be held within the same core—thus
allowing for overhead-less context switches). One feature of the
codelet execution is the efficient support of a non-preemptive
Fig. 12. The Codelet: a Fine-Grain Piece of Computation. A codelet is fired when all
inputs are available. Inputs can be data (square inputs) or resource conditions (gray
circle).
event-driven thread model. If the system software deems it neces-
sary, it can clock-gate (or even power-gate) selected cores. The
codelets running on those cores must thus be suspended for the
duration of the core suspension—and subsequently resumed once
the TSU it depends on decides to turn the core on again. Codelets
running on cores that are power-gated must be restarted (either
on the same core or on another).

The codelet model features asynchronous functions, called
Threaded Procedures. They are called in a control-flow manner,
and act as containers for codelet graphs. A threaded procedure
(TP) features a frame which is shared by all the codelets. Following
the precepts of dataflow, when possible, most data is written in a
‘‘write once, read many times’’ manner: data is produced by a given
codelet, and consumed by one or more depending codelets.
Threaded procedures provide a second level of parallelism, as well
as a locality constraint: all codelets contained within a given TP
must run on the same group of cores within a node. Therefore,
while there is nothing to prevent the grouping of unrelated cod-
elets within a given TP, locality requirements tend to ensure that
TPs are containers for a logical grouping of codelets, much like
traditional functions are logical groupings of instructions. The
availability of the TP frame to all its contained codelets implies that
all codelets can read and write all its data: two codelets executing
in parallel may potentially read and/or write to the same frame
location simultaneously. Therefore a memory consistency model
must be provided to handle those cases.

The codelet memory model is based on Location Consistency
(LC) [66]. LC does not require a global ordering of memory opera-
tions on the same memory location visible to all processors. Conse-
quently, a memory model based on LC should provide better
scalability than other existing cache-coherent based models and
protocols.

We have provided an implementation of the Codelet model as a
runtime system: the Delaware Adaptive Run-Time System (DARTS)
[67]. It is written in C++, and can run on any POSIX-compliant sys-
tem. In addition, we have ported DARTS to the TERAFLUX simula-
tor, thus taking advantage of the TERAFLUX instruction set
extension to schedule dataflow threads. The codelet and DF-Thread
models are sufficiently close that we can try to find a converging
path toward a new dataflow-inspired execution model, of which
the port of DARTS on the TERAFLUX machine (the COTSon simula-
tor) is a first significant step. Codelets are mapped to DF-Threads,
thus allowing DARTS to make use of the TSU on COTSon. We are
also studying different percolation techniques for teradevices. Per-
colation [68] is a mechanism that determines how code and/or
data should be located, and where, on a given machine. It also takes
into account the bandwidth availability. Its goal is to guarantee as
much locality as possible for the on-going computation. Other
research is currently under way to combine the Codelet model
with streaming. Preliminary results are encouraging [69,70].

Other projects seem to move along similar directions [71,72].
10. Conclusions

We presented TERAFLUX, a Future Emerging Technology Large-
Scale Project funded by the EU. TERAFLUX is at the forefront of
major research challenges such as programmability, manageable
architecture design, and reliability of many-core or 1000+ cores
chips. We described the project’s transformation hierarchy and
its major scientific contributions. These contributions include scal-
able parallel applications, programming models for large-scale sys-
tems exploiting the dataflow principles, compiler techniques and
tools to harness a dynamic, thread-level dataflow execution model,
fault-detection and -tolerance techniques, the actual architecture,
and the simulation infrastructure needed for the evaluation of



986 R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990
the proposed research. The preliminary results demonstrate solid
performance scalability and reliable execution over unreliable
components. The TERAFLUX architecture builds on top of classical
microarchitecture principles for the individual cores and their clos-
est local memories, and combines a large number of them with
simple modules such as the Thread Scheduling Units and Fault
Detection Units. Among the notable contributions, StarSs-inpired
dependent tasking construct have been integrated into the Open-
MP4 specification, and the project released a simulator able to per-
form experiments with more the 1000 general purpose cores and
full system simulation (COTSon).

Acknowledgements

This work was partly funded by the European FP7 Project TER-
AFLUX (id. 249013) http://www.teraflux.eu. Prof. Avi Mendelsons
work has been carried out at Microsoft R&D, Israel. The researchers
from BSC also acknowledge the support of the Spanish Ministry of
Science and Innovation (Contract TIN2012-34557) and of the Gen-
eralitat de Catalunya (Contract 2009-SGR-980).

References

[1] M. Jurczak, N. Collaert, A. Veloso, T. Hoffmann, S. Biesemans, Review of FINFET
technology, in: SOI Conference, 2009 IEEE International, 2009, pp. 1–4. <http://
dx.doi.org/10.1109/SOI.2009.5318794>.

[2] R. Chanchani, 3D integration technologies – an overview, in: D. Lu, C. Wong,
(Eds.), Materials for Advanced Packaging, Springer US, 2009, pp. 1–50. doi:
10.1007/978-0-387-78219-5_1. <http://dx.doi.org/10.1007/978-0-387-78219-
5_1>.

[3] International Technology Roadmap for Semiconductors. <http://www.itrs.net/
Links/2011ITRS/Home2011.htm>.

[4] R. Giorgi, Z. Popovic, N. Puzovic, DTA-C: a decoupled multi-threaded
architecture for CMP systems, in: 19th International Symposium on
Computer Architecture and High Performance Computing, 2007, SBAC-PAD
2007, 2007, pp. 263–270. <http://dx.doi.org/10.1109/SBAC-PAD.2007.27>.

[5] K. Kavi, R. Giorgi, J. Arul, Scheduled dataflow: execution paradigm,
architecture, and performance evaluation, IEEE Trans. Comput. 50 (8) (2001)
834–846, http://dx.doi.org/10.1109/12.947003.

[6] S. Zuckerman, J. Suetterlein, R. Knauerhase, G.R. Gao, Using a codelet program
execution model for exascale machines: position paper, in: Proceedings of the
1st International Workshop on Adaptive Self-Tuning Computing Systems for
the Exaflop Era, EXADAPT ’11, ACM, New York, NY, USA, 2011, pp. 64–69.
<http://dx.doi.org/10.1145/2000417.2000424. URL http://doi.acm.org/
10.1145/2000417.2000424>.

[7] J.B. Dennis, The Data Flow Concept Past, Present and Future, Keynote Speech at
the Dataflow Execution Models for Extreme Exascale Computing Workshop,
October 2011.

[8] A. Portero, Z. Yu, R. Giorgi, Teraflux: exploiting tera-device computing
challenges, Procedia Comput. Sci. 7 (0) (2011) 146–147 (Proceedings of the
2nd European Future Technologies Conference and Exhibition 2011 (FET 11).
doi: http://dx.doi.org/10.1016/j.procs.2011.09.081).

[9] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, D. Ortega, COTSon:
infrastructure for full system simulation, SIGOPS Oper. Syst. Rev. 43 (1)
(2009) 52–61, http://dx.doi.org/10.1145/1496909.1496921. <http://
doi.acm.org/10.1145/1496909.1496921>.

[10] J. Ciesko, J. Bueno, N. Puzovic, A. Ramirez, R. Badia, J. Labarta, Programmable
and scalable reductions on clusters, in: 2013 IEEE 27th International
Symposium on Parallel Distributed Processing (IPDPS), 2013, pp. 560–568,
doi: 10.1109/IPDPS.2013.63.

[11] J. Planas, R. Badia, E. Ayguade, J. Labarta, Self-adaptive ompss tasks in
heterogeneous environments, in: 2013 IEEE 27th International Symposium on
Parallel Distributed Processing (IPDPS), 2013, pp. 138–149, doi: 10.1109/
IPDPS.2013.53.

[12] F. Yazdanpanah, D. Jimenez-Gonzalez, C. Alvarez-Martinez, Y. Etsion, R.M.
Badia, Fpga-based prototype of the task superscalar architecture, in: 7th
HiPEAC Workshop on Reconfigurable Computing (WRC 2013), Berlin,
Germany, 2013.

[13] N.M. Lê, A. Pop, A. Cohen, F. Zappa Nardelli, Correct and efficient work-stealing
for weak memory models, SIGPLAN Not. 48 (8) (2013) 69–80, http://
dx.doi.org/10.1145/2517327.2442524. <http://doi.acm.org/10.1145/
2517327.2442524>.

[14] B. Diouf, C. Hantas�, A. Cohen, O. Özturk, J. Palsberg, A decoupled local memory
allocator, ACM Trans. Architec. Code Optim. 9 (4) (2013) 34:1–34:22, http://
dx.doi.org/10.1145/2400682.2400693. <http://doi.acm.org/10.1145/
2400682.2400693>.

[15] K. Trifunovic, A. Cohen, R. Ladelsky, F. Li, Elimination of memory-based
dependences for loop-nest optimization and parallelization: evaluation of a
revised violated dependence analysis method on a three-address code
polyhedral compiler, in: Proceedings of 3rd International Workshop on GCC
Research Opportunities (GROW 2011), 2011. <http://grow2011.inria.fr/>.

[16] Seaton, Chris and Goodman, Daniel and Luján, Mikel and Watson, Ian,
Applying Dataflow and Transactions to Lee Routing, in: Workshop on
Programmability Issues for Heterogeneous Multicores (MULTIPROG), Paris,
France, 2012.

[17] I. Herath, D. Rosas-Ham, D. Goodman, M. Luján, I. Watson, A Case for Exiting a
Transaction in the Context of Hardware Transactional Memory.

[18] Rahulkumar Gayatri, Rosa M. Badia, Eduard Ayguade, Mikel Luján, Ian Watson,
Transactional access to shared memory in StarSs, a task based programming
model, in: C. Kaklamanis, T. Papatheodorou, P.G. Spirakis (Eds.), Euro-Par 2012
Parallel Processing, Lecture Notes in Computer Science, vol. 7484, Springer,
Berlin Heidelberg, 2012, pp. 514–525. doi: 10.1007/978-3-642-32820-6_51,
<http://dx.doi.org/10.1007/978-3-642-32820-6_51>.

[19] A. Diavastos, P. Trancoso, M. Lujan, I. Watson, Integrating transactions into the
data-driven multi-threading model using the TFlux platform, in: 2011 First
Workshop on Data-Flow Execution Models for Extreme Scale Computing
(DFM), 2011, pp. 19–27, doi: 10.1109/DFM.2011.14.

[20] F. Li, B. Arnoux, A. Cohen, A compiler and runtime system perspective to
scalable data-flow computing, in: Workshop on Programmability Issues for
Heterogeneous Multicores (MULTIPROG), Paris, France, 2012.

[21] C. Miranda, A. Pop, P. Dumont, A. Cohen, M. Duranton, Erbium: a deterministic,
concurrent intermediate representation to map data-flow tasks to scalable,
persistent streaming processes, in: Proceedings of the 2010 International
Conference on Compilers, Architectures and Synthesis for Embedded Systems,
CASES ’10, ACM, New York, NY, USA, 2010, pp. 11–20. doi: 10.1145/
1878921.1878924, <http://doi.acm.org/10.1145/1878921.1878924>.

[22] A. Pop, A. Cohen, Preserving high-level semantics of parallel programming
annotations through the compilation flow of optimizing compilers, in:
Proceedings of the 15th Workshop on Compilers for Parallel Computers
(CPC’10), Vienna, Autriche, 2010. <http://hal.inria.fr/inria-00551518>.

[23] CAPS Entreprise, HMPP Directives Reference Manual, Version 3.2.0, CAPS
entreprise, 2012.

[24] OpenHMPP Consortium Association, OpenHMPP New Standard for Many-Core,
OpenHMPP Consortium Association, 2011.

[25] F. Li, A. Pop, A. Cohen, Automatic extraction of coarse-grained data-flow
threads from imperative programs, IEEE Micro 32 (4) (2012) 19–31, http://
dx.doi.org/10.1109/MM.2012.49.

[26] F. Li, A. Pop, A. Cohen, Extending loop distribution to PS-DSWP, in: F. Bouchez,
S. Hack, E. Visser (Eds.), Proceedings of the Workshop on Intermediate
Representations, 2011, pp. 29–36. <http://researchr.org/publication/Li-WIR-
2011>.

[27] A. Pop, A. Cohen, OpenStream: expressiveness and data-flow compilation of
OpenMP streaming programs, ACM Trans. Architec. Code Optim. 9 (4) (2013)
53:1–53:25, http://dx.doi.org/10.1145/2400682.2400712. <http://
doi.acm.org/10.1145/2400682.2400712>.

[28] J. Wolf, B. Fechner, T. Ungerer, Fault coverage of a timing and control flow
checker for hard real-time systems, in: On-Line Testing Symposium (IOLTS),
2012 IEEE 18th International, 2012, pp. 127–129, doi: 10.1109/
IOLTS.2012.6313855.

[29] J. Wolf, B. Fechner, S. Uhrig, T. Ungerer, Fine-grained timing and control flow
error checking for hard real-time task execution, in: 2012 7th IEEE
International Symposium on Industrial Embedded Systems (SIES), 2012, pp.
257–266, doi: 10.1109/SIES.2012.6356592.

[30] S. Weis, A. Garbade, S. Schlingmann, T. Ungerer, Towards Fault Detection Units
as an Autonomous Fault Detection Approach for Future Many-Cores, in: ARCS
Workshops, 2011.

[31] A. Garbade, S. Weis, S. Schlingmann, T. Ungerer, OC techniques applied to solve
reliability problems in future 1000-core processors, in: C. Müller-Schloer, H.
Schmeck, T. Ungerer (Eds.), Organic Computing — A Paradigm Shift for
Complex Systems, Autonomic Systems, vol. 1, Springer, Basel, 2011, pp. 575–
577. doi: 10.1007/978-3-0348-0130-0_38. <http://dx.doi.org/10.1007/978-3-
0348-0130-0_38>.

[32] J. Bueno, J. Planas, A. Duran, R. Badia, X. Martorell, E. Ayguade, J. Labarta,
Productive programming of GPU clusters with OmpSs, in: Parallel Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, 2012, pp. 557–
568, doi: 10.1109/IPDPS.2012.58.

[33] V.K. Elangovan, R. Badia, E.A. Parra, OmpSs-OpenCL programming model for
heterogeneous systems, in: H. Kasahara, K. Kimura (Eds.), Languages and
Compilers for Parallel Computing, Lecture Notes in Computer Science, vol.
7760, Springer, Berlin Heidelberg, 2013, pp. 96–111. doi: 10.1007/978-3-642-
37658-0_7. <http://dx.doi.org/10.1007/978-3-642-37658-0_7>.

[34] R. Giorgi, Z. Popovic, N. Puzovic, Implementing fine/medium grained TLP
support in a many-core architecture, in: K. Bertels, N. Dimopoulos, C. Silvano,
S. Wong (Eds.), Embedded Computer Systems: Architectures, Modeling, and
Simulation, Lecture Notes in Computer Science, vol. 5657, Springer, Berlin
Heidelberg, 2009, pp. 78–87. doi: 10.1007/978-3-642-03138-0_9. <http://
dx.doi.org/10.1007/978-3-642-03138-0_9>.

[35] J. Planas, R.M. Badia, E. Ayguadé, J. Labarta, Hierarchical task-based
programming with StarSs, Int. J. High Perform. Comput. Appl. 23 (3) (2009)
284–299. http://arxiv.org/abs/http://hpc.sagepub.com/content/23/3/284.full.
pdf+html arXiv:http://hpc.sagepub.com/content/23/3/284.full.pdf+html,
http://dx.doi.org/10.1177/1094342009106195, doi: 10.1177/1094342009106195.
<http://hpc.sagepub.com/content/23/3/284.abstract>.

[36] A. Duran, R. Ferrer, E. Ayguadé, R.M. Badia, J. Labarta, A proposal to extend the
openmp tasking model with dependent tasks, Int. J. Parallel Prog. 37 (3) (2009)

http://www.teraflux.eu
http://dx.doi.org/10.1109/SOI.2009.5318794
http://dx.doi.org/10.1109/SOI.2009.5318794
http://dx.doi.org/10.1007/978-0-387-78219-5_1
http://dx.doi.org/10.1007/978-0-387-78219-5_1
http://www.itrs.net/Links/2011ITRS/Home2011.htm
http://www.itrs.net/Links/2011ITRS/Home2011.htm
http://dx.doi.org/10.1109/SBAC-PAD.2007.27
http://dx.doi.org/10.1109/12.947003
http://dx.doi.org/10.1145/2000417.2000424
http://doi.acm.org/10.1145/2000417.2000424
http://doi.acm.org/10.1145/2000417.2000424
http://refhub.elsevier.com/S0141-9331(14)00049-0/h0230
http://refhub.elsevier.com/S0141-9331(14)00049-0/h0230
http://refhub.elsevier.com/S0141-9331(14)00049-0/h0230
http://refhub.elsevier.com/S0141-9331(14)00049-0/h0230
http://dx.doi.org/10.1145/1496909.1496921
http://doi.acm.org/10.1145/1496909.1496921
http://doi.acm.org/10.1145/1496909.1496921
http://dx.doi.org/10.1145/2517327.2442524
http://dx.doi.org/10.1145/2517327.2442524
http://doi.acm.org/10.1145/2517327.2442524
http://doi.acm.org/10.1145/2517327.2442524
http://dx.doi.org/10.1145/2400682.2400693
http://dx.doi.org/10.1145/2400682.2400693
http://doi.acm.org/10.1145/2400682.2400693
http://doi.acm.org/10.1145/2400682.2400693
http://grow2011.inria.fr/
http://dx.doi.org/10.1007/978-3-642-32820-6_51
http://doi.acm.org/10.1145/1878921.1878924
http://hal.inria.fr/inria-00551518
http://dx.doi.org/10.1109/MM.2012.49
http://dx.doi.org/10.1109/MM.2012.49
http://researchr.org/publication/Li-WIR-2011
http://researchr.org/publication/Li-WIR-2011
http://dx.doi.org/10.1145/2400682.2400712
http://doi.acm.org/10.1145/2400682.2400712
http://doi.acm.org/10.1145/2400682.2400712
http://dx.doi.org/10.1007/978-3-0348-0130-0_38
http://dx.doi.org/10.1007/978-3-0348-0130-0_38
http://dx.doi.org/10.1007/978-3-642-37658-0_7
http://dx.doi.org/10.1007/978-3-642-03138-0_9
http://dx.doi.org/10.1007/978-3-642-03138-0_9
http://hpc.sagepub.com/content/23/3/284.abstract


R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990 987
292–305, http://dx.doi.org/10.1007/s10766-009-0101-1. <http://dx.doi.org/
10.1007/s10766-009-0101-1>.

[37] A. Duran, E. Ayguadé, R.M. Badia, J. Labarta, L. Martinell, X. Martorell, J. Planas,
OmpSs: a proposal for programming heterogeneous multi-core architectures,
Parallel Process. Lett. 21 (02) (2011) 173–193, http://dx.doi.org/10.1142/
S0129626411000151. http://arxiv.org/abs/http://www.worldscientific.com/
doi/pdf/10.1142/S0129626411000151 arXiv:http://www.worldscientific.com/
doi/pdf/10.1142/S0129626411000151, doi: 10.1142/S0129626411000151.
<http://www.worldscientific.com/doi/abs/10.1142/S0129626411000151>.

[38] OpenMP Architecture Review Board, OpenMP Application Program Interface,
Specification (2011). <http://www.openmp.org/mp-documents/
OpenMP3.1.pdf>.

[39] Y. Etsion, A. Ramirez, R.M. Badia, E. Ayguade, J. Labarta, M. Valero, Task
superscalar: using processors as functional units, in: USENIX Workshop on Hot
Topics In Parallelism (HotPar). Berkeley, CA, USA, vol. 35, 2010.

[40] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. Badia, E. Ayguade, J. Labarta, M.
Valero, Task superscalar: an out-of-order task pipeline, in: Microarchitecture
(MICRO), 2010 43rd Annual IEEE/ACM International Symposium on, 2010, pp.
89–100, doi: 10.1109/MICRO.2010.13.

[41] P. Felber, C. Fetzer, P. Marlier, T. Riegel, Time-based software transactional
memory, IEEE Trans. Parallel Distrib. Syst. 21 (12) (2010) 1793–1807, http://
dx.doi.org/10.1109/TPDS.2010.49.

[42] P. Felber, C. Fetzer, T. Riegel, Dynamic performance tuning of word-based
software transactional memory, in: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’08,
ACM, New York, NY, USA, 2008, pp. 237–246. doi: 10.1145/1345206.1345241.
<http://doi.acm.org/10.1145/1345206.1345241>.

[43] D. Goodman, B. Khan, S. Khan, M. Luján, I. Watson, Software transactional
memories for scala, J. Parallel Distrib. Comput. 73 (2) (2013) 150–163. http://
dx.doi.org/http://dx.doi.org/10.1016/j.jpdc.2012.09.015 doi: http://dx.doi.org/
10.1016/j.jpdc.2012.09.015. <http://www.sciencedirect.com/science/article/
pii/S0743731512002304>.

[44] D. Goodman, S. Khan, C. Seaton, Y. Guskov, B. Khan, M. Luján, I. Watson,
DFScala: high level dataflow support for scala, in: Second International
Workshop on Data-Flow Models For Extreme Scale Computing (DFM),
Minneapolis, MN, USA, 2012.

[45] Goodman Daniel, Khan Behram, Khan Salman, Kirkham Chris, Luján Mikel,
Watson Ian, MUTS: native scala constructs for software transactional memory,
in: Proceedings of Scala Days 2011, Stanford CA, 2011.

[46] A. Pop, A. Cohen, Work-streaming compilation of futures, in: 5th Workshop on
Programming Language Approaches to Concurrency and Communication-
cEntric Software (PLACES), Tallin, Estonia, 2012.

[47] A. Pop, A. Cohen, A stream-computing extension to OpenMP, in: Proceedings of
the 6th International Conference on High Performance and Embedded
Architectures and Compilers, HiPEAC ’11, ACM, New York, NY, USA, 2011,
pp. 5–14. doi: 10.1145/1944862.1944867. <http://doi.acm.org/10.1145/
1944862.1944867>.

[48] Z. Yu, A. Righi, R. Giorgi, A case study on the design trade-off of a thread level
data flow based many-core architecture, in: FUTURE COMPUTING 2011, The
Third International Conference on Future Computational Technologies and
Applications, 2011, pp. 100–106.

[49] C. Kyriacou, P. Evripidou, P. Trancoso, Data-driven multithreading using
conventional microprocessors, IEEE Trans. Parallel Distrib. Syst. 17 (10) (2006)
1176–1188, http://dx.doi.org/10.1109/TPDS.2006.136.

[50] C. Christofi, G. Michael, P. Trancoso, P. Evripidou, Exploring HPC parallelism
with data-driven multithreating, in: Data-Flow Execution Models for Extreme
Scale Computing (DFM), 2012, 2012, pp. 10–17, doi: 10.1109/DFM.2012.11.

[51] G. Michael, S. Arandi, P. Evripidou, Data-flow concurrency on distributed
multi-core systems, in: In Proceedings of the 2013 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA ’13),
July 22–25, 2013, Las Vegas, USA, 2013.

[52] R. Giorgi, TERAFLUX: exploiting dataflow parallelism in teradevices, in:
Proceedings of the 9th Conference on Computing Frontiers, CF ’12, ACM,
New York, NY, USA, 2012, pp. 303–304. doi: 10.1145/2212908.2212959.
<http://doi.acm.org/10.1145/2212908.2212959>.

[53] Arvind, R.S. Nikhil, Executing a program on the mit tagged-token dataflow
architecture, IEEE Trans. Comput. 39 (3) (1990) 300–318, http://dx.doi.org/
10.1109/12.48862.

[54] S. Weis, A. Garbade, J. Wolf, B. Fechner, A. Mendelson, R. Giorgi, T. Ungerer, A
fault detection and recovery architecture for a teradevice dataflow system, in:
2011 First Workshop on Data-Flow Execution Models for Extreme Scale
Computing (DFM), 2011, pp. 38–44, doi: 10.1109/DFM.2011.9.

[55] S. Weis, A. Garbade, S. Schlingmann, T. Ungerer, Towards fault detection units
as an autonomous fault detection approach for future many-cores, in: ARCS
Workshops, 2011.

[56] A. Garbade, S. Weis, S. Schlingmann, B. Fechner, T. Ungerer, Impact of message
based fault detectors on applications messages in a network on chip, in: 2013
21st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), 2013, pp. 470–477, doi: 10.1109/
PDP.2013.76.

[57] A. Garbade, S. Weis, S. Schlingmann, B. Fechner, T. Ungerer, Fault Localization
in NoCs Exploiting Periodic Heartbeat Messages in a Many-Core Environment,
in: Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), 2013 IEEE 27th International, 2013, pp. 791–795, doi: 10.1109/
IPDPSW.2013.150.
[58] S. Schlingmann, A. Garbade, S. Weis, T. Ungerer, Connectivity-sensitive
algorithm for task placement on a many-core considering faulty regions, in:
PDP, 2011, pp. 417–422, doi: 10.1109/PDP.2011.58.

[59] A. Portero, A. Scionti, Z. Yu, P. Faraboschi, C. Concatto, L. Carro, A. Garbade, S.
Weis, T. Ungerer, R. Giorgi, Simulating the future Kilo-x86-64 core processors
and their infrastructure, in: Proceedings of the 45th Annual Simulation
Symposium, ANSS ’12, Society for Computer Simulation International, San
Diego, CA, USA, 2012, pp. 9:1–9:7. <http://dl.acm.org/
citation.cfm?id=2331751.2331760>.

[60] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, N. Jouppi, Mcpat: an
integrated power, area, and timing modeling framework for multicore and
manycore architectures, in: 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009, MICRO-42, 2009, pp. 469–480.

[61] R. Giorgi, C. Prete, L. Ricciardi, G. Prina, A hybrid approach to trace generation
for performance evaluation of shared-bus multiprocessors, in: EUROMICRO 96.
Beyond 2000: Hardware and Software Design Strategies., Proceedings of the
22nd EUROMICRO Conference, 1996, pp. 207–214, doi: 10.1109/
EURMIC.1996.546384.

[62] R. Giorgi, C. Prete, G. Prina, L. Ricciardi, Trace factory: generating workloads for
trace-driven simulation of shared-bus multiprocessors, IEEE Concurrency 5 (4)
(1997) 54–68, http://dx.doi.org/10.1109/4434.641627.

[63] J. Navaridas, B. Khan, S. Khan, P. Faraboschi, M. Lujan, Reservation-based
network-on-chip timing models for large-scale architectural simulation, in:
Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on,
2012, pp. 91–98, doi: 10.1109/NOCS.2012.18.

[64] H.H.J. Hum, O. Maquelin, K.B. Theobald, X. Tian, G.R. Gao, L.J. Hendren, A study
of the EARTH-MANNA multithreaded system, Int. J. Parallel Program. 24 (4)
(1996) 319–348. <http://dl.acm.org/citation.cfm?id=239178.239180>.

[65] L. Hendren, X. Tang, Y. Zhu, G. Gao, X. Xue, H. Cai, P. Ouellet, Compiling C for
the EARTH multithreaded architecture, in: Proceedings of the 1996 Conference
on Parallel Architectures and Compilation Techniques, 1996, 1996, pp. 12–23,
doi: 10.1109/PACT.1996.552551.

[66] G. Gao, V. Sarkar, Location consistency-a new memory model and cache
consistency protocol, IEEE Trans. Comput. 49 (8) (2000) 798–813, http://
dx.doi.org/10.1109/12.868026.

[67] J. Suettlerlein, S. Zuckerman, G. Gao, An implementation of the codelet model,
in: F. Wolf, B. Mohr, D. Mey (Eds.), Euro-Par 2013 Parallel Processing, Lecture
Notes in Computer Science, vol. 8097, Springer, Berlin Heidelberg, 2013, pp.
633–644. doi: 10.1007/978-3-642-40047-6_63. <http://dx.doi.org/10.1007/
978-3-642-40047-6_63>.

[68] G. Gao, K. Likharev, P. Messina, T. Sterling, Hybrid technology multithreaded
architecture, in: Frontiers of Massively Parallel Computing, 1996, Proceedings
Frontiers ’96, Sixth Symposium on the, 1996, pp. 98–105, doi: 10.1109/
FMPC.1996.558066.

[69] H. Wei, J. Yu, H. Yu, M. Qin, G.R. Gao, Software pipelining for stream programs
on resource constrained multicore architectures, IEEE Trans. Parallel Distrib.
Syst. 23 (12) (2012) 2338–2350. http://dx.doi.org/http://
doi.ieeecomputersociety.org/10.1109/TPDS.2012.41 doi: http://
doi.ieeecomputersociety.org/10.1109/TPDS.2012.41.

[70] H. Wei, G.R. Gao, W. Zhang, J. Yu, COStream: a dataflow programming language
and compiler for multi-core architecture, in: To appear in Proceedings of Data-
Flow Models (DFM) for Extreme Scale Computing Workshop 2013 in
conjunction with Parallel Architectures and Compilation Technologies (PACT
2013), Edinburgh, Scotland, UK, 2013.

[71] Y. Jan, L. Jóźwiak, Communication and memory architecture design of
application-specific high-end multiprocessors, VLSI Des. 20 (2012), http://
dx.doi.org/10.1155/2012/794753 (12:12–12:12). <http://dx.doi.org/10.1155/
2012/794753>.

[72] L. Jozwiak, M. Lindwer, R. Corvino, P. Meloni, L. Micconi, J. Madsen, E. Diken, D.
Gangadharan, R. Jordans, S. Pomata, P. Pop, G. Tuveri, L. Raffo, ASAM:
automatic architecture synthesis and application mapping, in: 2012 15th
Euromicro Conference on Digital System Design (DSD), 2012, pp. 216–225,
doi: 10.1109/DSD.2012.28.

Roberto Giorgi is an Associate Professor at Department
of Information Engineering, University of Siena, Italy. He
received his PhD in Computer Engineering and his
Master in Electronics Engineering, Magna cum Laude
both from University of Pisa. He is the coordinator of the
European Project TERAFLUX, Future and Emerging
Technologies for Teradevice Computing. He is a member
of the Network of Excellence HiPEAC (High Performance
Embedded-system Architecture and Compiler). He
contributed to ERA (Embedded Reconfigurable Archi-
tectures), SARC (Scalable ARChitectures), ChARM (caChe
for ARM based systems) projects. His interests include

Computer Architecture themes such as Embedded Systems, Multiprocessors,
Memory System, Workload Characterization.

http://dx.doi.org/10.1007/s10766-009-0101-1
http://dx.doi.org/10.1007/s10766-009-0101-1
http://dx.doi.org/10.1007/s10766-009-0101-1
http://dx.doi.org/10.1142/S0129626411000151
http://dx.doi.org/10.1142/S0129626411000151
http://www.worldscientific.com/doi/abs/10.1142/S0129626411000151
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://dx.doi.org/10.1109/TPDS.2010.49
http://dx.doi.org/10.1109/TPDS.2010.49
http://doi.acm.org/10.1145/1345206.1345241
http://www.sciencedirect.com/science/article/pii/S0743731512002304
http://www.sciencedirect.com/science/article/pii/S0743731512002304
http://doi.acm.org/10.1145/1944862.1944867
http://doi.acm.org/10.1145/1944862.1944867
http://dx.doi.org/10.1109/TPDS.2006.136
http://doi.acm.org/10.1145/2212908.2212959
http://dx.doi.org/10.1109/12.48862
http://dx.doi.org/10.1109/12.48862
http://dl.acm.org/citation.cfm?id=2331751.2331760
http://dl.acm.org/citation.cfm?id=2331751.2331760
http://dx.doi.org/10.1109/4434.641627
http://dl.acm.org/citation.cfm?id=239178.239180
http://dx.doi.org/10.1109/12.868026
http://dx.doi.org/10.1109/12.868026
http://dx.doi.org/10.1007/978-3-642-40047-6_63
http://dx.doi.org/10.1007/978-3-642-40047-6_63
http://refhub.elsevier.com/S0141-9331(14)00049-0/h0355
http://refhub.elsevier.com/S0141-9331(14)00049-0/h0355
http://refhub.elsevier.com/S0141-9331(14)00049-0/h0355
http://refhub.elsevier.com/S0141-9331(14)00049-0/h0355
http://refhub.elsevier.com/S0141-9331(14)00049-0/h0355
http://dx.doi.org/10.1155/2012/794753
http://dx.doi.org/10.1155/2012/794753
http://dx.doi.org/10.1155/2012/794753
http://dx.doi.org/10.1155/2012/794753


988 R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990
Rosa M. Badia holds a PhD on Computer Science (1994)
from the Technical University of Catalonia (UPC). She is
a Scientific Researcher from the Consejo Superior de
Investigaciones Científicas (CSIC) and team leader of the
Grid Computing and Cluster research group at the Bar-
celona Supercomputing Center (BSC). She was involved
in teaching and research activities at the UPC from 1989
to 2008, as Associated Professor since year 1997. From
1999 to 2005 she was involved in research and devel-
opment activities at the European Center of Parallelism
of Barcelona (CEPBA). Her current research interest are
programming models for complex platforms.
François Bodin held various research positions at Uni-
versity of Rennes I and at the INRIA research lab. His
contribution includes new approaches for exploiting
high performance processors in scientific computing
and in embedded applications. He cofounded CAPS
(www.caps-entreprise.com) in 2002 while he was a
Professor at University of Rennes I and in January 2008
he becomes the company CTO. He is also at the origin of
another company, TOCEA (http://tocea.com) that focu-
ses on control of source code quality and refactoring. In
2013 he is back at Irisa (http://www.irisa.fr) on a Pro-
fessor position.
Albert Cohen is a senior research scientist at INRIA and
a part-time associate professor at École Polytechnique.
He graduated from École Normale Supérieure de Lyon,
and received his PhD from the University of Versailles in
1999 (awarded two national prizes). He has been a
visiting scholar at the University of Illinois and an
invited professor at Philips Research. Albert Cohen
works on parallelizing and optimizing compilers, par-
allel programming, and synchronous programming for
embedded systems. Several research projects initiated
or led by Albert Cohen resulted in the transfer of
advanced compilation techniques to production com-

pilers.
Paraskevas Evripidou is Professor of Computer Science
at the University of Cyprus. He received the HND in
Electrical Engineering from the Higher Technical Insti-
tute in Nicosia Cyprus in 1981. He received the BSEE, MS
and PhD Computer Engineering in 1985, 1986 and 1990
respectively from the University of Southern California.
His research interests are: Parallel Processing, Computer
Architecture with emphasis on Data-Flow systems, and
also works on Ubiquitous/Pervasive computing. He is
co-founder and the Chair of the Cyprus Entrepreneur-
ship Competition (CyEC) http://www.cyec.org.cy. He is a
member of the IFIP Working Group 10.3, the IEEE

Computer Society and ACM SIGARCH.
Paolo Faraboschi is a Distinguished Technologist at HP
Labs, working on low-energy servers and project
Moonshot. His research interests are at the intersection
of architecture and software. From 2004 to 2009, he led
the HPL research activity on system-level simulation.
From 1995 to 2003, he was the principal architect of the
Lx/ST200 family of VLIW cores, widely used in video
SoCs and HP’s printers. Paolo is an IEEE Fellow and an
active member of the computer architecture commu-
nity. He holds 24 patents and a PhD in EECS from the
University of Genoa, Italy.
Bernhard Fechner holds a PhD in computer science
from the University of Hagen and is IEEE senior mem-
ber. He has (co-)authored over 40 refereed papers in the
field of fault-tolerant computing in conference pro-
ceedings, workshops and journals. Bernhard is speaker
of the Fault Tolerant Computing Section of the German
Computer Science Society (GI). Currently he is working
as assistant professor at the University of Augsburg.
Guang R. Gao is Endowed Distinguished Professor in the
Department of Electrical and Computer Engineering and
head of the Computer Architecture and Parallel Systems
Laboratory at the University of Delaware. He is an ACM
and IEEE fellow. He has been advocating the use of
dataflow principles for the past twenty years. He is one
of the Principal Investigators in the DOE-funded
eXtreme-scale software Stack (X-Stack) project. His
research areas include computer architecture and par-
allel systems, optimizing and parallelizing compilers,
runtime systems, and their application to bio-infor-
matics and high-performance computing.
Arne Garbade received the Diploma degree in computer
science from the University of Bremen, Germany, in
2009. He is currently a PhD student an the University of
Augsburg. His topics of interest include fault tolerance
techniques, adaptive systems, and on-chip communi-
cation networks in the many-core domain.
Rahulkumar Gayatri is a doctoral student at the Bar-
celona Supercomputing Center. He finished his masters
in India at the Sri Sathya Sai University in March 2009.
He joined the doctoral program in September 2009. He
is a part of the Teraflux project.
Sylvain Girbal is Research Engineer at Thales TRT. He
earned a master degree in computer science from LRI
laboratory at Paris XI University, and, in 2005 a PhD on
the subject of Compilers & Software Optimization from
Paris XI University. For 3 years, he has been in charge of
the Simulation Platform of the HiPEAC European Net-
work of Excellence as an INRIA Futurs engineer. He also
participated to various projects including ANR SocLib,
SARC IP, UNISIM, and CERTAINTY projects. His research
interests include computer architecture simulation
methodology, design space exploration methodology,
compiler techniques, multi-cores and safety critical

systems.

http://www.caps-entreprise.com
http://tocea.com
http://www.irisa.fr
http://www.cyec.org.cy


R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990 989
Daniel Goodman is a researcher at the University of
Manchester where he is investigating programming
models for high productivity languages on chips con-
taining up to 1000 cores. His interests include pro-
gramming abstractions for multi-core and
heterogeneous processors, and GPU computing. Prior to
this role he has developed tools and libraries to simplify
the programming of novel hardware ranging from het-
erogeneous CPU-GPU systems to Japan’s K super com-
puter. He has a BA and Doctorate in Computer Science
from the University of Oxford where he developed the
Martlet workflow language for distributed data analysis.

His work can be seen at http://apt.cs.man.ac.uk/people/dgoodman.
Behram Khan is a Research Associate in the School of
Computer Science at the University of Manchester. He
gained his PhD in Computer Science in 2009 from The
University of Manchester. Behram’s research interests
include many-core architectures, and Software and
Hardware Transactional Memory. His contact email
address is khanb@cs.man.ac.uk.
Souad Koliai received her PhD in Computer Engineering
from the University of Versailles (France) in July 2011.
Currently she is a post-doctoral researcher at CAPSL at
University of Delaware. Her thesis was about develop-
ing systematic performance analysis approaches for
scientific programs. Her research interests lie at com-
puter architecture, parallel programing, performance
analysis, and code optimization.
Being a particularly adroit computer programmer,
Joshua Landwehr is a former factotum in the field of
parallel computing who was employed in the Computer
Architecture and Parallel Systems Laboratory at the
University of Delaware, where he got his Master in
Electrical and Computer Engineering.

Nhat Minh Lê is a PhD student at ENS working on
compilers and runtimes for concurrency and parallel-
ization. He graduated from KTH and Grenoble INP Ens-
imag in 2012, after completing a joint Master’s program
in computer science.
Feng LI is a PhD student at UPMC and INRIA
Mikel Luján is a Royal Society University Research
Fellow in the School of Computer Science at the Uni-
versity of Manchester. His research interests include
managed runtime environments and virtualization,
many-core architectures, and application-specific sys-
tems and optimizations. He has a PhD in computer
science from the University of Manchester. Contact him
at mikel.lujan@manchester.ac.uk
Avi Mendelson is a professor in the CS and EE depart-
ments Technion, Israel. He earned his BSC and MSC
degrees from CS, Technion, and got his PhD from Uni-
versity of Massachusetts at Amherst (UMASS) Before
joining the Technion, he spent 11 years in Intel, where
he served as a senior architect in the Mobile Computer
Architectures. He also managed the Academic collabo-
rations of Microsoft R&D Israel for 4 years. His research
interests span over different areas such as computer
architecture, operating systems, power management,
reliability, fault-tolerance, cloud computing, HPC and
GPGPU.
Laurent Morin is Founder, Fellow engineer in Compi-
lation technology, and R&D manager at CAPS entreprise.
He has worked for the Deutsches Electronen Synchro-
tron Laboratory (Zeuthen, Germany) and at the IRISA
Laboratory where he has made his PhD activities. He has
a master degree in Computer Science from the Univer-
sity of Rennes 1.
Nacho Navarro is Associate Professor at the Universitat
Politecnica de Catalunya (UPC), Barcelona, Spain, since
1994, and Senior Researcher at the Barcelona Super-
computing Center (BSC), serving as manager of the
Accelerators for High Performance Computing group. He
holds a PhD degree in Computer Science from UPC. His
current interests include: GPGPU computing, multi-core
computer architectures, memory management and
runtime optimizations. He is a member of IEEE, the IEEE
Computer Society, the ACM and the HiPEAC NOE.
Tomasz Patejko graduated from Wroclaw University of
Technology in 2009. In 2011 he started working in
Barcelona Supercomputing Center.

http://apt.cs.man.ac.uk/people/dgoodman


990 R. Giorgi et al. / Microprocessors and Microsystems 38 (2014) 976–990
Antoniu Pop is a Lecturer at the University of Man-
chester. His research interests include high-level paral-
lel programming abstractions, code generation and
dynamic optimization. He graduated from ENSIMAG
and received his PhD from MINES ParisTech in 2011. He
is a member of the ACM.
Pedro Trancoso is an Associate Professor at the
Department of Computer Science at the University of
Cyprus, which he joined in 2002. He has a PhD and MSc
in Computer Science from the University of Illinois at
Urbana-Champaign, USA. His research interests are in
the area of Computer Architecture and include Multi-
core Architectures, Memory Hierarchy, Database
Workloads, and High-Performance Computing. He leads
the Computer Architecture, Systems and Performance
Evaluation Research team CASPER (www.cs.ucy.ac.cy/
carch/casper). He has participated in the TERAFLUX EU
project, received a 48-core experimental processor from

the Intel Corporation, and is a member of the HiPEAC Network of Excellence.
Theo Ungerer is Chair of Systems and Networking at
the University of Augsburg, Germany. He is a founding
member of the EU network of excellence HiPEAC, and
coordinator of the EU projects MERASA (2007–2010)
and parMERASA (2011–2014). His research interest
include real-time and fault tolerant systems, paralleli-
sation for real-time systems, embedded multi-core
hardware design, and organic computing.
Ian Watson is Professor of Computer Science at the
University of Manchester, England. His major interest is
in the architecture of general purpose parallel comput-
ers with particular emphasis on the development of
machine structures from an understanding of the
requirements of language and computational model
issues. His recent interests are in the area of multi-core
systems with particular emphasis on approaches to
achieve high extensibility using a combination of
Dataflow techniques together with transactions to pro-
vide a clean approach to introducing the handling of
shared state.
Sebastian Weis is a PhD student at the University of
Augsburg. His research interests focus on fault-toler-
ance mechanisms for parallel architectures. He holds a
diploma degree in computer science from the University
of Augsburg.
Stéphane Zuckerman is a postdoctoral fellow in the
Computer Architecture and Parallel Systems Laboratory
(CAPSL) at the University of Delaware. His research
interests lie in specifying and implementing parallel
execution models, as well as high-performance com-
puting performance evaluation and optimization. He
received his PhD from the University of Versailles Saint-
Quentin-en-Yvelines in 2010.
Mateo Valero is a Full professor at Computer Archi-
tecture Department, Universitat Politècnica de Catalu-
nya since 1983. Director Barcelona Supercomputing
Center. His research topics are centered in the area of
high-performance computer architectures. Published
over 600 papers. Served in organization of 300 inter-
national conferences. His main awards: Eckert-Mauchly,
Harry Goode, ‘‘Hall of Fame’’ member IST European
Program, King Jaime I in research, two Spanish National
Awards on Informatics and Engineering. Honorary
Doctorate: Universities of Chalmers, Belgrade, Las Pal-
mas, Zaragoza, Veracruz of Mexico and Complutense of

Madrid. IEEE, and ACM fellow, Intel Distinguished Research Fellow. Member of
Royal Spanish Academy of Engineering, Royal Academy of Science and Arts, corre-
spondant academic of Royal Spanish Academy of Sciences, Academia Europaea and

Mexicans Academy of Science.

http://www.cs.ucy.ac.cy/carch/casper
http://www.cs.ucy.ac.cy/carch/casper

	TERAFLUX: Harnessing dataflow in next generation teradevices
	1 Introduction
	2 General overview of the TERAFLUX project
	3 Leveraging dataflow through the task-based approach
	3.1 Parallel Updates in StarSs/OmpSs

	4 DFScala: constructing and executing dataflow graphs
	4.1 Combining dataflow and transactional memory
	4.2 Coherency
	4.3 Data dependencies

	5 The OpenStream extension to OpenMP
	6 The TERAFLUX reference architecture
	7 Improving reliability by leveraging dataflow properties
	8 The common evaluation platform
	9 The Codelet model
	10 Conclusions
	Acknowledgements
	References


