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Abstract—The next generation of high-performance computers is expected to execute threads in orders of magnitude higher
than today’s systems. Improper management of such huge amount of threads can create resource contention, leading to overall
degraded system performance. By leveraging more practical approaches to distributing threads on the available resources,
execution models and manycore chips are expected to overcome limitations of current systems. Here, we present DELTA –
a Data-Enabled muLti-Threaded Architecture, where a producer-consumer scheme is used to execute threads via complete
distributed thread management mechanism. We consider a manycore tiled-chip architecture where Network-on-Chip (NoC)
routers are extended to support our execution model. The proposed extension is analysed, while simulation results confirm that
DELTA can manage a large number of simultaneous threads, relying on a simple hardware structure.

Index Terms—Dataflow, Hashing, Network-on-Chip, Thread-scheduling
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1 INTRODUCTION

E XASCALE machines are expected to execute large, mul-
tiple applications at higher speed. To meet this goal,

these machines have to manage a number of threads that
is orders of magnitude greater than in current petascale
machines, with more stringent power and resiliency con-
straints [4]. Recent CPU designs favour the integration of
a vast number of simple, single-issue, in-order cores [1]
to increase the number of threads that can be executed
in parallel. However, traditional program execution models
(PXMs) derived from the von Neumann model and used
by such systems, exhibit a large thread synchronisation
overhead. Their inherent sequential nature makes it tough to
guarantee correctness and race condition freedom in multi-
threaded program executions [8]. Furthermore, when fine-
grain threads are exploited, their synchronisation activity
quickly becomes the main performance limiting factor [5],
also contributing to energy waste. Instead, PXMs which
rely on explicit producer-consumer semantics and are self-
scheduled [3] drive the design of efficient and less power
hungry chip architectures (e.g., [13]).

The eXplicit Multi-Threading (XMT) architecture [12] in-
troduces an abstract execution model, where switching
from serial to parallel execution is made through explicit
spawn/join instructions. Specifically, such instructions cre-
ate a group of concurrent threads executing the same code
block, while micro-architectural support remains generic.
Kyriacou et al. [7] proposed a scalable architecture which,
requires a large amount of storage to maintain a local copy
of the threads’ dependency graph, while a flat thread distri-
bution model is applied. Recently, TERAFLUX [6] proposed
a chip architecture for the explicit exploitation of a dataflow
PXM, where cores are organised into fixed-size nodes.
Although it was proposed as a scalable solution, many
drawbacks remain: locality of computations is not guar-
anteed (threads cannot explicitly restrict execution within
a node), and an efficient selection of the target execution
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cores is not described. In recent years, GPUs emerged as the
preferable platform to accelerate computations [9], thanks to
their capability of running hundreds of fine-grain threads in
parallel. However, their architecture is optimised for regular
applications and does not adapt well to irregular data and
control problems.

In this paper, we propose DELTA – a Data-Enabled muLti-
Threaded Architecture – which attempts to: i) implement an
effective mechanism to select target execution cores, as well
as to guarantee locality of computations; ii) supporting the
execution of a large number of concurrent threads with a
lightweight synchronisation mechanism, and iii) provide a
simple programming interface. Starting from a manycore
tiled-chip, we augment the NoC router structure with a
hardware unit responsible for the threads’ creation and
distribution over the application lifetime (we are agnostic
in respect to the processing element architecture). Also, a
fast hash-based mechanism allows the system to efficiently
distribute the threads among the available processing re-
sources, leading to more dynamic scaling-up capabilities
and less power consumption.

2 PROGRAM EXECUTION MODEL (PXM)

PXMs define how a computation must be carried on a target
machine, on concurrency (how threads are created, sched-
uled, and destroyed), memory behaviour (how memory is
addressed, and what ordering rules it obeys), and syn-
chronisation (how threads can synchronise/wait for each
other). Contrary to programming models, which describe
what high-level action should be done (and when), PXMs de-
scribe how such an action is carried in the system. For exam-
ple, OpenMP’s programming model allows a programmer
to define a region of code as parallel but makes no explicit
mention of threads. However, OpenMP’s PXM specifies that
when a parallel region is encountered, a team of threads has
to be created and must also be destroyed when the end of
the region is reached. Here, we use an execution model di-
rectly derived from the Codelet model [11], where assisting
hardware provides large performance improvements over a
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Fig. 1: A simple kernel application adhering with the pro-
posed PXM and a possible mapping of threads on the PEs.

pure software implementation. The applications are divided
into a set of fine-grain threads, each totalling no more than a
few tens or hundreds of instructions. Fine-grain threads are
exploited in a way that allows maximising the utilisation of
the system.

Threads represent the quantum of execution: they ex-
change data with each other by resorting to an explicit
producer-consumer scheme. It allows the construction of
a data-flow graph (DFG) at compile time, which explicitly
shows data dependencies among threads. Each thread holds
a local storage space (frame) used to receive input data from
producer threads, as well as to write intermediate results.
It also contains a scheduling slot (SS) counting the number
of inputs still required for the execution. A thread context
contains the frame data and a unique thread identifier. To
preserve locality and allow for better latency hiding, threads
are grouped into asynchronous functions (AFs). Similarly,
DELTA provides a mechanism for dynamically grouping
processing elements to form virtual nodes (VNs) as part
of the hashing mechanism, so that threads within an AF
are forced to be executed on the same virtual node. With
the aim of exposing these characteristics at the program-
ming level, DELTA extends the processing element ISA
with a reduced set of dedicated instructions (eventually
wrapped by high-level programming language functions,
e.g., C/C++). In particular, CreateThread and CreateAF
allow respectively to schedule a new thread and a new
asynchronous function (i.e., a new thread spawned outside
the VN). ReadData reads data from a local frame, while
WriteData writes a new data on a consumer thread frame;
DecreaseSS decrements the scheduling slot of a consumer
thread, while DeleteThread removes the context of a
thread that completed the execution. Finally, SetVN and
ConfigRouter allow respectively to set the size and to
configure virtual nodes. With the aim of further optimising
the execution, the compiler can aggregate multiple writes
(e.g., dealing with large loops) and use a single DecreaseSS
signalling operation to update the corresponding SS field.

Every time a new thread is spawned, a processing ele-
ment (PE) within the current virtual node is automatically
selected and signalled. Similarly, every time a thread creates
a new AF, the destination PE is selected within the whole
chip. Hence, the creation of a new AF is led back to the
scheduling of the root thread of the DFG contained in
the AF. Figure 1 shows an example of a simple kernel
application consisting of 4 asynchronous functions, each
with its DFG. Both asynchronous functions and threads are
directly managed by the compiler, which is responsible for
mapping high-level programming constructs (e.g., #pragma
omp for when using OpenMP) with the correct sequence
of CreateAF and CreateThread instructions. Figure 1
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Fig. 2: DELTA chip organization: tiles contain a processing
element (white box) and a ring-based router (gray box). The
scratchpad substitutes the traditional L1-data cache.

also shows that AF scheduling requests and write opera-
tions remain well confined on the local VN. By monitoring
the scheduling slots, the hardware unit automatically fires
threads became runnable, without the need of executing
an explicit instruction. On the contrary, the execution com-
pletion is signalled by the DeleteThread instruction that
allows freeing resources held by the thread.

3 DELTA ARCHITECTURE

Figure 2 shows the whole DELTA chip organisation: a
dedicated 2D-mesh Network-on-Chip, implemented with
lightweight ring-based routers [10] (such kind of routers
allows implementing a physical 2D-mesh topology on top
of four unidirectional rings), connects a large group of
tiles covering the entire chip area. Each tile contains a PE
coupled with a lightweight router. Routers are augmented
with our fine-grain thread hardware support: a local unit
called Thread Dispatcher (TD) manages the threads during
their lifetime. In particular, it allocates internal space for
storing thread contexts every time new threads are created,
removes previously allocated resources whenever threads
complete, reads from (respectively writes to) associated
frames. We assume that only one thread at a time can be
executed in each PE, although our approach can benefit
from the implementation of a form of local simultaneous
multi-threading.

Chang et al. already showed how to apply a dynamic
hashing mechanism to distribute the workload in a peer-
to-peer system [2]. Here, we propose to apply hashing for
thread allocation in a hardware system (in a much more
constrained environment). On the one hand, the hashing
mechanism must avoid the creation of hot-spots in the
chip (i.e., areas of the chip particularly stressed). In fact,
an imbalance in the load distribution quickly and signif-
icantly increases the power and temperature of the more
stressed portion of the chip, thus contributing to decrease
the overall reliability (e.g., device ageing is accelerated).
Load imbalance can also create congestion in the network
since some of the links drive more traffic than others. On
the other hand, the hashing mechanism used to distribute
the threads must guarantee locality of computations. To
this end, our hashing scheme allows to place a group of
dependent threads (asynchronous function) on the same
group of PEs (virtual node), while still preserving a fair
thread distribution within the VN by selecting PEs in a
random fashion. Similarly, the hashing scheme allows to
randomly schedule asynchronous functions on different
VNs across the whole chip. It is worth to note that choosing
PEs that minimise the communication distance between
producer and consumer threads in a reasonable amount
of clock cycles is not a trivial problem. In fact, our PXM
implies more than one producer can generate input data for
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Fig. 3: Thread Dispatcher module organization (left) with
the internal structure of the H(·) function (right).

a single consumer, as well as producers can be scheduled
and executed at different points in time.

Each thread in the system is identified by a unique thread
identifier (Tid) over the whole application execution. It is
composed of three main fields: the source field, the destination
field, and a local counter (CNT). The source and destination
fields are in turn formed by two sub-fields representing the
core identifier of the PE (Cid), and the virtual node identifier
(Nid). While the content of the source field is fixed for
each tile (once the number of cores in each VN has been
selected), the content of the destination field is produced
at run-time by the hashing function H(·). These fields
allow the system to generate unique identifiers that are
conveniently stored in a 64-bits register. The organization
of the Tid is illustrated in figure 3. By passing to the H(·)
module both the size of VNs (Npe) and the indication of
the executed instruction – Iex (i.e., the CreateThread or
the CreateAF instruction), it uniquely identifies the PE
responsible for the execution of the newly generated thread
(i.e., 〈Nid, Cid〉dst = H(Npe, Iex)). Once selected, the PE is
signalled by sending a message over the network. Since the
destination is encoded in the Tid, any subsequent operation
on the thread can easily be forwarded to its corresponding
PE, without any further calculation. This contributes to the
speedup of the system.

Threads are managed through a data structure called
Thread Descriptor Table (TDT) that is organised in two fixed-
size local memory arrays (their total area is comparable with
that of an L1 data cache). Input and intermediate data are
stored in the scratchpad memory. Every time the context of a
thread is updated, the Tid is used as a search key within the
CAM. In case of a match, the returned base address of the
frame Fb is added to an offset Fo to determine the location
access (i.e., l = Fb+Fo). Finally, a priority encoder selects the
thread with the lowest Tid among those runnable (SS = 0
– see figure 3). Every time the selected PE is devoid of free
resources, it can access to a larger but slower memory area
called Thread Storage, implemented as a 3D-stacked DRAM
layer. It is organised in banks (one for each PE) representing
a larger TDT structure. When a PE receives a new thread, it
first selects the entry in the local TDT and compares the SS
value of the new thread and the one currently stored. The
thread with the highest SS will be swapped on the DRAM
memory bank.

4 HASH SCHEDULING FUNCTION

The purpose of the hash scheduling function H(·) is to map
new threads to PEs for their efficient execution. In our case,

the hardware module assigns to the newly created thread
the tuple 〈Nid, Cid〉dst depending on the VN size and the
executed instruction. To be effective, the scheduling func-
tion H(·) has to distribute CreateAF and CreateThread
requests among the available resources fairly. The effective-
ness of the hashing function derives from the ability to
limit the number of times two distinct input values result
in the same output value for the hashing. In our distributed
scheduling scheme, this translates in avoiding different PEs
selecting the same destination, given two different Tid. In
that case, the PEs’ load (i.e., the number of threads to
execute) is balanced, thus avoiding the formation of hot-
spots and increasing the overall system reliability. A good
hash functions must provide determinism, meaning that for
the same set of input keys it has to provide the same
set of hash values. More important, hash functions must
exhibit uniformity: given a set of n input keys and m output
buckets, each bucket shows a load λ = n

m
. It directly

translates in the same likelihood for each output bucket to
be selected, thus limiting the number of collisions. Finally,
since we are not considering cryptographic applications, it
is not strictly required that the function be non-invertible,
while it is more desirable to keep hardware implementation
efficient in terms of area and power consumption. We
found that the following scheme provides very good results
while maintaining a low area overhead and preserving
the capability of dynamically changing the size of VNs.
Another important aspect of our scheme is that it works in
a completely distributed fashion, meaning that a single point
of failure is not present, as desired in a system equipped with
thousands of PEs possibly.

4.1 Hardware implementation

The H(·) module contains a set of maximum-length linear-
feedback shift registers (LFSRs), each providing a pseudo-
random sequence with a different length Lrnd. Let n be
the number of bits composing the LFSR, the length of the
sequence is given by Lrnd = 2n − 1, i.e., the register cycles
through all the 2n configurations except for the configura-
tion containing all zeros. The structure of the LFSR is thus
modified, in such way all the 2n configurations can be gen-
erated. The use of LFSRs allows the H(·) module to select
every time a different PE in a round-robin fashion (although
it is a random sequence). Compared to simple counters,
LFSRs guarantee a homogeneous spatial distribution of the
threads among the PEs in a VN over time. Indeed, since
the LFSRs are initialised with a different seed the generated
sequences are different. This preserves the chip from the
emergence of local hot-spots and contributes to reducing
pressure on the NoC links, hence reducing link contention
and thus improving performance. Depending on the exe-
cuted instruction (CreateThread or CreateAF), LFSRs are
used to generate the destination Cid or both the Cid and
Nid. In the case of the CreateThread, the destination VN
is the same of the PE spawning the new thread. The H(·)
module computes the destination PE for different VN sizes
in parallel; while the selection of the actual one depends on
the effective VN size, and it is performed by a multiplexer.
For instance, a VN containing 64 PEs requires an LFSR
6-bits long. The executed instruction also controls which
tuple (i.e., the one formed by both the newly generated
Cid and Nid, or the one formed by only newly generated
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Fig. 4: Hash function performance: distribution of thread
creation requests (green line), and distribution of threads
on the PEs (blue line).

Cid) to copy in the destination field of the Tid through a
second multiplexer. This mechanism is shown in figure 3
(right side). Note our scheme guarantees the locality of
computations: threads belonging to the same asynchronous
function are kept close to each other since they are executed
on PEs placed closely in the chip, albeit randomly selected
(see also figure 1). At the same time, asynchronous functions
are homogeneously distributed among the VNs. Finally, to
deal with space limitation for thread management, each tile
can eventually reschedule a thread on a different PE for a
limited number of time.

5 EVALUATION

We evaluated the DELTA architecture regarding scalability
and power consumption, as well as we evaluated the capa-
bility of the hashing function of well-distributing input re-
quests. The simulated manycore design comprises up to 256
PEs implementing a 5-stage RISC-V compliant in-order ex-
ecution pipeline (16 KiB I-cache + 16 KiB scratchpad mem-
ory), supporting our proposed instruction set extension, and
integrating a 2-stage lightweight router [10]. We generated
network traces using an in-house simulator and monitoring
the set of requests send to the TD units. We performed
the scalability and power consumption measurements im-
plementing the NoC infrastructure on an Altera Stratix III-
based device. Figure 4 shows the performance provided
by the proposed hashing function implementation. The
purpose of this experiment is to show how a huge number
of input keys for the H(·) module (e.g., thread scheduling re-
quests) would be distributed among the PEs. To that end, we
simulated a random traffic pattern in the NoC by allowing
each tile to randomly injecting a schedule request (injection
rate was 1.0) towards a randomly selected VN and PE. This
kind of pattern is more effective in showing the capability of
the hashing mechanism since the traffic cannot be predicted.
As discussed in Sec. 4, an effective hashing scheme must
provide a uniform distribution of the hash values. Looking
at figure 4, the green line represents the initial distribution
among the PEs of the CreateThread requests, while the
blue line shows the effective distribution of threads as
they have been scheduled by the H(·) modules. The high
fairness in the assignment of the threads to different PEs
greatly contribute to the high overall performance of the
network, and it is confirmed by the χ2– test. To this end,
we considered a system with 100 degrees of freedom (i.e.,
a system equipped with 101 nodes), a total number of
more than 5.0 · 104 thread requests (i.e., input keys), and

an error between observed and expected distribution of
1.0% (i.e., p-value equals to 0.010). Running the test, we
obtained χ2 = 10.838 that is lower than expected threshold
of 135.8 for a system with n = 100 degrees of freedom. Such
value confirm that the proposed distribution mechanism
provides a strong uniformity of the hash values, thus low-
ering the collision likelihood. Similar results (not showed
for space limitations) have been obtained simulating the
traffic pattern generated by a block matrix multiplication
kernel. Compared to other (cryptographic) schemes, e.g., the
S-box, our solution provides good uniformity in an area
efficient module capable of performing hash value compu-
tations in less clock cycles. The same traffic patterns have
also been used to assess the NoC throughput and power
consumption. Irrespective of the growing of the number of
PEs in the system, the throughput grows almost linearly,
while power consumption is relatively low if compared with
an implementation based on traditional crossbar switch
routers. In general, the area and power consumption for the
scheduling logic remain very low, while that of the TDT is
in line with that of an L1-data cache (it is worth noting the
scratchpad substitutes the L1 D-cache, and represents the
main data-exchange point between routers and PEs).

6 CONCLUSION AND FUTURE WORK

The proposed DELTA architecture supports a higher degree
of thread parallelism by extending the structure of NoC
routers in such way that they can fairly distribute threads
among all the computing resources, through an effective
hardware hash scheduling mechanism. Preliminary simula-
tions confirm the capability of our design to effectively scale
with the increasing amount of PEs. Future investigations
will focus on the detailed analysis of the DELTA architecture
by porting complex applications to our PXM.
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