
Codelet Scheduling by Genetic Algorithm
Songwen Pei, Jinkai Wang,
Wenyang Cui, Linhua Jiang

Shanghai Key Lab of Modern Optical
Systems

University of Shanghai for Science and
Technology, Shanghai 200093, China

E-mail: swpei@usst.edu.cn

Tongsheng Geng, Jean-Luc Gaudiot

Parallel Systems and Computer
Architecture Lab

University of California
Irvine, CA 92697, USA

Email: {tgeng, gaudiot}@uci.edu

Stéphane Zuckerman

Computer Architecture & Parallel
Systems Laboratory

University of Delaware
140 Evans Hall Newark, DE 19716

Email: szuckerm@udel.edu

Abstract—Codelet model is a fine-grained, event-driven
hybrid parallel model inspired by dataflow, whose performance
depends on the scheduling policy. How to design optimal codelet
scheduling policy based on the features of tasks is important to
the codelet-based system performance. In this paper, we propose
an adaptive codelet scheduling policy by combing “pure” genetic
algorithm for tasks with complex dependencies. It is verified that
the policy is effective based on bunches of experimental results.

Keyword—dataflow, Codelet model, task scheduling, genetic
algorithm

I. INTRODUCTION
Dataflow model is a natural, data-driven parallel

execution model [1, 2], featured by good elasticity for
algorithm, strong scalability for program, and high
performance for machine. It attracts great attentions from
academia and industry, and is considered as an upgrading
scheme of traditional parallel computing models based on the
sequential von Neumann model, such as OpenMP [3] and
POSIX threading models [4]. The dataflow model offers a
simple solution to achieve high performance by isolating
execution and expressing exact producer-consumer relations.
However, the fine-grained executing way of dataflow model is
prone to poor temporal and spatial locality. It will occur to
extra overhead of computing and memory access, and will
consume much energy due to frequently data communication.
Then, a hybrid von Neumann/dataflow execution model [5, 6]
is emerging in the field of dataflow model. Codelet model is
one of the most important hybrid dataflow models [7, 8].

Suettlerlein et al. have developed the Codelet model,
which is a fine-grained, event-driven parallel execution model
based on the firing rules of dataflow [9]. In the codelet model,
codelet is a basic compute unit which contains a set of
machine instructions. Similar to a daflow actor, a codelet can
be fired once all its events (i.e. dependencies) have occurred.
The Codelet model uses Threaded Procedures (TPs) acted as
the container of codelets to make up for the poor locality of
dataflow model. Since the Codelet model inherits the
advantages of its ancestors, it is applicable to deal with high
performance parallel computing tasks in the field of big data.
Codelet-based runtime system [10-12] is a software system
designed to fill in the gap between the hardware and the
Codelet model. The primary mission of runtime system is
distributing and scheduling codelets. In this paper, we use

DARTS (Delaware Runtime System) [13] as the runtime
system implementation of the codelet model.

Scheduling policy determines the computing performance
of an application in the parallel system [14]. In order to
enhance the execution efficiency of the parallel tasks by
Codelet model, we propose a codelet scheduling policy named
as Genetic Policy (GP) mainly focus on task’s execution time.
GP is based on pure genetic algorithm (PGA) [15] which uses
a two-dimensional matrix to implement a schedule [16]. The
PGA is a heuristic method for finding an approximate optimal
schedule in the multiprocessor scheduling problem. While in
this paper, PGA is further improved in the generation of initial
population and the operation of genetic operators, and
combines with the Codelet model. Experiments will be in
form of simulation, using randomly generated directed acyclic
task graph to simulate the process of the task distribution and
scheduling in the Codelet model.

This paper is organized as follows. Section II provides the
necessary background including Codelet model, DARTS and
the genetic algorithm. Section III defines the scheduling
problem of the Codelet model. Section IV describes the
content and the structure of the algorithm. Section V and
section VI introduce the key steps of the algorithm in detail.
Section VII presents the experimental content and the
simulation results. Finally, section VIII summarizes the whole
article.

II. BACKGROUND

A. Codelet model
Codelet is a basic execution unit composed of a serial of

machine instructions. A task in the Codelet model can be
partitioned into many interconnected codelets[17]. Each
codelet is controlled by a synchronous dependency tracking
interface. A codelet becomes enable if all the events of the
codelet have been satisfied. Then, the codelet will be
distributed to a target processing unit according to scheduling
policy, and it will be executed until hardware resources are
available.

The codelets connect to each other by events, which forms
a codelet graph (CDG) similar to the dataflow graph (DFG)
[18, 19]. As the container of codelets, TP holds multiple
codelets and allocates space for shared data. The CDG shown

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.231

1493

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.231

1493

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.231

1493

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.231

1493

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.231

1492

2016 IEEE TrustCom-BigDataSE-ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom.2016.231

1492

in Fig. 1 can be seen as a directed acyclic graph (DAG) that
consists of codelets, events and tokens. Codelets in the graph
are linked together based on their data dependencies.

Threaded ProcedureS

A CB

E

D

Codelet

Event

Token

Fig. 1. A codelet graph (CDG)

B. DARTS runtime
The DARTS runtime is an implementation of the codelet

execution model. The main functions of the DARTS runtime
are allocating hardware resources, loading and executing the
codelets based on the input of system configuration.
Schedulers are the most vital components of the DARTS
runtime, responsible for scheduling codelets and TPs,
signaling events to the specified codelet and firing it. As
shown in Fig. 2, each core in the system has a scheduler
(hyper-threaded cores may have more than one)[13].
Moreover, schedulers in a cluster can be divided into threaded
procedure scheduler (TPS) and codelet scheduler (CDS). TPS
is mainly responsible for loading balance of TPs and codelets,
and executing codelets in spare time. Each TPS contains two
pools, namely TP Pool (TPP) and Ready Pool (RP), used to
store TPs and enabled codelets separately. CDS acts as a
computing unit, responsible for performing the enabled
codelet code. Each CDS contains a RP for storing enabled
codelets. In general, a cluster consists of a TPS and several
CDS, and the communication between different clusters is
performed by TPS. This paper only considers the codelet
scheduling in a single cluster.

TPP RPcore0

TP
Scheduler

...

RPcore2

CD
Scheduler

...

RPcore3

CD
Scheduler

...

RPcore1

CD
Scheduler

...
...

Cluster

Fig. 2. Abstract machine model [13]

The mechanism of carrying out a task in the Codelet model
is based on the scheduling policy. DARTS implements three
main policies including static, dynamic and work stealing [13].
Default static policy distributes enabled codelets to each
scheduler successively with round robin. However, the static
policy can set the codelet metadata by programmer to specify
which scheduler executes the codelet. Dynamic policy puts all
the enabled codelets into the RP of the TPS, and the
schedulers in free time take codelets from the TPS
independently. Steal policy is similar to dynamic policy. All
scheduler with steal policy in a cluster share the enabled
codelets, while the difference is that the idle schedulers
attempt to steal a codelet from other schedulers randomly,
rather than to acquire work from the TPS uniformly in the
style of dynamic policy. And these three scheduling policies
are as experimental comparisons in the Section VIII.

C. Genetic Algorithm
Genetic algorithm (GA) is a search technique used in

computing to find true or approximate solutions to
optimization and search problems [20]. GA can find the
optimal solution from the solution space quickly owing to its
good global search ability, and provide a simple but effective
solution to solve complex problems that traditional
mathematics are difficult to solve, especially for the
optimization problem of task allocating and scheduling [21].

Hou et al. [15] realized the task scheduling by PGA. PGA
is an efficient method solving the problem of multiprocessors,
and is also appropriate to the codelet scheduling for its
intuitive representation of the search node and the simple
genetic operators based on the task graph. This paper presents
a novel codelet scheduling policy GP, upon the improved
PGA.

III. MODEL AND DEFINITION
Since the Codelet model is expressed by CDG, a task

executed by the model can be regarded as a set of
interconnected codelets [22]. In DARTS, enabled codelets are
stored in the RPs of schedulers in the form of queues, so
codelets in a CDG can be distributed and scheduled into
several queues. Each queue of a scheduler presents the
execution order of codelets. To cope with the problems of
codelet schedule, we will give the flowing definitions:

(1) G is a CDG that can be expressed by G = <V, E, Rt, d,
id>, where are:

a) V represents the set of nodes, V = {v0, v1, …, vn-1},
where n is the number of nodes. A node in the CDG represents
a codelet;

b) E represents the set of directed dependencies among
nodes. <vi, vj> represents the dependency between node vi and
vj, which means node vi must be completed before vj can be
initiated;

c) Rt represents the runtime of a node. The time cost by
running the node vi can be written as Rt(vi);

d) d represents the depth of a node in the graph, which is
the largest number of edges from an entry node to node itself
[23]. The depth of the node vi can be defined as:

149414941494149414931493

d(vi) = � �� ����	
��
 �
���	����	
��� � �� ����, 0 <= d <= dmax,

where dmax is the depth of the final node and is also the same
as the maximum of all nodes’ depth. Depth is an important
parameter to generate the initial population and judge the
legitimacy of a schedule (See Section VI).

e) id represents the metadata of a node, corresponding to
the id of the scheduler which stores the codelet in the cluster.

As shown in Fig. 3 (a), a task containing multiple subtasks
is expressed as a CDG containing the same number of nodes.
Each node has its private information including runtime, depth
and metadata. The arrows represent the dependencies among
the nodes, and indicate the fire method of codelets. For
example, the node v6 will be enabled only if all its precursor
nodes v3, v4 and v5 have been fired.

(2) S is a codelet schedule (e.g. a solution in GA) of a
CDG and can be represented by S = <C, Q>, where are:

a) C represents the set of schedulers, C = {c0, c1, …, cm-1},
where m is the number of schedulers in the cluster;

b) Q represents the set of codelet queues, Q = {q0,
q1, …,qm-1} ;

c) qi represents the execution ordering of the codelets in
scheduler ci, qi = { vi0, vi1, …, vi(k-1) }, where k is the length of
queue qi;

d) A schedule can be converted into a two-dimensional
structure that each schedule has serval queues and each queue
contains a number of codelets.

V2

V0

V1

V3 V5V4

V6

(3,0)

(5,1)(2,1)

(2,2)(4,2) (1,2)

(3,3)

(Rt,d)

V1 V3 V4 V6

V0 V2 V5

V2 V4 V5

V0 V1 V3 V6

 0 3 5 8 9 10 11 13 14

S1

S2

time

S1

S2

Q1

Q2

Q1

Q2

V0->V1->V3->V6

V2->V4->V5

V0->V2->V5

V1->V3->V4->V6

(a) (b)

(c)

Fig. 3. Codelet scheduling

Each scheduler executes codelets by the ordering of its
codelet queue. But this ordering may disturb the original
dependencies of the CDG and even cause the task can’t be
completed. For example, in Fig. 3 (a), the task couldn’t be
performed in the Codelet model if a scheduler executes
codelet queue {V0, V3, V1, V6} due to the mutual reverse
dependency between node V1 and V3. According to the basic
ideas from PGA[15], restricting the encoding scheme by depth
can produce valid codelet queue. So we define that a codelet

queue is legal when its codelets are sorted by ascending order
based on depth. Moreover, a schedule can be defined legally
as all its codelet queues are satisfied with the depth-ordering
condition.

As shown in Fig. 3 (b), there are two schedules S1 and S2,
each of which has two codelet queues indicating the execution
ordering of codelets. Schedule S1 can be expressed as {{V0,
V1, V3, V6}, {V2, V4, V5}}, while schedule S2 can be
expressed as {{V0, V2, V5}, {V1, V3, V4, V6}}. These two
schedules are both legal because their codelets’ depth in each
codelet queue increases gradually.

(3) T(x) is the finishing time that all codelets in schedule x
have been ran, and Tx(qi) is the total time spent on executing
all codelets in codelet queue qi. There are T(x) = MAX(Tx(qi)),
�i (0 i m-1). The finishing time of schedule S1 and S2
are shown in Fig. 3 (c) as T(S1) = 14, T(S2) = 13.

The goal of the codelet scheduling is to find an optimal
schedule that makes codelets execute parallel in multiple
schedulers in terms of the established order to minimize the
task execution time.

IV. ALGORITHM FRAMEWORK
Genetic algorithm based on task scheduling should have

three principal elements, namely fitness function, population
initialization, and evolution method.

We elect the finishing time of the task performed in the
Codelet model as the metric to measure the quality of a
schedule. The finishing time is also the parameter used for
calculating the fitness value.

According to the representation of the schedule expressed
in section III, several random generated queues contained the
codelets arrayed in ascending order of their depth make up an
initial solution (e.g. a codelet schedule). Furthermore, a
specific number of initial solutions make up the initial
population of the GA .The optimal solution is evolved from
the initial population by genetic operators.

The genetic operators in the evolution method are selection,
crossover and mutation. In an iteration of the GA, parent
solutions perform several genetic operators to generate child
solutions. After number of evolutions, the final optimal
solution will be obtained until the convergent criterion of the
algorithm is met.

Fig. 4 shows the structure of the algorithm, and all specific
steps are as follows:

(1) Convert a task into a CDG and identify the depth of
each codelet;

(2) Generate the initial population POP(t), t = 0, where t is
the number of evolutional generation (e.g. the number of
iterations);

(3) Compute the fitness value of each solution in the initial
population;

(4) Do steps (5)-(9) until the algorithm is convergent;

(5) Select parent solutions by the roulette wheel;

149514951495149514941494

(6) Perform external and internal crossover with
probability Pe and 1-Pic respectively, and the sum of Pec and Pic
is equal to 1;

(7) Perform mutation with probability Pm;

(8) Retain the optimal solution in the old population by the
elite strategy;

(9) Generate a new population as POP(t), t = t + 1;

(10) Output the approximate optimal solution whose
fitness value is the highest in the last generated population.

V. FITNESS FUNCTION
Fitness function is the evolutionary motivation of the GA

and is used to select the superior solutions and eliminating the
inferior ones. The structure of the fitness function not only
determines whether the optimal solution generates
successfully, but also affects the convergence speed of the
algorithm.

The fitness value calculated by the fitness function is the
principal index of a solution, and is used in the generation of
the initial population and the control of the genetic operators.
The fitness value must be a non-negative number. The larger
the fitness value is, the better the solution will be.

Crossover

Mutation

Generate a new population

Select child solution

Output the optimal solution

Y

N

End

Start

Input a CDG

Initialize population

Compute the fitness value

Convergent

Select parent solution

Fig. 4. Algorithm framework

For the problem of the codelet scheduling, there are many
factors such as finishing time, throughout, locality and energy
efficiency that should be considered as the parameters of the

fitness function. In this paper, the fitness function is based on
the finishing time of a schedule. The definition of the finishing
time is presented in the section III. Since the finishing time of
the optimal schedule should be the minimum, we define the
fitness value1 as follows:

F(x) = c - T(x),

where c is a large enough constant, and T(x) is the finishing
time of schedule x. c is defined as the sum of all codelets’
runtime, e.g. c =�� ��	
�������� . The finishing time T(x) of
optimal schedule is smaller than that of other schedules.
Therefore, the fitness value of the optimal schedule is the
largest of all schedules.

As shown in the Fig. 3, the finishing time of schedule S1 is
14, and the constant c is 20. As a result, the fitness value of
schedule S1 is 6.

VI. INITIAL POPULATION
Because the Codelet model is a parallel model, distributing

codelets to schedulers in a cluster evenly can reduce the task
execution time. Moreover, limited by the dependencies among
the codelets, all the codelet queues in the initial solution
should be proved legal. In order to deal with the distributing
problem of the codelets, we will give the following definitions
as follows:

(1) m is the number of schedulers;

(2) n(i) is the number of codelets where their depth are i,
then all the codelets in the CDG are partitioned into dmax +1
subsets;

(3) min(i) is the minimum number of codelets where their
depth are i, and they are assigned to a scheduler, min(i) = n(i)
/ m!;

(4) Every scheduler assigns [min(i), min(i)+1] codelets
whose depth are i, and the total number of all schedulers’
codelets whose depth are i is equal to n(i);

(5) Every codelet appears only once in a schedule.

The method of generating the initial solution is putting the
codelets of each subset to m schedulers uniformly, and then
sorting the codelets in each codelet queue in ascending order
by their depth. For generating a native legal schedule, codelets
are assigned to codelet queues successively with the growth of
the depth.

Furthermore, the quality of the initial population
determines the convergence rate of the genetic algorithm.
Thus, we select M excellent solutions from N (M < N)
generated solutions according to the fitness value as the initial
population, to increase the solving speed and prevent
premature convergence.

Accordingly, the process of generating the initial
population has the flowing steps:

(1) Take the start codelet to a random scheduler, and set
depth i as i whose initial value is 1;

(2) Do steps (3)-(5) until i is equal to dmax;

(3) Count the number of codelets whose depth are i, and

149614961496149614951495

compute the value of min(i);

(4) Distribute min(i) codelets whose depth are i to each
scheduler randomly;

(5) Put remain codelets to schedulers randomly that make
the number of distributed codelets in each scheduler no more
than min(i)+1, i = i+1;

(6) Do steps (1)-(5) until N initial solutions are generated;

(7) Compute the fitness value of N initial solutions

(8) Pick M solutions with higher fitness value from N
initial solutions as the initial population.

VII. GENETIC OPERATOR
In GA, the evolution of population is performed by a serial

of genetic operators including selection, crossover and
mutation. The task of these genetic operators is performing
certain operations for solutions of a population by evaluating
the fitness value, so as to realize the evolutionary process and
generate better solutions. From the viewpoint of optimization
search, genetic operators can make the solutions of the
scheduling problem optimize continually.

A. Select Operator
Selection mechanism is available to keep excellent

solutions and eliminate inferior ones by fitness value on every
iteration[24]. We adopt the biased roulette wheel to implement
the operation of selection, that is, parent solution is picked
with the probability proportional to its fitness value. However,
the roulette wheel method may cause statistical error because
of its random choices. So we use the elite strategy as the
retention mechanism to ensure the fitness value of the optimal
solution monotonically increases. The key thought of the elite
strategy is to keep the most excellent solution in the old
population to the next generation. And the specific operations
are as follows:

(1) The roulette wheel: firstly, compute the fitness value of
each solution from the old population, and set the sum of all
the fitness value as SUM; then calculate the ratio of each
solution’s fitness value and SUM as the select probability of
the solution; finally, select a certain number of solutions
according to the probability as the objects of the next operator.

(2) The elite strategy: firstly, retain the best solution with
the highest fitness value in the old population, and this
solution is denoted by B(t), where B(t) = Best(POP(t)); then
find the worst solution with the lowest fitness value in the new
population, and set this solution as W(t+1), where W(t+1) =
Worst(POP(t+1)); finally, replace W(t+1) with B(t).

B. Crossover Operator
 Crossover can generate new solutions directly to expand

the search field, so it is the most important operator in the GA.
The process of the crossover operator is that exchange the
portions of two selected parent individuals (schedule or
codelet queue) to form two new child individuals. The
crossover operator in this algorithm has two steps, namely
selection of the crossover point and exchange operation.

Limited by the complex dependencies among codelets,

traditional selection mechanism of the crossover point may
generate an illegal individual. Therefore, the crossover point
whose depth is d’ which needs to meet the following two
conditions:

(1) The depth of the codelets next to the crossover point
are different from d’;

(2) The depth of the codelets in front of the crossover point
should not be larger than d’.

V0 V1 V3 V6

V0 V2 V5

V2 V4

V5

V1 V3

V4 V6

depth

S1

Q1

Q2

S2

Q1

Q2

 0 1 2 3

two-point
external

crossover

Fig. 5. External crossover (d’1 = 0, d’2 = 2)

To further expand the search field of the GA, we adopt an
improved hybrid exchange operation instead of the simple
one-point (e.g. one crossover point) exchange operation [24].
Two random crossover points are used in this exchange
operation, and whether their depth are same or not determines
which exchange method will be executed. The operands of the
exchange operation are two parent individuals in the old
population. The details of the hybrid exchange operation are:

(1) If the depths of the two random crossover points are
the same, perform one-point exchange operation that each
operation individual has only one crossover point:

(a) Cut each operation individual into two parts by the
crossover point;

(b) Retain the top halves of the two individuals before the
crossover pointpoints;

(c) Exchange the bottom halves of the two individuals
after the crossover point.

(2) If the depth of the two random crossover points is
different, perform two-point exchange operation that each
individual has two crossover points:

 (a) Cut the each operation individual into three parts by the
two different crossover points;

 (b) Exchange the middle parts of the two individuals
between the crossover points;

 (c) Retain the top and bottom parts of the two individuals
except of the middle parts.

 As shown in Fig. 6, schedule S1 performs the two-point
exchange operation because the depth of the two crossover
points is different. The operation individuals in this example

149714971497149714961496

are codelet queues. Accordingly, the exchange parts are
codelet V3 in codelet queue Q1 and codelet V4, V5 in codelet
queue Q2, while the other codelet of the two queues remain
unchanged. On the other hand, schedule S2 performs the
one-point exchange operation because of the same depth of
two crossover points. The exchange parts are codelet V5 in
codelet queue Q1 and codelet V3, V4, V6 in codelet queue
Q2.

Furthermore, crossover operator can be divided into
external crossover operator and internal crossover operator
based on the operands.

1) External Crossover Operator
The objects of the external operation are two parent

schedules, and the exchange portions are the parts of all
codelet queues in two schedules. The algorithm is shown in
Algorithm 1:

Algorithm 1: External Crossover

Input: Old population old_pop

Output: Two new schedules in the new population new_pop

Data: dmax is the maximum depth of all codelets

 M is the size of population

Begin

EC1. [Select crossover schedules.] Use the roulette wheel to
generate two different numbers, c1 and c2, between 0 and M,
as the indexes of old_pop (e.g. an array of schedules), and the
corresponding schedules are sch1 and sch2 respectively.

EC2. [Select crossover points.] Pick two random numbers d’1
and d’2 as the depth of crossover points, 0 <= d’1, d’2 <= dmax.

EC3. [Choose exchange operation.] If d’1 is equal to d’2, do
step EC4, else do step EC5.

EC4. [One-point exchange operation.] Perform the one-point
exchange operation that swaps the bottom halves of sch1 and
sch2 after the crossover points.

EC5. [Two-point exchange operation.] Perform the two-point
exchange operation that swaps the middle parts of sch1 and
sch2 between the crossover points.

End

As shown in Fig. 5, Schedule S1 and S2 execute the
two-point external crossover operation, and the two dotted
boxes contain parts of the codelet queues which are the
portions to be inter-exchanged between S1 and S2.

2) Internal Crossover Operator
The objects of the internal operation are two random

codelet queues in a schedule, and the exchange portions are
the sections of the two lists. The algorithm is shown in
Algorithm 2:

Algorithm 2: Internal Crossover

Input: Old population old_pop

Output: A new schedule in the new population new_pop

Data: dmax is the maximum depth of all codelets

 m is the number of schedulers

 M is the size of population

Begin

IC1. [Select operation schedule.] Use the roulette wheel to
generate a random numbers, c, between 0 and M, as the
selected index of old_pop, and the corresponding schedule is
sch.

IC2. [Select crossover queues.] Randomly generate two
different numbers c1 and c2, between 0 and m, as the selected
indexes of schedule sch (e.g. an array of codelet queues), and
the corresponding queues are que1 and que2 respectively.

IC3. [Select crossover points.] Pick two random numbers d’1
and d’2 as the depth of crossover points, 0 <= d’1, d’2 <= dmax.

IC4. [Choose exchange operation.] If d’1 is equal to d’2, do
step EC4, else do step EC5.

IC5. [One-point exchange operation.] Perform the one-point
exchange operation that swaps the bottom halves of que1 and
que2 after the crossover points.

IC6. [Two-point exchange operation.] Perform the two-point
exchange operation that swaps the middle parts of que1 and
que2 between the crossover points.

End

V0 V1 V3 V6

V0 V2 V5

V2 V4

V5

V1 V3

V4 V6

depth

S1

Q1

Q2

S2

Q1

Q2

 0 1 2 3

two-point
internal

crossover

one-point
internal

crossover

Fig. 6. Internal crossover (d’1 = 0, d’2 = 2 in S1; d’1 = d’2 = 1 in S2)

Fig. 6 shows two types of internal crossover operation.
Schedule S1 executes the one-point internal operation with the
upper two dotted boxes as its exchange portions. While
schedule S2 executes the two-point internal operation with the
lower two dotted boxes as its exchange portions.

C. Mutation Operator
Mutation is the assisted method used to maintain the

diversity of population and speed up the convergence rate of
the optimal solution. Mutation operator adopts traditional
exchange operation that swaps two codelets with same depth
in a schedule. In order to guarantee the dependencies of
codelets not to be destroyed, the exchange codelets must have

149814981498149814971497

same depth. The specific process is as follow:

(1) Pick a random number d’’, 0 < d’’ < dmax;

(2) Select two random different codelets where their depth
is d’’;

(3) Generate a new solution by exchanging the two
codelets.

 As shown in the Fig. 6, codelet V1 and V2 whose depth
are both 1 in schedule S1 can exchange each other when
performing mutation operation.

VIII. EXPERIMENTAL RESULTS
Executing a task in the Codelet model can be denoted by a

CDG. Thus, the experiment applies a randomly generated task
graph to simulate the process of codelets’ scheduling and
running by the DARTS. In this simulation, we compare the
genetic policy proposed in this paper with three scheduling
policies introduced in Section II, i.e. static, dynamic and steal
policy.

We use Intel Core i7-4720HQ (quad-core and eight-thread)
as the simulation platform. The number of nodes in a task
graph ranges from 100 to 1000. The out-degree of each node
is a random number between 1 and 10. And the runtime of
each node is a random number between 1 and 50. The
parameters used by the GA are as flow:

(1) population scale POP = 10;

(2) external crossover probability Pec = 0.2;

(3) internal crossover probability Pic = 0.8;

(4) mutation probability Pm = 0.05;

(5) maximal number of iterations MAX = 2000.

Table I through IV summarize the finishing time of the
random task graphs, with different number of codelets which
are executed by four scheduling policies such as static,
dynamic, steal and genetic on different multiprocessor
configurations. From Table I to the Table IV, we find that the
task execution efficiency of the genetic policy is superior to
the other three ones.

TABLE I. Comparison of 2 schedulers

Codelet
Number

Static
Policy

Dynamic
Policy

Steal
Policy

Genetic
Policy

100 2616 1415 2615 1378
200 5060 2630 5059 2595
400 10285 5253 10285 5216
600 15408 7841 15404 7790
800 20606 10484 20605 10432

TABLE II. Comparison of 4 schedulers

Codelet
Number

Static
Policy

Dynamic
Policy

Steal
Policy

Genetic
Policy

100 1098 844 1015 803
200 2045 1571 1928 1497
400 3810 2787 3566 2715
600 5718 4255 5409 4170
800 7427 5494 7010 5418

TABLE III. Comparison of 6 schedulers

Codelet
Number

Static
Policy

Dynamic
Policy

Steal
Policy

Genetic
Policy

100 861 755 791 712
200 1478 1260 1367 1212
400 2592 2121 2364 2047
600 3708 2979 3347 2914
800 4814 3868 4364 3809

TABLE IV. Comparison of 8 schedulers
Codelet
Number

Static
Policy

Dynamic
Policy

Steal
Policy

Genetic
Policy

100 767 692 717 656
200 1245 1118 1181 1065
400 2125 1829 1962 1771
600 2921 2447 2788 2369
800 3763 3132 3440 3056

Fig.7, Fig.8, and Fig.9 respectively show the speedup of
dynamic, static and steal policies with respect to genetic policy.
Fig.10 shows the finishing time of the task graphs that
contains 1024 codelets, and each task graph is executed on
different numbers of schedulers by four scheduling policies.

Fig. 7. Speedup (genetic vs. dynamic)

Fig. 8. Speedup (genetic vs. static)

Fig. 9. Speedup (genetic vs. steal)

1
1.01
1.02
1.03
1.04
1.05
1.06
1.07

2 4 6 8

Sp
ee

du
p

Scheduler Number

100 200 400 600 800

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

2 4 6 8

Sp
ee

du
p

Scheduler Number

100 200 400 600 800

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

2 4 6 8

Sp
ee

du
p

Scheduler Number

100 200 400 600 800

149914991499149914981498

Fig.10. Finish time of executing 1024 codeletsh

As shown in the Fig.7, the speedup of using genetic policy
generally increases as the number of scheduler increases. The
reason is that, with the increase of the cluster size, the pressure
and latency of queuing operations in dynamic policy increases.
By contrast, the speedup of the genetic policy compared with
the static policy (shown in Fig.8) and the steal policy (shown
in Fig.9) decrease as the number of the schedulers increases.
The reason is that the static and steal policy have strong
randomness to get codelet, which leads to long idle periods of
schedulers and poor execution efficiency of the system.
However, as the number of schedulers increases, each
scheduler will spend less time executing its codelet, and then
the total execution time of static and steal policies reduces
accordingly. Even so, the finishing time of the genetic policy
is still smaller than that of the other policies, which verifies
the feasibility and the effectiveness of the genetic policy.

IX. CONCLUSION
This paper focuses on scheduling policy of the Codelet

model. We propose a new codelet scheduling policy, based on
the standard genetic algorithm, which can reduce task
execution time effectively. Random task graph is employed in
the experiment to simulate the execution process of the tasks
with different policies in the Codelet model. Simulation
results show that the genetic policy introduced in this paper
can obtain better efficiency than the other three scheduling
policies in the DARTS, and thereby possesses strong
superiority to deal with the problem of codelet scheduling.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their invaluable
comments. This work was partially funded by the Shanghai
Municipal Natural Science Foundation (15ZR1428600),
Shanghai Pujiang Program (16PJ1407600), the program for
Professor of Special Appointment (Eastern Scholar) at
Shanghai Institutions of Higher Learning, USST incubation
project (15HJPY-MS02), and the National Science Foundation
of United States (CCF-1065448, XPS-1439097).

REFERENCE
[1] Dennis J B. First version of a data flow procedure

language[C]//Programming Symposium. Springer Berlin Heidelberg,
1974: 362-376.

[2] Dennis J B. Data flow computer architecture[M]. Springer US, 2011.
[3] Dagum L, Enon R. OpenMP: an industry standard API for shared-memory

programming[J]. Computational Science & Engineering, IEEE, 1998,

5(1): 46-55.
[4] Butenhof D R. Programming with POSIX threads[M]. Addison-Wesley

Professional, 1997.
[5] Yazdanpanah F, Alvarez-Martinez C, Jimenez-Gonzalez D, et al. Hybrid

dataflow/von-Neumann architectures[J]. Parallel and Distributed
Systems, IEEE Transactions on, 2014, 25(6): 1489-1509.

[6] Grafe V G, Hoch J E, Davidson G S. Eps' 88: Combining the best features
of von Neumann and dataflow computing[R]. Sandia National Labs.,
Albuquerque, NM (USA), 1989.

[7] Giorgi R, Badia R M, Bodin F, et al. TERAFLUX: Harnessing dataflow in
next generation teradevices[J]. Microprocessors and Microsystems, 2014,
38(8): 976-990.

[8] Zuckerman S, Suetterlein J, Knauerhase R, et al. Using a codelet program
execution model for exascale machines: position paper[C]//Proceedings
of the 1st International Workshop on Adaptive Self-Tuning Computing
Systems for the Exaflop Era. ACM, 2011: 64-69.

[9] Suettlerlein J, Zuckerman S, Gao G R. An implementation of the Codelet
model[M]//Euro-Par 2013 Parallel Processing. Springer Berlin
Heidelberg, 2013: 633-644.

[10] Dennis J B. Fresh Breeze: a multiprocessor chip architecture guided by
modular programming principles[J]. ACM SIGARCH Computer
Architecture News, 2003, 31(1): 7-15.

[11] Gautier T, Besseron X, Pigeon L. Kaapi: A thread scheduling runtime
system for data flow computations on cluster of
multi-processors[C]//Proceedings of the 2007 international workshop on
Parallel symbolic computation. ACM, 2007: 15-23.

[12] Lauderdale C, Khan R. Towards a codelet-based runtime for exascale
computing: position paper[C]//Proceedings of the 2nd International
Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop
Era. ACM, 2012: 21-26.

[13] Suetterlein J. DARTS: a runtime based on the Codelet execution
model[D]. University of Delaware, 2014.

[14] Nguyen T D, Vaswani R, Zahorjan J. Parallel application characterization
for multiprocessor scheduling policy design[C]//Job Scheduling
Strategies for Parallel Processing. Springer Berlin Heidelberg, 1996:
175-199.

[15] Hou E S H, Ansari N, Ren H. A genetic algorithm for multiprocessor
scheduling[J]. Parallel and Distributed Systems, IEEE Transactions on,
1994, 5(2): 113-120.

[16] Corrêa R C, Ferreira A, Rebreyend P. Scheduling multiprocessor tasks
with genetic algorithms[J]. IEEE Transactions on Parallel and
Distributed systems, 1999, 10(8): 825-837.

[17] Benten M S T, Sait S M. Genetic scheduling of task graphs[J].
International Journal of Electronics, 1994, 77(4): 401-415.

[18] Davis A L, Keller R M. Data flow program graphs[J]. 1982.
[19] Purna K M G, Bhatia D. Temporal partitioning and scheduling data flow

graphs for reconfigurable computers[J]. Computers, IEEE Transactions
on, 1999, 48(6): 579-590.

[20] Tang K S, Man K F, Kwong S, et al. Genetic algorithms and their
applications[J]. Signal Processing Magazine, IEEE, 1996, 13(6): 22-37.

[21] Goldberg D E. Genetic algorithms in search optimization and machine
learning[M]. Reading Menlo Park: Addison-wesley, 1989.

[22] Sarkar V. Partitioning and scheduling parallel programs for execution on
multiprocessors[R]. Stanford Univ., CA (USA), 1987.

[23] Kwok Y K, Ahmad I. Static scheduling algorithms for allocating directed
task graphs to multiprocessors[J]. ACM Computing Surveys (CSUR),
1999, 31(4): 406-471.

[24] Potts J C, Giddens T D, Yadav S B. The development and evaluation of
an improved genetic algorithm based on migration and artificial
selection[J]. Systems, Man and Cybernetics, IEEE Transactions on, 1994,
24(1): 73-86.

0
3000
6000
9000

12000
15000
18000
21000
24000
27000

2 4 6 8

Fi
ni

sh
in

g
T

im
e(

m
s)

Scheduler Number

Static Dynamic Steal Genitic

150015001500150014991499

