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Abstract—Codelet model is a fine-grained, event-driven 
hybrid parallel model inspired by dataflow, whose performance 
depends on the scheduling policy. How to design optimal codelet 
scheduling policy based on the features of tasks is important to 
the codelet-based system performance. In this paper, we propose 
an adaptive codelet scheduling policy by combing “pure” genetic 
algorithm for tasks with complex dependencies. It is verified that 
the policy is effective based on bunches of experimental results. 

Keyword—dataflow, Codelet model, task scheduling, genetic 
algorithm 

I. INTRODUCTION 
Dataflow model is a natural, data-driven parallel 

execution model [1, 2], featured by good elasticity for 
algorithm, strong scalability for program, and high 
performance for machine. It attracts great attentions from 
academia and industry, and is considered as an upgrading 
scheme of traditional parallel computing models based on the 
sequential von Neumann model, such as OpenMP [3] and 
POSIX threading models [4]. The dataflow model offers a 
simple solution to achieve high performance by isolating 
execution and expressing exact producer-consumer relations. 
However, the fine-grained executing way of dataflow model is 
prone to poor temporal and spatial locality. It will occur to 
extra overhead of computing and memory access, and will 
consume much energy due to frequently data communication. 
Then, a hybrid von Neumann/dataflow execution model [5, 6] 
is emerging in the field of dataflow model. Codelet model is 
one of the most important hybrid dataflow models [7, 8]. 

Suettlerlein et al. have developed the Codelet model, 
which is a fine-grained, event-driven parallel execution model 
based on the firing rules of dataflow [9]. In the codelet model, 
codelet is a basic compute unit which contains a set of 
machine instructions. Similar to a daflow actor, a codelet can 
be fired once all its events (i.e. dependencies) have occurred. 
The Codelet model uses Threaded Procedures (TPs) acted as 
the container of codelets to make up for the poor locality of 
dataflow model. Since the Codelet model inherits the 
advantages of its ancestors, it is applicable to deal with high 
performance parallel computing tasks in the field of big data. 
Codelet-based runtime system [10-12] is a software system 
designed to fill in the gap between the hardware and the 
Codelet model. The primary mission of runtime system is 
distributing and scheduling codelets. In this paper, we use 

DARTS (Delaware Runtime System) [13] as the runtime 
system implementation of the codelet model. 

Scheduling policy determines the computing performance 
of an application in the parallel system [14]. In order to 
enhance the execution efficiency of the parallel tasks by 
Codelet model, we propose a codelet scheduling policy named 
as Genetic Policy (GP) mainly focus on task’s execution time. 
GP is based on pure genetic algorithm (PGA) [15] which uses 
a two-dimensional matrix to implement a schedule [16].  The 
PGA is a heuristic method for finding an approximate optimal 
schedule in the multiprocessor scheduling problem. While in 
this paper, PGA is further improved in the generation of initial 
population and the operation of genetic operators, and 
combines with the Codelet model. Experiments will be in 
form of simulation, using randomly generated directed acyclic 
task graph to simulate the process of the task distribution and 
scheduling in the Codelet model. 

This paper is organized as follows. Section II provides the 
necessary background including Codelet model, DARTS and 
the genetic algorithm. Section III defines the scheduling 
problem of the Codelet model. Section IV describes the 
content and the structure of the algorithm. Section V and 
section VI introduce the key steps of the algorithm in detail. 
Section VII presents the experimental content and the 
simulation results. Finally, section VIII summarizes the whole 
article. 

II. BACKGROUND 

A. Codelet model 
Codelet is a basic execution unit composed of a serial of 

machine instructions. A task in the Codelet model can be 
partitioned into many interconnected codelets[17]. Each 
codelet is controlled by a synchronous dependency tracking 
interface. A codelet becomes enable if all the events of the 
codelet have been satisfied. Then, the codelet will be 
distributed to a target processing unit according to scheduling 
policy, and it will be executed until hardware resources are 
available. 

The codelets connect to each other by events, which forms 
a codelet graph (CDG) similar to the dataflow graph (DFG) 
[18, 19]. As the container of codelets, TP holds multiple 
codelets and allocates space for shared data. The CDG shown 
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in Fig. 1 can be seen as a directed acyclic graph (DAG) that 
consists of codelets, events and tokens. Codelets in the graph 
are linked together based on their data dependencies. 

Threaded ProcedureS

A CB

E

D

Codelet

Event

Token

 
Fig. 1. A codelet graph (CDG) 

B. DARTS runtime 
The DARTS runtime is an implementation of the codelet 

execution model. The main functions of the DARTS runtime 
are allocating hardware resources, loading and executing the 
codelets based on the input of system configuration. 
Schedulers are the most vital components of the DARTS 
runtime, responsible for scheduling codelets and TPs, 
signaling events to the specified codelet and firing it. As 
shown in Fig. 2, each core in the system has a scheduler 
(hyper-threaded cores may have more than one)[13]. 
Moreover, schedulers in a cluster can be divided into threaded 
procedure scheduler (TPS) and codelet scheduler (CDS). TPS 
is mainly responsible for loading balance of TPs and codelets, 
and executing codelets in spare time. Each TPS contains two 
pools, namely TP Pool (TPP) and Ready Pool (RP), used to 
store TPs and enabled codelets separately. CDS acts as a 
computing unit, responsible for performing the enabled 
codelet code. Each CDS contains a RP for storing enabled 
codelets. In general, a cluster consists of a TPS and several 
CDS, and the communication between different clusters is 
performed by TPS. This paper only considers the codelet 
scheduling in a single cluster. 
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Fig. 2. Abstract machine model [13] 

The mechanism of carrying out a task in the Codelet model 
is based on the scheduling policy. DARTS implements three 
main policies including static, dynamic and work stealing [13]. 
Default static policy distributes enabled codelets to each 
scheduler successively with round robin. However, the static 
policy can set the codelet metadata by programmer to specify 
which scheduler executes the codelet. Dynamic policy puts all 
the enabled codelets into the RP of the TPS, and the 
schedulers in free time take codelets from the TPS 
independently. Steal policy is similar to dynamic policy. All 
scheduler with steal policy in a cluster share the enabled 
codelets, while the difference is that the idle schedulers 
attempt to steal a codelet from other schedulers randomly, 
rather than to acquire work from the TPS uniformly in the 
style of dynamic policy. And these three scheduling policies 
are as experimental comparisons in the Section VIII. 

C. Genetic Algorithm 
Genetic algorithm (GA) is a search technique used in 

computing to find true or approximate solutions to 
optimization and search problems [20]. GA can find the 
optimal solution from the solution space quickly owing to its 
good global search ability, and provide a simple but effective 
solution to solve complex problems that traditional 
mathematics are difficult to solve, especially for the 
optimization problem of task allocating and scheduling [21].  

Hou et al. [15] realized the task scheduling by PGA. PGA 
is an efficient method solving the problem of multiprocessors, 
and is also appropriate to the codelet scheduling for its 
intuitive representation of the search node and the simple 
genetic operators based on the task graph. This paper presents 
a novel codelet scheduling policy GP, upon the improved 
PGA. 

III. MODEL AND DEFINITION 
Since the Codelet model is expressed by CDG, a task 

executed by the model can be regarded as a set of 
interconnected codelets [22]. In DARTS, enabled codelets are 
stored in the RPs of schedulers in the form of queues, so 
codelets in a CDG can be distributed and scheduled into 
several queues. Each queue of a scheduler presents the 
execution order of codelets. To cope with the problems of 
codelet schedule, we will give the flowing definitions: 

(1) G is a CDG that can be expressed by G = <V, E, Rt, d, 
id>, where are: 

a) V represents the set of nodes, V = {v0, v1, …, vn-1}, 
where n is the number of nodes. A node in the CDG represents 
a codelet; 

b) E represents the set of directed dependencies among 
nodes. <vi, vj> represents the dependency between node vi and 
vj, which means node vi must be completed before vj can be 
initiated; 

c) Rt represents the runtime of a node. The time cost by 
running the node vi can be written as Rt(vi); 

d) d represents the depth of a node in the graph, which is 
the largest number of edges from an entry node to node itself 
[23]. The depth of the node vi can be defined as: 
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d(vi) = � �� ����	
�� 
 �
���	����	
��� � �� ����, 0 <= d <= dmax, 

where dmax is the depth of the final node and is also the same 
as the maximum of all nodes’ depth. Depth is an important 
parameter to generate the initial population and judge the 
legitimacy of a schedule (See Section VI). 

e) id represents the metadata of a node, corresponding to 
the id of the scheduler which stores the codelet in the cluster.  

As shown in Fig. 3 (a), a task containing multiple subtasks 
is expressed as a CDG containing the same number of nodes. 
Each node has its private information including runtime, depth 
and metadata. The arrows represent the dependencies among 
the nodes, and indicate the fire method of codelets. For 
example, the node v6 will be enabled only if all its precursor 
nodes v3, v4 and v5 have been fired. 

(2) S is a codelet schedule (e.g. a solution in GA) of a 
CDG and can be represented by S = <C, Q>, where are: 

a) C represents the set of schedulers, C = {c0, c1, …, cm-1}, 
where m is the number of schedulers in the cluster; 

b) Q represents the set of codelet queues, Q = {q0, 
q1, …,qm-1} ; 

c) qi represents the execution ordering of the codelets in 
scheduler ci, qi = { vi0, vi1, …, vi(k-1) }, where k is the length of 
queue qi; 

d) A schedule can be converted into a two-dimensional 
structure that each schedule has serval queues and each queue 
contains a number of codelets. 
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Fig. 3. Codelet scheduling 

Each scheduler executes codelets by the ordering of its 
codelet queue. But this ordering may disturb the original 
dependencies of the CDG and even cause the task can’t be 
completed. For example, in Fig. 3 (a), the task couldn’t be 
performed in the Codelet model if a scheduler executes 
codelet queue {V0, V3, V1, V6} due to the mutual reverse 
dependency between node V1 and V3. According to the basic 
ideas from PGA[15], restricting the encoding scheme by depth 
can produce valid codelet queue. So we define that a codelet 

queue is legal when its codelets are sorted by ascending order 
based on depth. Moreover, a schedule can be defined legally 
as all its codelet queues are satisfied with the depth-ordering 
condition. 

As shown in Fig. 3 (b), there are two schedules S1 and S2, 
each of which has two codelet queues indicating the execution 
ordering of codelets. Schedule S1 can be expressed as {{V0, 
V1, V3, V6}, {V2, V4, V5}}, while schedule S2 can be 
expressed as {{V0, V2, V5}, {V1, V3, V4, V6}}. These two 
schedules are both legal because their codelets’ depth in each 
codelet queue increases gradually. 

(3) T(x) is the finishing time that all codelets in schedule x 
have been ran, and Tx(qi) is the total time spent on executing 
all codelets in codelet queue qi. There are T(x) = MAX(Tx(qi)), 
�i (0  i  m-1). The finishing time of schedule S1 and S2 
are shown in Fig. 3 (c) as T(S1) = 14, T(S2) = 13. 

The goal of the codelet scheduling is to find an optimal 
schedule that makes codelets execute parallel in multiple 
schedulers in terms of the established order to minimize the 
task execution time. 

IV. ALGORITHM FRAMEWORK 
Genetic algorithm based on task scheduling should have 

three principal elements, namely fitness function, population 
initialization, and evolution method. 

We elect the finishing time of the task performed in the 
Codelet model as the metric to measure the quality of a 
schedule. The finishing time is also the parameter used for 
calculating the fitness value. 

According to the representation of the schedule expressed 
in section III, several random generated queues contained the 
codelets arrayed in ascending order of their depth make up an 
initial solution (e.g. a codelet schedule). Furthermore, a 
specific number of initial solutions make up the initial 
population of the GA .The optimal solution is evolved from 
the initial population by genetic operators. 

The genetic operators in the evolution method are selection, 
crossover and mutation. In an iteration of the GA, parent 
solutions perform several genetic operators to generate child 
solutions. After number of evolutions, the final optimal 
solution will be obtained until the convergent criterion of the 
algorithm is met. 

Fig. 4 shows the structure of the algorithm, and all specific 
steps are as follows: 

(1) Convert a task into a CDG and identify the depth of 
each codelet; 

(2) Generate the initial population POP(t), t = 0, where t is 
the number of evolutional generation (e.g. the number of 
iterations); 

(3) Compute the fitness value of each solution in the initial 
population; 

(4) Do steps (5)-(9) until the algorithm is convergent; 

(5) Select parent solutions by the roulette wheel; 
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(6) Perform external and internal crossover with 
probability Pe and 1-Pic respectively, and the sum of Pec and Pic 
is equal to 1; 

(7) Perform mutation with probability Pm; 

(8) Retain the optimal solution in the old population by the 
elite strategy; 

(9) Generate a new population as POP(t), t = t + 1; 

(10) Output the approximate optimal solution whose 
fitness value is the highest in the last generated population. 

V. FITNESS FUNCTION 
Fitness function is the evolutionary motivation of the GA 

and is used to select the superior solutions and eliminating the 
inferior ones. The structure of the fitness function not only 
determines whether the optimal solution generates 
successfully, but also affects the convergence speed of the 
algorithm. 

The fitness value calculated by the fitness function is the 
principal index of a solution, and is used in the generation of 
the initial population and the control of the genetic operators. 
The fitness value must be a non-negative number. The larger 
the fitness value is, the better the solution will be. 

Crossover

Mutation

Generate a new population 

Select child solution

Output the optimal solution

Y

N

End

Start

Input a CDG

Initialize population

Compute the fitness value

Convergent

Select parent solution

 
Fig. 4. Algorithm framework 

For the problem of the codelet scheduling, there are many 
factors such as finishing time, throughout, locality and energy 
efficiency that should be considered as the parameters of the 

fitness function. In this paper, the fitness function is based on 
the finishing time of a schedule. The definition of the finishing 
time is presented in the section III. Since the finishing time of 
the optimal schedule should be the minimum, we define the 
fitness value1 as follows: 

F(x) = c - T(x), 

where c is a large enough constant, and T(x) is the finishing 
time of schedule x. c is defined as the sum of all codelets’ 
runtime, e.g. c =�� ��	
�������� . The finishing time T(x) of 
optimal schedule is smaller than that of other schedules. 
Therefore, the fitness value of the optimal schedule is the 
largest of all schedules.  

As shown in the Fig. 3, the finishing time of schedule S1 is 
14, and the constant c is 20. As a result, the fitness value of 
schedule S1 is 6. 

VI. INITIAL POPULATION 
Because the Codelet model is a parallel model, distributing 

codelets to schedulers in a cluster evenly can reduce the task 
execution time. Moreover, limited by the dependencies among 
the codelets, all the codelet queues in the initial solution 
should be proved legal. In order to deal with the distributing 
problem of the codelets, we will give the following definitions 
as follows: 

(1) m is the number of schedulers; 

(2) n(i) is the number of codelets where their depth are i, 
then all the codelets in the CDG are partitioned into dmax +1 
subsets; 

(3) min(i) is the minimum number of codelets where their 
depth are i, and they are assigned to a scheduler, min(i) =  n(i) 
/ m!; 

(4) Every scheduler assigns [min(i), min(i)+1] codelets 
whose depth are i, and the total number of all schedulers’ 
codelets whose depth are i is equal to n(i); 

(5) Every codelet appears only once in a schedule. 

The method of generating the initial solution is putting the 
codelets of each subset to m schedulers uniformly, and then 
sorting the codelets in each codelet queue in ascending order 
by their depth. For generating a native legal schedule, codelets 
are assigned to codelet queues successively with the growth of 
the depth. 

Furthermore, the quality of the initial population 
determines the convergence rate of the genetic algorithm. 
Thus, we select M excellent solutions from N (M < N) 
generated solutions according to the fitness value as the initial 
population, to increase the solving speed and prevent 
premature convergence. 

Accordingly, the process of generating the initial 
population has the flowing steps: 

(1) Take the start codelet to a random scheduler, and set 
depth i as i whose initial value is 1; 

(2) Do steps (3)-(5) until i is equal to dmax; 

(3) Count the number of codelets whose depth are i, and 
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compute the value of min(i); 

(4) Distribute min(i) codelets whose depth are i to each 
scheduler randomly; 

(5) Put remain codelets to schedulers randomly that make 
the number of distributed codelets in each scheduler no more 
than min(i)+1, i = i+1; 

(6) Do steps (1)-(5) until N initial solutions are generated; 

(7) Compute the fitness value of N initial solutions 

(8) Pick M solutions with higher fitness value from N 
initial solutions as the initial population. 

VII. GENETIC OPERATOR 
In GA, the evolution of population is performed by a serial 

of genetic operators including selection, crossover and 
mutation. The task of these genetic operators is performing 
certain operations for solutions of a population by evaluating 
the fitness value, so as to realize the evolutionary process and 
generate better solutions. From the viewpoint of optimization 
search, genetic operators can make the solutions of the 
scheduling problem optimize continually. 

A. Select Operator 
Selection mechanism is available to keep excellent 

solutions and eliminate inferior ones by fitness value on every 
iteration[24]. We adopt the biased roulette wheel to implement 
the operation of selection, that is, parent solution is picked 
with the probability proportional to its fitness value. However, 
the roulette wheel method may cause statistical error because 
of its random choices. So we use the elite strategy as the 
retention mechanism to ensure the fitness value of the optimal 
solution monotonically increases. The key thought of the elite 
strategy is to keep the most excellent solution in the old 
population to the next generation. And the specific operations 
are as follows: 

(1) The roulette wheel: firstly, compute the fitness value of 
each solution from the old population, and set the sum of all 
the fitness value as SUM; then calculate the ratio of each 
solution’s fitness value and SUM as the select probability of 
the solution; finally, select a certain number of solutions 
according to the probability as the objects of the next operator. 

(2) The elite strategy: firstly, retain the best solution with 
the highest fitness value in the old population, and this 
solution is denoted by B(t), where B(t) = Best(POP(t)); then 
find the worst solution with the lowest fitness value in the new 
population, and set this solution as W(t+1), where W(t+1) = 
Worst(POP(t+1)); finally, replace W(t+1) with B(t). 

B. Crossover Operator 
 Crossover can generate new solutions directly to expand 

the search field, so it is the most important operator in the GA. 
The process of the crossover operator is that exchange the 
portions of two selected parent individuals (schedule or 
codelet queue) to form two new child individuals. The 
crossover operator in this algorithm has two steps, namely 
selection of the crossover point and exchange operation.  

Limited by the complex dependencies among codelets, 

traditional selection mechanism of the crossover point may 
generate an illegal individual. Therefore, the crossover point 
whose depth is d’ which needs to meet the following two 
conditions: 

(1) The depth of the codelets next to the crossover point 
are different from d’; 

(2) The depth of the codelets in front of the crossover point 
should not be larger than d’. 

V0 V1 V3 V6

V0 V2 V5

V2 V4

V5

V1 V3

V4 V6

depth

S1

Q1

Q2

S2

Q1

Q2

  0               1             2             3

two-point 
external 

crossover

 

Fig. 5. External crossover (d’1 = 0, d’2 = 2) 

To further expand the search field of the GA, we adopt an 
improved hybrid exchange operation instead of the simple 
one-point (e.g. one crossover point) exchange operation [24]. 
Two random crossover points are used in this exchange 
operation, and whether their depth are same or not determines 
which exchange method will be executed. The operands of the 
exchange operation are two parent individuals in the old 
population. The details of the hybrid exchange operation are: 

(1) If the depths of the two random crossover points are 
the same, perform one-point exchange operation that each 
operation individual has only one crossover point: 

(a) Cut each operation individual into two parts by the 
crossover point; 

(b) Retain the top halves of the two individuals before the 
crossover pointpoints; 

(c) Exchange the bottom halves of the two individuals 
after the crossover point. 

(2) If the depth of the two random crossover points is 
different, perform two-point exchange operation that each 
individual has two crossover points: 

   (a) Cut the each operation individual into three parts by the 
two different crossover points; 

   (b) Exchange the middle parts of the two individuals 
between the crossover points; 

   (c) Retain the top and bottom parts of the two individuals 
except of the middle parts. 

   As shown in Fig. 6, schedule S1 performs the two-point 
exchange operation because the depth of the two crossover 
points is different. The operation individuals in this example 
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are codelet queues. Accordingly, the exchange parts are 
codelet V3 in codelet queue Q1 and codelet V4, V5 in codelet 
queue Q2, while the other codelet of the two queues remain 
unchanged. On the other hand, schedule S2 performs the 
one-point exchange operation because of the same depth of 
two crossover points. The exchange parts are codelet V5 in 
codelet queue Q1 and codelet V3, V4, V6 in codelet queue 
Q2. 

Furthermore, crossover operator can be divided into 
external crossover operator and internal crossover operator 
based on the operands. 

1) External Crossover Operator 
The objects of the external operation are two parent 

schedules, and the exchange portions are the parts of all 
codelet queues in two schedules. The algorithm is shown in 
Algorithm 1: 

Algorithm 1: External Crossover 

Input: Old population old_pop 

Output: Two new schedules in the new population new_pop 

Data: dmax is the maximum depth of all codelets 

     M is the size of population 

Begin 

EC1. [Select crossover schedules.] Use the roulette wheel to 
generate two different numbers, c1 and c2, between 0 and M, 
as the indexes of old_pop (e.g. an array of schedules), and the 
corresponding schedules are sch1 and sch2 respectively. 

EC2. [Select crossover points.] Pick two random numbers d’1 
and d’2 as the depth of crossover points, 0 <= d’1, d’2 <= dmax. 

EC3. [Choose exchange operation.] If d’1 is equal to d’2, do 
step EC4, else do step EC5. 

EC4. [One-point exchange operation.] Perform the one-point 
exchange operation that swaps the bottom halves of sch1 and 
sch2 after the crossover points. 

EC5. [Two-point exchange operation.] Perform the two-point 
exchange operation that swaps the middle parts of sch1 and 
sch2 between the crossover points. 

End 

As shown in Fig. 5, Schedule S1 and S2 execute the 
two-point external crossover operation, and the two dotted 
boxes contain parts of the codelet queues which are the 
portions to be inter-exchanged between S1 and S2. 

2) Internal Crossover Operator 
The objects of the internal operation are two random 

codelet queues in a schedule, and the exchange portions are 
the sections of the two lists. The algorithm is shown in 
Algorithm 2: 

Algorithm 2: Internal Crossover 

Input: Old population old_pop 

Output: A new schedule in the new population new_pop 

Data: dmax is the maximum depth of all codelets

     m is the number of schedulers 

     M is the size of population 

Begin 

IC1. [Select operation schedule.] Use the roulette wheel to 
generate a random numbers, c, between 0 and M, as the 
selected index of old_pop, and the corresponding schedule is 
sch. 

IC2. [Select crossover queues.] Randomly generate two 
different numbers c1 and c2, between 0 and m, as the selected 
indexes of schedule sch (e.g. an array of codelet queues), and 
the corresponding queues are que1 and que2 respectively. 

IC3. [Select crossover points.] Pick two random numbers d’1 
and d’2 as the depth of crossover points, 0 <= d’1, d’2 <= dmax. 

IC4. [Choose exchange operation.] If d’1 is equal to d’2, do 
step EC4, else do step EC5. 

IC5. [One-point exchange operation.] Perform the one-point 
exchange operation that swaps the bottom halves of que1 and 
que2 after the crossover points. 

IC6. [Two-point exchange operation.] Perform the two-point 
exchange operation that swaps the middle parts of que1 and 
que2 between the crossover points. 

End 
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Fig. 6. Internal crossover (d’1 = 0, d’2 = 2 in S1; d’1 = d’2 = 1 in S2) 

Fig. 6 shows two types of internal crossover operation. 
Schedule S1 executes the one-point internal operation with the 
upper two dotted boxes as its exchange portions. While 
schedule S2 executes the two-point internal operation with the 
lower two dotted boxes as its exchange portions. 

C. Mutation Operator 
Mutation is the assisted method used to maintain the 

diversity of population and speed up the convergence rate of 
the optimal solution. Mutation operator adopts traditional 
exchange operation that swaps two codelets with same depth 
in a schedule. In order to guarantee the dependencies of 
codelets not to be destroyed, the exchange codelets must have 
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same depth. The specific process is as follow: 

(1) Pick a random number d’’, 0 < d’’ < dmax; 

(2) Select two random different codelets where their depth 
is d’’; 

(3) Generate a new solution by exchanging the two 
codelets. 

  As shown in the Fig. 6, codelet V1 and V2 whose depth 
are both 1 in schedule S1 can exchange each other when 
performing mutation operation. 

VIII. EXPERIMENTAL RESULTS 
Executing a task in the Codelet model can be denoted by a 

CDG. Thus, the experiment applies a randomly generated task 
graph to simulate the process of codelets’ scheduling and 
running by the DARTS. In this simulation, we compare the 
genetic policy proposed in this paper with three scheduling 
policies introduced in Section II, i.e. static, dynamic and steal 
policy. 

We use Intel Core i7-4720HQ (quad-core and eight-thread) 
as the simulation platform. The number of nodes in a task 
graph ranges from 100 to 1000. The out-degree of each node 
is a random number between 1 and 10. And the runtime of 
each node is a random number between 1 and 50. The 
parameters used by the GA are as flow: 

(1) population scale POP = 10; 

(2) external crossover probability Pec = 0.2; 

(3) internal crossover probability Pic = 0.8; 

(4) mutation probability Pm = 0.05; 

(5) maximal number of iterations MAX = 2000. 

Table I through IV summarize the finishing time of the 
random task graphs, with different number of codelets which 
are executed by four scheduling policies such as static, 
dynamic, steal and genetic on different multiprocessor 
configurations. From Table I to the Table IV, we find that the 
task execution efficiency of the genetic policy is superior to 
the other three ones. 

TABLE I.  Comparison of 2 schedulers 

Codelet 
Number 

Static 
Policy 

Dynamic 
Policy 

Steal 
Policy 

Genetic 
Policy 

100 2616 1415 2615 1378 
200 5060 2630 5059 2595 
400 10285 5253 10285 5216 
600 15408 7841 15404 7790 
800 20606 10484 20605 10432 

TABLE II.  Comparison of 4 schedulers 

Codelet 
Number 

Static 
Policy 

Dynamic 
Policy 

Steal 
Policy 

Genetic 
Policy 

100 1098 844 1015 803 
200 2045 1571 1928 1497 
400 3810 2787 3566 2715 
600 5718 4255 5409 4170 
800 7427 5494 7010 5418 

TABLE III.  Comparison of 6 schedulers 

Codelet 
Number 

Static 
Policy 

Dynamic 
Policy 

Steal 
Policy 

Genetic 
Policy 

100 861 755 791 712 
200 1478 1260 1367 1212 
400 2592 2121 2364 2047 
600 3708 2979 3347 2914 
800 4814 3868 4364 3809 

TABLE IV.  Comparison of 8 schedulers 
Codelet 
Number 

Static 
Policy 

Dynamic 
Policy 

Steal 
Policy 

Genetic 
Policy 

100 767 692 717 656 
200 1245 1118 1181 1065 
400 2125 1829 1962 1771 
600 2921 2447 2788 2369 
800 3763 3132 3440 3056 

Fig.7, Fig.8, and Fig.9 respectively show the speedup of 
dynamic, static and steal policies with respect to genetic policy. 
Fig.10 shows the finishing time of the task graphs that 
contains 1024 codelets, and each task graph is executed on 
different numbers of schedulers by four scheduling policies. 

 
Fig. 7. Speedup (genetic vs. dynamic) 

 

Fig. 8. Speedup (genetic vs. static) 

 

Fig. 9. Speedup (genetic vs. steal) 
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Fig.10. Finish time of executing 1024 codeletsh 

As shown in the Fig.7, the speedup of using genetic policy 
generally increases as the number of scheduler increases. The 
reason is that, with the increase of the cluster size, the pressure 
and latency of queuing operations in dynamic policy increases. 
By contrast, the speedup of the genetic policy compared with 
the static policy (shown in Fig.8) and the steal policy (shown 
in Fig.9) decrease as the number of the schedulers increases. 
The reason is that the static and steal policy have strong 
randomness to get codelet, which leads to long idle periods of 
schedulers and poor execution efficiency of the system. 
However, as the number of schedulers increases, each 
scheduler will spend less time executing its codelet, and then 
the total execution time of static and steal policies reduces 
accordingly. Even so, the finishing time of the genetic policy 
is still smaller than that of the other policies, which verifies 
the feasibility and the effectiveness of the genetic policy. 

IX. CONCLUSION 
This paper focuses on scheduling policy of the Codelet 

model. We propose a new codelet scheduling policy, based on 
the standard genetic algorithm, which can reduce task 
execution time effectively. Random task graph is employed in 
the experiment to simulate the execution process of the tasks 
with different policies in the Codelet model. Simulation 
results show that the genetic policy introduced in this paper 
can obtain better efficiency than the other three scheduling 
policies in the DARTS, and thereby possesses strong 
superiority to deal with the problem of codelet scheduling. 
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