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Abstract— As new massively multithreaded many-core ar-
chitectural designs continue to evolve, the challenge of finding
schedules that exploit concurrency, reuse and locality remains.
Classically, data transformations were made with a limited view
of both the memory hierarchy and the parallelism available to
the machine. However, as the multithreaded designs become more
complex, the machine resources tend to get “grouped” or shared
in more sophisticated arrangements (e.g. distributed Level 2
caches serving collectively as a Level 3 cache or a large number of
simultaneous multithreading). These new configurations present
new optimization opportunities that the software toolchains might
not be aware and, therefore, miss altogether.

In this paper, we have developed a new methodology that takes
in consideration the access patterns from a single parallel actor
(e.g. a thread), as well as, the access patterns of “grouped” paral-
lel actors that share a resource (e.g. a distributed Level 3 cache).
We start with a hierarchical tile code for our target machine and
apply a series of transformations at the tile level to improve data
residence in a given memory hierarchy level. The contribution
of this paper includes (a) collaborative data restructuring for
group reuse and (b) low overhead transformation technique to
improve access pattern and bring closely connected data elements
together. Preliminary results in a many core architecture, Tilera
TileGX, shows promising improvements over optimized OpenMP
code (up to 31% increase in GFLOPS) and over our own previous
work on fine grained runtimes (up to 16%) for selected kernels.

I. INTRODUCTION

As the parallelism of current and future machines con-

tinues to increase, the application and system designers are

confronted with a new set of problems on how to exploit

the computational power of these designs. As more and

more of these designs become available, one of the major

factors of inefficiencies is the access (and exploitation) of the

memory and its associated hierarchy. In efforts to remedy the

memory latency issue, compiler techniques such as tiling [1],

[2], [3] and prefetching [4] have been widely used. Also,

communication-avoiding algorithms [5] and cache-oblivious

algorithms [6] have shown promises in reducing the number

of high latency operations. These approaches work very well in

taking advantage of certain aspects of the memory hierarchy;

however, data movements end up being performed in most

cases with the limited view of a single thread or computational
unit. This scenario can create a myriad of problems when

multiple hardware resources are shared between a significant

number of threads.

When using compilation techniques to exploit parallelism

and locality, tiling is one of the most successful techniques

to date. It involves partitioning the iteration space into sub-

divisions that fit in different levels of the memory hierarchy.

Classically, tiling is designed for coarse grain execution to re-

duce communication overhead. In such designs, parallelism is

exploited at the outer tile level and inner tiles run sequentially.

Such designs however may lead to idle periods of “slack”

that results in resources’ under-utilization. To remedy such

situation, fine-grain designs to improve locality and parallelism

of multithreaded architecture have started to evolve. Designs

that take concurrent thread execution into account are able

to reduce strain on the entire memory subsystem. However,

current designs still overlook the interleaved data movement

patterns, irregular access reuse of tiles across caches and

memory boundaries that can lead to performance degradation.

As they stand, current software stacks lag behind in exploit-

ing new architectural designs. They need to adapt to these

architectural design changes as we head towards massively

parallel architectures. Software stacks need to encompass

the idea of thread collaboration and orchestration of data

movement based on execution patterns of parallel units to

fully exploit multithreaded designs. This paper is based on

the premise of using hierarchical, tiled loop parallelization

techniques to optimize the application access pattern and to

better utilize the memory hierarchy of these designs.

In this paper, we present a novel framework whose objective

is to improved the use of hardware resources with a primary

focus on memory and application’s access pattern. Under our

framework, tiles are restructured so that the accesses are in

contiguous memory space. This ensures that the restructured

tiles have minimal interference accessing the same set of data

tiles. Thus, with knowledge of the execution pattern and its

tile reuse for different levels of the memory hierarchy, we

are able to perform timely data movements and operate on

tiles in a highly gregarious fashion. Our results show better

resource utilization and memory reuse for selected applications

as compared to their non restructured counterparts.
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The main contribution of this paper is a compiler guided,

collaborative data restructuring technique for group reuse

based on a dependency and reuse vector. It utilizes the cache

hierarchy better by improving access pattern and bringing

closely connected elements together. Our technique intelli-

gently shifts the burden between the different caches levels

of the cache hierarchy in comparison to the observed default

cases. In our case, higher level caches that are closer to the

processor suffer less misses whereas further remote caches

are subjected to higher strains without impacting negatively

memory bandwidth. This burden shift translates into a positive

performance outcome.

The rest of the paper is organized as follows. Section II

provides motivational examples and the need for the frame-

work presented in this work. Section III presents a description

of our fine grained runtime and introduces basic concepts

used in our framework. Section IV describes the data restruc-

turing framework, its components and conditions. Section V

describes the selected hardware / software testbed and shows

the collected data for selected cases. Moreover it discusses

the effects and reasons for the performance gains. Section VI

provides a snapshot of current efforts in the field to ameliorate

the memory access problem. Finally, Section VII provides

future work and conclusions for the paper.

II. MOTIVATION

The access pattern of an application significantly affects

the performance of its memory subsystem. Data has higher

spatial locality with contiguous accesses in the address space.

Access bandwidth and latencies are sensitive to spatial locality

due to memory and cache organization. For example, this is

the case when access patterns have smaller strides, yielding

accesses that fall into the same memory page or cache line.

The end effect are lower page misses, lower bank conflicts and

better cache utilization. Similarly, predictable access patterns

allow hardware prefetchers to move the required data in

advance to their use. Low latency access caches are especially

beneficial in cases where the application exhibits plenty of

reuse. Strided access pattern by multiple concurrently running

threads, however, tax the underlying hardware and quite often

lead to access conflicts and misses at various levels of the

memory hierarchy. These conflicts lead to premature cache

evictions and consequently, high access penalties at every

eviction and reuse point.

As an example, consider a classical matrix multiplication

as shown in Figure 1. Assuming row major storage, matrix

A has contiguous access in memory and hence has better

spatial locality as compared to matrix B access that has a

stride of n. Since this example is known to have plenty of

access reuse – n3 times on n2 data – maximizing reuse in

low latency caches to improve performance is of importance.

The classical solution to maximize reuse involves tiling for the

one-threaded case. In general, though, access penalties arise

in loop parallelized code when multiple threads contend over

a single tile within the limited confines of the cache. In our

example, the parallelized, tiled loop across the i dimension

shares column tiles in B where the penalty of strided access

is paid again and again for each and every access.

f o r ( i =1 ; i<=n ; i ++)
f o r ( j =1 ; j<=n ; j ++)

f o r ( k =1; k<=n ; k ++)
C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;

Fig. 1: Matrix Multiplication

In a different scenario, an application can have different

access patterns at different points in space and time with

multiple references to the same data structure. For example,

let us look at an interesting access pattern that can be ob-

served in the LU decomposition code shown in Figure 2.

This code factorizes a matrix into lower triangular and upper

triangular matrices (and, depending on the variant used, a third

”Permutation” matrix) through a series of ever smaller steps.

During this process, there are (n − 1) rank-one updates of

the data matrix, reduced by one in every sweep. The last

phase of the update for LU is a matrix multiply operation

as seen in the code excerpt in Figure 2. With a blocked

version of the LU decomposition code, the execution can

be described pictorially by Figure 4. Moreover, every third

phase in the figure is a matrix multiply operation on the

block. This exposes the same type of issues that plagued the

previous matrix multiplication algorithm. This example has the

additional property of multiple access patterns. The same data

structure is accessed along row and column at the same time

in two different locations in A[i][k] and A[j][i] respectively

(visible better in blocked version shown in Figure 3). That

means there does not exist one mapping that allows array A
to be contiguous along all iterations.

A potential solution is to compute a result tile as an outer

product and to use an element of A (in the left column sub-

block in step 2 of Figure 2) and multiply it with the row of

A (in the top row sub-block in step 2) to produce a row of

A (in sub-block in step 3). This approach requires writing to

the result matrix n times. The more efficient solution would

be to use the inner product and calculate the result matrix in

one swoop. Figure 4(b) shows a pictorial view of a blocking

code where the intermediate block calculation requires the

multiplication of row of A (in the left sub block of step 2)

and row of A (in the top sub block of step 2). However,

the inner product requires strided access for one operand as

shown in Figure 3 (inner block calculation in tiled code). Thus,

improving locality requires careful analysis of dependencies,

access patterns and orchestration of data movement.

In an effort to ameliorate strided access bandwidth and

latency deterioration, we introduce our restructuring frame-

work as described in section IV that takes into account

dependencies, access pattern and multiple processing elements

working together. Based on the amount of reuse for groups

of threads working in close proximity and sharing the same

data space, data is reshaped to adapt its access pattern to

underlying hardware requirements. For the rest of this paper,
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f o r ( i =1 ; i<n ; i ++){
f o r ( j = i +1 ; j<n ; j ++)

S1 : A[ j ] [ i ] = A[ j ] [ i ] / A[ i ] [ i ] ;
f o r ( j = i +1 ; j<n ; j ++)

f o r ( k= i +1; k<n ; k ++)
S2 : A[ j ] [ k ] = A[ j ] [ k]−A[ j ] [ i ]∗A[ i ] [ k ] ;

}

Fig. 2: LU Decomposition

f o r ( j j =16∗ J ; j j <=min (N−1 ,16∗ J + 1 5 ) ; j j ++){
f o r ( kk =16∗K; kk<=min (N−1 ,16∗K+ 1 5 ) ; kk ++){

r a n g e = min ( j j −1,min (N−1 ,16∗ I + 1 5 ) ) ;
f o r ( i i =16∗ I ; i i <=r a n g e ; i i ++){

A[ j j ] [ kk ]=A[ j j ] [ kk]−A[ i i ] [ kk ]∗A[ j j ] [ i i ] ;
}

}
}

Fig. 3: LU Decomposition inner block (16x16) calculation

showing row and column access of matrix A to calculate the

result matrix as shown in Figure 4(b).

(a) LU Decomposition iterative procedure (b) LU Element in a
block calculation

Fig. 4: Iterative Block LU

we will assume that data is stored in row major mapping

without a loss of generality. We further limit our presentation

to two-dimensional array structures to simplify the discussion,

however our technique can also be applied to higher dimen-

sional arrays. We show how our framework restructures data

to improve reuse at different levels of the memory hierarchy.

III. BACKGROUND

In this section, we provide a brief description of a fine-

grain execution framework (introduced in [7]) we use in order

to reduce communication overhead across threads. Before we

delve in the fine grained framework, we need to introduce

some terms.

Shrestha et al. [7] proposed a polyhedral based tiling and

scheduling technique to exploit locality of parallel threads. In

their method, the parallel actors that work on a L2 tile are

referred as a “group” and their interactions are limited to the

tile and can be influenced to reduce contention, better utilize

bandwidth and computational resources. Multiple groups of

threads run in parallel exposing both intra and inner tile

parallelism. To simplify the execution, they use a fine grain

execution framework that represents the hierarchical tiled

domain dependencies by a set of bits which are collectively

updated by a group of threads working together within the L2

tile. Each thread performs atomic bit-wise operations to create

a task mask. Every nonzero bit in the task mask represents a

L1 task ready to execute. Such execution happens in a highly

parallel fashion and all required updates are done using atomic

operations to minimize synchronization overhead. Interested

readers are strongly encouraged to read [7], [8] to find the

details of this technique.

Our restructuring framework is designed to use such fine-

grain execution technique to exploit locality. In addition to

the locality gained by grouping threads to reuse data from

shared memory space, it reshapes the data to improve exe-

cution pattern of all parallel units. In the next section, we

explain our restructuring framework. To clarify the concept,

we use directional vectors (1,0) and (0,1) to represent direction

of mappings, accesses and reuse towards row and column

respectively. Also, we use access matrix to represent mappings

from the iteration space to the data space.

IV. FRAMEWORK

This section presents our restructuring framework and the

different methodologies used to better exploit the memory

hierarchy. We present our methodology and the operations

needed to restructure the data based on their access patterns.

A. Reuse Analysis

Besides employing reuse matrices reuse matrix to perform

data movement to software controlled scratchpad memories

when reuse is available [9], we also store stride pattern

information to optimize memory accesses. Using matrix rep-

resentation of iteration space and the memory access, we find

the amount of reuse.

A rank of a matrix for any statement is given by the number

of independent equations, yielding the access dimensionality

in our case. Similarly, the depth of a statement is given by the

number of nested loops within which the statement resides.

When depth > rank 1, it implies that there is ndepth−nrank

reuse in the iteration space. Revisiting matrix multiplication

in Figure 1, n3 accesses in n2 data implies that the code has

n2(n− 1) reuse.

Continuing the example, the reuse for matrix A, B and C
exists along iteration-space vectors (0,1,0), (1,0,0) and (0,0,1)

respectively. In case of tiled parallelization at the outermost

loop i, the reuse vector (1,0,0) is shared by all parallel threads.

The reuse exists not only within threads but also across

threads. Higher access strides with this kind of shared data

(stride n in B[k][j]) can potentially slow down all participating

threads.

In order to clarify the concept of data sharing between

threads, we use the term self-reuse whenever there exists a

reuse for a set of data that is consumed by the same thread.

Similarly, when there exists a reuse for a set of data that is

1Both rank and depth have to be in the same domain. For example, a tiled
iterator cannot contribute to the depth of a statement.
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shared by a group of threads running concurrently, we identify

a group-reuse. Our goal is to reduce memory latency overhead

by reducing the access stride for such data so it fits better in

shared caches with minimal conflicts and eviction.

Group-reuse also exists in our LU Decomposition example.

In Figure 3, during the final phase of each iterative execution

where a tile is computed using matrix multiplication, accesses

are strided for one of the input matrix operands. Since this data

has reuse throughout the computation of the tiled matrices,

latency and bandwidth penalties for strided access have to be

paid throughout the execution every time data is evicted and

has to be brought into caches.

B. Memory Storage Requirement

We use a straight forward methodology to calculate the

memory storage requirement for restructuring. We take the

dimension of the iteration-space that is shared and identify

strided access reuse across a group of threads. The size of the

restructuring space is given by the number of tiles multiplied

by the size of a tile in shared dimension.

Restructuring Space(R) = S ∗ n (1)

where S is the size of the tile and n is the number of tiles

in the shared dimension.

For example, in Figure 2, the size of the restructuring space

for a input matrix of size NxN that is tiled with a tile size

(t ∗ t) is given by t ∗ t ∗N/t = Nt.

C. Data Transformation

Based on how the data is accessed, some layouts are better

than others. One layout may not provide the best access pattern

throughout the execution. In some cases, the same data set

can be accessed both by rows and columns within the same

iteration space. In other cases, accesses themselves can still

be disjoint in time such that at any given time having one

mapping is more beneficial. We use information based on

the access matrix and its memory mapping and perform data

transformations to partial data sets to have access pattern that

are more access and cache friendly within a given time frame

δt. Such transformation is done in a tiled code such that,

• All elements of outer L2 tiles (i.e the inner L1 tiles in a

tiled hierarchy) stay together in memory. The mapping al-

lows memory accesses to take advantage of open memory

pages and also results in high residence at various cache

levels.

• Elements of the innermost tiles are accessed in a contigu-

ous fashion. This mapping allows better cache locality

and reduces unnecessary conflicts.

In order to achieve this, we perform a transformation that

allows parallel threads to reuse the allocated restructuring

memory space (i.e. increasing the “group reuse” in the ap-

plication). At different points in time, different disjoint data

sets are mapped to the same restructuring space such that

there is no conflict. Since our restructuring strategy involves

reshaping data to place all elements within a tile together,

such transformation requires transformations both at the tile

domain and the original domain. One straight forward solution

is to find the new indices by traversing the sequence of

transformations and compute the modulus for each. This is an

expensive proposition. Instead, we compute the displacement

(offset used interchangeably) required to map addresses to the

restructuring space. This is done in five steps sketched below,

Algorithm 1 currently is tuned to operate under the follow-

ing two conditions explained below that account for how the

tiles are placed in the original space and how the accesses are

aligned.

• Condition 1: If the shared space (set of outer tiles) is

arranged by rows (towards (1,0)) and inner elements

are accessed by column (towards (0,1)), then do the

transformation with the calculated displacement (Lines

2, 4 and 5 in algorithm 1) and perform a copy transpose

(Line 6) at the element level as shown in Figure 5.

Initially, K’ and J’ are calculated by subtracting lower

bounds K and 0 respectively. The respective lower bounds

become the offset (since they are already relative to the

original index K and J) and are translated to the values

corresponding to the original domain by multiplying with

the tile size. It is then followed by a transpose at element

granularity to change access towards rows.
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Fig. 5: Transformation Condition 1: Strided access (shown by

downward arrows) and row arrangement of parallel tiles (A-E)

transformed to have contiguous access using calculated offset

(shown in red).

For example, Figure 6 shows how this transformation can

be done with our displacement technique. Consider an

original 15x15 space and a restructure space of size 3x15

(shown in a red box) where the index (7,4) is mapped to

the index (1,4): We calculate the displacement required

in all dimensions of the iteration space. In this example,

the lower bound in the ’J’ and ’K’ dimension in the tiled

domain is 0 and 2. This can be translated to the original

space by multiplying with the number of elements in a

tile. Hence the displacement become 0 and 2x3 in the

original space in the ’j’ and ’k’ dimension.

• Condition 2: If the outer tiles are arranged by column

and the inner elements are accessed by column (towards

(0,1)), then do the transformation with the calculated

offset (Lines 2,3,4 and 5). This is followed by transpose

at element level as shown in Figure 7. Here first K’ and

J’ are calculated by subtracting the lower bounds and

transposing the tile index. The resultant value of K’ and

J’ i.e 0 and K are then used to calculate the offset relative
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Algorithm 1 Data Transformation and Movement

Input: Given array access matrix A (accessing towards (0,1)), restructuring space R
1: for each shared data space partition do � set of tiles undergoing data transformation

2: Subtract the lower bound (LBx, LBy...LBn) in a tiled domain for all given dimensions. �
3: Transpose in the tiled domain (two innermost dimension) if tile arrangement and accesses are in the same direction

(see condition 2 below).

4: Calculate displacement in tiled domain relative to the original tiled index.

5: Translate displacement to reflect the original iteration index (multiplying by tile sizes (tx,ty...tn)).

6: Transpose in original space.

7: end for
Output: Indicies mapped to Restructuring Space
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Fig. 6: Transformation example calculating the offset and the

new index. First the new index at tile level is calculated relative

to the original index K and J, which then is translated to the

element index by multiplying them with tile sizes.

to the original index. In this case, relative to the original

index K, K’ becomes K-K and relative to J, J’ become

J+K-J. This gives the offset required to calculate the new

indices. It is then followed by a transpose at element

granularity to change access towards row.
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Fig. 7: Transformation Condition 2: Strided access (shown by

downward arrows) and column arrangement of parallel tiles

(A-E) transformed to have contiguous access using calculated

offset (shown in red).

In both cases, the amount of displacement required relative

to the original index is calculated to perform targeted transfor-

mations. This approach allows calculation of the new indices

in a single step without the use of modulus.

D. Exploiting Parallelism

Parallel thread units grab different data set according to their

group identification and perform restructuring in a concurrent

fashion. Figure 8 and 9 show the code snippet of such dis-

placement done for matrix multiplication (applying condition

2) and LU decomposition (applying condition 1) respectively

for tile size 64x64. In both examples, J is an iteration towards

row and K towards column. Parallel units get different iteration

of K and J in matrix multiplication and LU Decomposition

respectively to perform restructuring in parallel.

o f f s e t k = K∗ t i l e s i z e ;
o f f s e t j = K∗ t i l e s i z e − J∗ t i l e s i z e ;
f o r ( kk =64∗K; kk<=min (N−1 ,64∗K+ 6 3 ) ; kk ++)

f o r ( j j =64∗ J ; j j <=min (N−1 ,64∗ J + 6 3 ) ; j j ++)
B RES [ j j + o f f s e t j ] [ kk−o f f s e t k ]=B[ kk ] [ j j ] ;

Fig. 8: Matrix Multiplication restructuring data movement

o f f s e t = K∗ t i l e s i z e ;
f o r ( kk =64∗K; kk<=min (N−1 ,64∗K+ 6 3 ) ; kk ++)

f o r ( j j =64∗ J ; j j <=min (N−1 ,64∗ J + 6 3 ) ; j j ++)
A RES[ j j ] [ kk−o f f s e t ] = a [ kk ] [ j j ] ;

Fig. 9: LU Decomposition restructuring data movement

V. EXPERIMENTS
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Fig. 10: The Tilera TileGX architecture

Figure 10 shows the pictorial view of our hardware testbed:

the Tile-Gx36 architecture. It has 36 processor cores, each

equipped with 32KB local 2-way L1 cache and 256KB 8-way

L2 cache. All caches are inclusive. Each core also has access to

the other core’s L2 cache in the grid, giving an impression of a

virtual L3 cache. Accesses to L3 caches are much cheaper than

accessing the memory (anywhere from 2x to 3x faster). Our
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framework uses intratile parallelism to exploit reuse within the

grid and performs restructuring for better access strides.

On the software side, we use our running examples, matrix

multiplication and LU decomposition, to display the effective-

ness of our technique. We also present performance hardware

counters to show how our techniques help reduce cache

misses. Table I presents the counters we used from TileGX.

These counters cover local and remote read and write misses

for different cache levels.

Figure 11 shows performance for matrix multiplication over

different problem sizes. Our result shows an improvement of

up to 26.50% over best case OMP code (OMP INTRA as in

OMP intratile). Additionally, it shows up to 4.5% improvement

when compared against our fine-grain grouping techniques

briefly discussed in the background section that do not apply

restructuring. Figures 12(a), 12(b) and 12(c) show hardware

counters for different level cache misses. Our results show

reduction in cache misses when compared to the best fine-

grain and OMP cases. Compared to the OMP intratile parallel

version, fine-grain with restructuring shows reduction in cache

misses for all read and write misses at cache levels L1,L2 and

L3 ranging from 23.53% to 89.81% except for the remote

write misses (aka L3 write misses) where it deteriorates by

138%. Compared to our original work of fine-grain without

restructuring, our restructuring policies lead to reduction of

local L1 and L2 cache misses by up to 19.1%. However, the

remote read and write misses (L3 misses) increase by 12.9%

and 15.4% respectively. We believe that increases in remote

misses are due to the synchronization overhead required by

our framework grouping the physical cores.
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Fig. 11: Matrix Multiplication Performance

Figure 14 shows performance for our second example,

LU decomposition, at different problem sizes for fine-grain

with/without restructuring and OMP code. For most cases, we

use hierarchical and one level tiled OMP code instead of intra-

tile OMP parallel code as reference as its performance better.

Our technique with restructuring has up to 31.4% advantage

over OMP one level tiling and 15.9% advantage over fine-grain

without restructuring.

Similarly, Figures 15(a), 15(b) and 15(c) show hardware

counters for cache misses. Compare to OMP one level tiling,

our technique has an advantage ranging from 17.8% to 72.69%
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Fig. 13: LU Decomposition Performance counters

normalized against OpenMP Hierarchical Implementation

for reduction of all cache misses except for remote L2 writes

misses where it increases by 267.23%.

A special case is apparent when looking at the 6912x6912

hierarchical OpenMP case. In this case, our framework per-

forms better than any of the OpenMP cases but it has a

perceived disadvantage with almost all the memory hierarchy

counters. Our technique has considerable advantage for L1

writes misses and a very small degradation for L1 read misses.

These counters are order of magnitude higher than other miss

counters and hence contribute to our advantage leading to

higher performance (as showcased in Figure 13).

Thus, by doing the restructuring, we are shifting work

from the higher levels of the memory hierarchy toward the

lower levels and increasing the locality of the levels closest to

the processor, thus, improving overall performance. However,

we have a trade-off between the framework overhead that

comes from the interplay between the framework, the actual

buffer and certain caches features (e.g. the inclusiveness)

as showcased in the performance counters. Even then, the

performance improvements are still substantial.
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Fig. 14: LU Decomposition Performance

In summary, by judicious data allocation and data restruc-

turing guided by compiler driven data reuse analysis, we are

able to shift the burden between the different cache level
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Performance Counter Description Short-hand

READ MISS Level 1 Cache misses for reads L1RM
WRITE MISS Level 1 Cache misses for writes L1WM
LOCAL DATA READ MISS Local Level 2/3 Cache misses for reads L2RM
LOCAL WRITE MISS Local Level 2/3 Cache misses for writes L2WM
REMOTE DATA READ MISS Remote Level 2/3 Cache misses for reads RRM
REMOTE WRITE MISS Remote Level 2/3 Cache misses for writes RWM

TABLE I: Performance Counters collected in TileGx36

Size GFlops RRM RWM L1RM L1WM L2RM L2WM

FineGrain+Restructuring
2304 4.9119 9.20E+07 1.18E+08 1.67E+10 1.34E+08 3.62E+06 5.29E+05
4608 4.9051 7.17E+08 2.84E+08 1.39E+11 3.37E+08 2.91E+07 3.87E+06
6912 4.9029 2.37E+09 6.33E+08 4.68E+11 8.12E+08 1.01E+08 1.25E+07
FineGrain
2304 4.873 7.86E+07 1.09E+08 1.95E+10 1.30E+08 3.88E+06 4.68E+05
4608 4.7514 6.51E+08 2.45E+08 1.63E+11 4.26E+08 3.80E+07 3.91E+06
6912 4.6898 2.12E+09 5.15E+08 5.52E+11 1.33E+09 1.48E+08 1.35E+07
OMP Hierarchical
2304 2.6142 1.42E+08 1.27E+10 1.85E+10 1.38E+10 4.11E+06 4.05E+05
4608 2.1063 2.67E+09 1.01E+11 2.32E+11 1.10E+11 7.42E+07 3.40E+06
6912 2.5894 4.76E+09 3.41E+11 5.06E+11 3.73E+11 1.71E+08 1.42E+07
OMP with Intratile Parallelism
2304 4.0357 1.34E+08 3.33E+07 2.17E+10 6.46E+08 2.22E+07 9.56E+05
4608 3.8775 1.94E+09 1.50E+08 2.19E+11 6.37E+09 1.86E+08 7.62E+06
6912 4.0186 3.70E+09 3.69E+08 5.25E+11 1.77E+10 6.08E+08 2.53E+07

TABLE II: Performance Counters collected in TileGx36 for Matrix Multiplication. Bold green and blue values represent the

best values for Fine grain and OpenMP experiments

Size GFlops RRM RWM L1RM L1WM L2RM L2WM

FineGrain+Restructuring
2304 4.1616 1.13E+08 5.83E+07 6.02E+09 8.29E+07 1.93E+06 1.99E+05
4608 4.4568 9.52E+08 3.55E+08 4.88E+10 5.01E+08 1.56E+07 1.18E+06
6912 4.5659 2.70E+09 1.06E+09 1.67E+11 1.65E+09 5.07E+07 3.40E+06

FineGrain
2304 4.1562 1.33E+08 5.29E+07 5.72E+09 2.76E+08 2.08E+06 2.22E+05
4608 4.297 1.27E+09 3.33E+08 7.51E+10 2.46E+09 2.39E+07 2.65E+06
6912 3.9364 3.22E+09 1.03E+09 1.77E+11 7.70E+09 5.82E+07 4.18E+06

OMP Hierarchical
2304 2.8563 5.06E+07 1.52E+07 6.20E+09 2.37E+08 1.69E+06 1.64E+05
4608 3.1133 5.77E+08 6.59E+07 8.09E+10 2.11E+09 1.77E+07 8.95E+05
6912 3.6915 1.36E+09 1.41E+08 1.65E+11 6.40E+09 4.54E+07 3.62E+06

OMP One Level
2304 3.9019 6.67E+07 1.67E+07 7.73E+09 2.29E+08 1.77E+06 2.14E+05
4608 4.1863 5.75E+08 6.51E+07 9.14E+10 2.11E+09 1.37E+07 1.40E+06
6912 3.9029 1.80E+09 1.41E+08 2.10E+11 5.86E+09 4.75E+07 4.86E+06

TABLE III: Performance Counters collected in TileGx36 for LU Decomposition. Bold green and blue values represent the best

values for Fine grain and OpenMP experiments
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Fig. 12: Matrix Multiplication performance and hardware counters normalized to the maximum value for that counter
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Fig. 15: LU performance and hardware counters normalized to the maximum value for that counter

hierarchies, yielding better performance outcomes for our two

very relevant test cases.

VI. RELATED WORK

Due to its importance, data movement and locality is the

target of substantial compiler and runtime research. Data

centric optimizations in multithreaded environments have be-

come more visible. There is a growing trend towards giving

programmers control of data management in order to improve

performance. The common approach uses information about

access pattern, strides, data sharing and reuse to reduce mem-

ory acess latency.

Overlapping data movement with computation and data

prefetching based on access pattern are typical data movement

orchestration strategies. Garcia [10] used percolation along

with dynamic scheduling to improve the locality of dense ma-

trix multiplications on the Cyclops-64 manycore architecture.

He used helper threads to perform explicit data movement

to a double buffered SRAM. Baskaran [9] used explicit data

movement and index transformations to improve locality and

reuse on scratchpads. He developed an automatic polyhedral

based framework to utilize the available processing resources

and manage data movement to hide memory access latency.

This technique seems very efficient on exploiting parallelism

and managing data movement on GPUs where accesses happen

in SIMD fashion.

Data transformation work has also been done to improve

vectorization by Jang [11]. Based on the access pattern,

different data transformation rules are used to have contiguous

access, enabling vectorization. Jeremiassen [12] showed that

false sharing misses can be reduced by performing data

transformations. It uses a transpose when adjacent elements are

accessed by different processors, uses indirection when data

restructuring is not possible and padding shared data writes

when falsely shared. Also, Rivera [13] showed how cache

conflicts can be avoided using padding techniques. Lu [14]

used data layout transformations using the polyhedral model

to reduce hot spots and bank contention.

Prior work has also showed that array restructuring can be

used to improve spatial locality in cases when loop transforma-

tion is not enough. Leung [15] with his restructuring technique

allowed transformation of data to provide the better access

pattern. technique is independent of loop carried dependencies,

providing flexibility in the application of this transformation.

However, careful consideration is needed to make sure this

transformation is not detrimental when the same memory

structure is accessed in multiple ways. Non-canonical data

layouts [16], [17], [18], [19] have also been used to reduce

memory access latency. Indeed, our approach also uses non-

canonical layouts, however we do so to improve residence for

the caches closest to the processor – sometimes at the expense

of the farther remote caches – when reuse exists across parallel

threads.

In some cases, both, loop and data transformations, are not

able to produce efficient code independently. Cierniak and

Li [20] proposed a technique to unify these two techniques

using mapping and stride vectors. Within the loop nest,

different array structures can use different mapping based on

access pattern, allowing contiguous access in memory space.

Although their techniques are difficult in cases of multiple

references, single reference access transformations work well.

Also, Kandemir [21] proposed an integrated framework that

uses loop transformation for temporal locality and data trans-

formation for spatial locality.

One of the issues applying data transformations is the extra

memory space requirement. Darte [22] proposed a mathe-

matical framework that maps indexes to a limited memory

space. The strategy allows effective use of shared space,

like e.g. scratchpad, and ensures conflict free mapping by

avoiding conflicting elements with simultaneous live. Also,

such a technique can be used to hold intermediate values

and maximize reuse. We believe that our framework can

take advantage of such technique for optimizing restructuring

space.

Data centric optimizations work have also been done with-

out involving data restructuring. Kodukula [23] used data

blocking based on its flow through the memory hierarchy to

optimize memory access. His approach selects a sequence of

blocks that is touched by a processor and executes statements

associated with those blocks. Nevertheless, instances with

complex programs structures and dependencies make this

transformation approach unwieldy.

719



Most of the work presented here in this related section

focuses mainly on a single thread of execution and over-

looks the opportunity of data movement and restructuring that

can benefit a group of thread working gregariously in close

proximity in time and space. Our work attempts to optimize

accesses that enable threads to work together ,improving the

access pattern of shared data where all participating threads

contribute to improve the utilization of a memory subsystem.

VII. FUTURE WORK AND CONCLUSIONS

We have developed a thread collaborative restructuring

strategy, within a hierarchical loop transformation framework,

that makes memory accesses more efficient. As part of our

future work, we plan to investigate the interplay between the

cache’s properties and the restructuring space. For our current

experiments, the inclusiveness of the TileGX cache might

result in the disproportional increase of remote write misses

(L3 write misses). Moreover, the inclusion of hardware support

to help with the restructuring effort (such as DMA engines,

gather and scatter form and to memory, etc) might increase

the performance of this effort considerable. In addition, we

need to characterize the effects of prefetching hardware and

its interplay with the restructuring buffer. A larger set of

architectural features, application codes and data set sizes is

needed to better characterize the effects of the restructuring

buffers.

With current many cores providing processing resources in

abundance, shared resource like memory and bandwidth are

still relatively scant. It stands to be true that memory access

latency has been one of the major performance bottlenecks.

Our technique provides a collaborative view of data manage-

ment, restructuring and execution to improve locality for all

participating parallel threads. We believe such techniques are

essential to improve the utilization of the memory subsystem

and reach next milestone in performance.
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