
Fine Tuning Matrix Multiplications on Multicore

Stéphane Zuckerman, Marc Pérache, and William Jalby

LRC ITACA, University of Versailles and CEA/DAM
{stephane.zuckerman,william.jalby}@prism.uvsq.fr, marc.perache@cea.fr

Abstract. Multicore systems are becoming ubiquituous in scientific
computing. As performance libraries are adapted to such systems, the
difficulty to extract the best performance out of them is quite high. In-
deed, performance libraries such as Intel’s MKL, while performing very
well on unicore architectures, see their behaviour degrade when used on
multicore systems. Moreover, even multicore systems show wide differ-
ences among each other (presence of shared caches, memory bandwidth,
etc.) We propose a systematic method to improve the parallel execution
of matrix multiplication, through the study of the behavior of unicore
DGEMM kernels in MKL, as well as various other criteria. We show that
our fine-tuning can out-perform Intel’s parallel DGEMM of MKL, with
performance gains sometimes up to a factor of two.

Keywords: BLAS, multicore, cache coherency.

1 Introduction

Dense linear algebra, being the first of Berkeley’s seven dwarfs [1], is an impor-
tant part of the scientific programmer’s toolbox. BLAS (Basic Linear Algebra
Subroutines), and in particular its third level, DGEMM (double general matrix
multiplication), are widely used, in particular within dense or banded solvers.
It is then no surprise that decades have been spent studying and improving
this particular set of subroutines. Over time, theoretical complexity has been
improved, while at the same time architecture-conscious algorithms for both
sequential and parallel computations have emerged (cf for example Cannon’s
algorithm [2], Fox’s algorithms [4], or more recently SRUMMA [7] and [3]).

There are some reservation to be asserted, however. First, numerous papers
focused on the square matrix multiplication case, and not the truly general one.
This is particularly damaging because for example the block version of the LU
decomposition relies heavily on rank-k updates which are products of an (N ×k)
matrix by a (k × N) matrix with k, typically between 10 and 100, being much
smaller than N (typically several thousands); [9] studies this matter extensively.
Unfortunately, dealing with these rectangular matrices requires specific strategies
fairly different from the standard, easier, square case.

Second, most of the algorithms proposed have a fairly high level view of the
target architecture and their underlying model is much too coarse to get the
best performance – in terms of gigaflops – of the recent architectures. More

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 30–41, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fine Tuning Matrix Multiplications on Multicore 31

precisely, most of the practical algorithms relies on matrix blocking and spread-
ing the block computations across the processors. However fine tuning (choos-
ing the right block size) is still mandatory to get peak performance. This fine
tuning process is fairly complex because many constraints have to be simulta-
neously taken into account: uniprocessor/core performance, including both ILP
and locality optimization, has to be optimized, coherency traffic/data exchange
between cores has to be minimized and finally the overhead of scheduling the
block computations must remain low. In particular, a systematic methodology
has to be developed to take into account all of these factors which might have
major impact on overall performance. It should be noted that the simpler case
of optimizing unicore performance of a matrix multiplication requires a fairly
complex methodology (relying on experimental architectural characterization,
cf. ATLAS[10]) to reach good performance.

In this paper, we try to develop a parallelization strategy for taking into ac-
count all of the architectural constraints of recent multicore architectures. Our
contributions are twofold. First we experimentally analyze in detail all of the
key factors impacting performance on two rather different multicore architec-
tures (Itanium Montecito and Woodcrest). Second, summarizing our experimen-
tal study, we propose a parallelization strategy and shows its efficiency with
respect to the well known MKL libraries.

This paper is structured as follows: section 2 describes a motivating example
showing the difficulty in selecting the right block sizes, as well as our experi-
mental framework. Section 3 presents experimental analysis of various blocking
strategies. Section 4 presents our parallelization methodology and compares the
resulting codes with Intel’s parallel implementation of MKL.

2 Motivating Example

Experimental Setup
All the experiments shown in this paper have been carried out on the following
architectures:

– A dual-socket Xeon Woodcrest (5130) board with dual-core processors,
2GHz CPU (32GFLOPS 4 cores peak performance), and 533 MHz FSB
(i.e. ≈ 8.6 GB/s). Each dual-core processor has a 4 MB L2-cache shared by
two cores. This machine will be denoted by “x86” in the remaining of this
paper.

– A 4-way SMP node, equipped with dual-core Itanium 2 Montecito proces-
sors (with HyperThreading Technology deactivated1), with 1.6GHz CPU
(51.2GFLOPS 8 cores peak performance). Each core has a private 12MB
L3-cache, 256 kB L2-cache and 667 MHz FSB (i.e., ≈ 10.6 GB/s). This ma-
chine will be denoted as “ia64” in the remaining of this paper.

1 HTT is mainly useful when dealing with I/O-bound programs, much less with
compute-bound ones. Limited testing showed no improvement by using HTT in our
computations, while increasing risks of cache-thrashing.

32 S. Zuckerman, M. Pérache, and W. Jalby

ICC v10.0 and MKL v10.0 were used to make our benchmarks. Two versions
of MKL were used: MKL Parallel denotes the orginal parallel version provided
by Intel, MKL Unicore (or Sequential) refers to the MKL specially tuned for
unicore/sequential use. The operating system is Linux in both cases, with a
2.6.18 kernel.

It should be noted that the MKL Sequential was used as a “black box”. It is a
very high performance library, on both x86 and IA64 architectures. It shows ex-
tremely good results on monocore systems. Thus, aside from the parallel strategy
we describe in section 4, a fair amount of tiling, copying and so forth is being
performed by the MKL sequential functions. For the remaining of the paper,
we will compare our parallelized version of DGEMM based on Sequential MKL
kernels with MKL Parallel.

All of the arrays are stored following the “row major” organization, as we
used C for our programs. Although the original BLAS library is implemented in
FORTRAN, all matrices are stored in a unidimensional array. Experiments show
no significant differences between row- and column-major storage strategies in
the MKL/BLAS library.

Instead of using OpenMP or directly POSIX threads, we used a performant
M:N threading library, Microthread, which was developed internally, and served
as a basis for MPC’s [8] OpenMP runtime. It relies on a fork-join approach as
OpenMP does, but allows for more flexibility – for example by permitting us to
chose to which processor we want to assign a given sub-DGEMM, while reducing
thread handling complexity inherent to classic POSIX threads. Moreover, thread
creation and destruction overheads are kept minimal. However, in terms of per-
formance, the gain offered by Microthread over a solution based on OpenMP
remains limited: between 5 and 10% when block computations are small and
less than 5% when blocks are large. However, on truly small kernels, where the
amount of data makes it difficult to find enough ILP per core, the overhead of
Microthread becomes too large (just like any OpenMP runtime). Of course, this
is a case where parallelizing a task might prove less beneficial than running a
sequential job.

Notations/General Principles of Our Parallelization
For the remainder of this paper, we will look at the simplest form of DGEMM,
which performs the following task : CN1,N3 = AN1,N2 ×BN2,N3 . We denote NBi

the number of blocks resulting from the partitionning of i-th dimension.
Our parallelization strategy relies on a standard decomposition of the three

matrices in blocks ([4, 7]). All of the block computation on a unicore are per-
formed using the MKL library which achieves very good performance on a uni-
core when the blocks fit in the cache. It should be noted that the blocks resulting
from our decomposition are not necessarily square (they can have arbitrary rect-
angular shape) and second our parallelization strategy is not limited to having
a number of block computation exactly equal to the number of available cores.
We allow to have much more block computations than cores, i.e. overloading of
cores is used.

Fine Tuning Matrix Multiplications on Multicore 33

A Simple Performance Test
Figure 1 describes performance variations of various partitionning strategies for
a simple parallel CN,N = AN,10 × B10,N : the X axis (resp. Y axis) refers to
the number of blocks (NB3) along the third dimension (resp. the first dimension
(NB1)). Instead of showing absolute performance numbers, relative performance
(with respect to the best performance) is displayed: the whiter areas corresponds
to best partitionning strategies (i.e. white means between 95% and 100% of the
best performance), while the darker areas identify poor choices of partitionning
parameters.

In the upper three plots (1(a), 1(b), 1(c)) displayed, the size of the matrices
are such that they entirely fit in the L2 (resp. L3) cache of the x86 (resp. ia64).
Now for these three cases, the white area is much narrower: only one or two
partitionning strategies achieve top performance.

In the lower three plots (1(d), 1(e), 1(f)) displayed, the size of the matrices
exceed the L2 (resp. L3) cache size of the x86 (resp. ia64). For these three cases,
the white areas are fairly large, meaning that many partitionning strategies
allow to reach close to the best performance. Now which is much more difficult
to predict is the shape of the white area and why the shapes are so different

(a) x86 2 × 2-core
A500,10 × B10,500

(b) ia64 2 × 2-core
A1000,10 × B10,1000

(c) ia64 4×2-cores A1000,10×
B10,1000

(d) x86 2 × 2-core
A2000,10 × B10,2000

(e) ia64 2 × 2-core
A3000,10 × B10,3000

(f) ia64 4 × 2-core
A4000,10 × B10,4000

Fig. 1. Figure 1(a) (resp. Fig. 1(b), 1(c)): the size of the matrices is such that they
fit entirely within the L2 (resp. L3) cache of the x86 (resp. ia64). For figures fig. 1(d)
(resp. Fig. 1(e), 1(f)), the size of the matrices is such that they exceed the L2 (resp.
L3) cache of the x86 (resp. ia64).

34 S. Zuckerman, M. Pérache, and W. Jalby

between x86 and ia64. Furthermore, it is a bit surprising that the NB1 and
NB3 parameters do not have a similar effect on the ia64.

Our Approach
Our goal is to develop a strategy allowing to identify quickly what are good
choices for the block values NB1, NB2 and NB3. By “good” we mean within
10% of the best performance achievable when varying arbitrarily block sizes.

To achieve that goal, 3 subproblems have to be carefully taken into account:

1. The block computation running on a unicore must be close to top speed. If
the block is too small, there is not enough ILP to get the best performance
of the unicore, loop overhead becomes the main reason for slowdowns. If
the block exceeds the L2/L3 cache size, the blocking method used by MKL
might not be adequate.

2. The number of blocks must be carefully chosen first to achieve a good load
balancing and second to keep a low parallelization overhead.

3. The scheduling of block computations to different cores might induce co-
herency traffic between the cores. For example if a row of C is spread across
several cores, each core will write part of the row, some cache lines being
shared between two cores (cf Section 3.1).

Finally, it is important to note that we are aiming at the best 10% as far as
performance is concerned, which is symbolized by white or light-grey colors on
all our figures.

3 DGEMM Performance Analysis

3.1 Limiting Cache Coherency Traffic

The amount of coherency traffic will depend how blocks are allocated to different
cores. We will use two opposite strategies: Write Columns versus Write Rows.

In the Write Columns scheme, every core is computing and writing into differ-
ent sets of columns of the result matrix C. In this scheme, the A matrix will be
read by all cores while each core will read different sets of B columns. Since C
is stored row-wise, some cachelines (containing C values) can be shared by dif-
ferent cores leading to coherency traffic. The resulting performance, depending
on various blocking strategies are shown in figure 2(b) and 2(c).

In the Write Rows strategy, every core is computing and writing into different
sets of rows of the result C matrix. In this scheme, the B matrix will be read
by all cores while each will read different sets of rows of the A matrix. In this
case, very few cachelines of C are shared between different cores. The resulting
performance, depending on various blocking strategies are shown in figure 3(b)
and 3(c).

The two strategies are illustrated in figure 2(a) and 3(a).
Although best performance between the two strategies is comparable, one

(the Write Columns one) produces a much narrower area of good values for
the good block values. On the other hand, the Write Rows strategy gives us an

Fine Tuning Matrix Multiplications on Multicore 35

(a) Write Columns al-
location strategy

(b) MC 4× 2 cores A1000,100 ×
B100,1000

(c) MC 4× 2 cores A4000,100 ×
B100,4000

Fig. 2. AN,k × Bk,N blocking with a Write Columns strategy

(a) Write Rows alloca-
tion strategy

(b) MC 4× 2 cores A1000,100 ×
B100,1000

(c) MC 4× 2 cores A4000,100 ×
B100,4000

Fig. 3. AN,k × Bk,N blocking with a Write Rows strategy

advantage: the “good” areas encompass the ones in the Write Columns strategy,
but are much larger, hence allowing for a bigger blocking factor without hurting
performance.

This behavior is clearly due to false-sharing of cachelines: when using the
Write Columns strategy, one creates many “frontiers” where a set of cache lines
may be shared between two cores. By ensuring that a single core writes for the
longest possible time in a same set of rows in C, we reduce these “frontiers” to a
minimum. This works because we are in a row-major setup; the strategy would
give inverse results in a column-major one.

3.2 DGEMM Analysis

In this section, we will study three extreme cases of matrix multiplication of
rectangular matrices, which allows us to uncover most of the key problems in
matrix multiplication parallelization. A large set of experiments were carried out.
Only the most impressive ones are shown and analyzed. Moreover, we observed a
continuous performance behavior when varying parameters such as for example k
(where k is the number of columns of A). More precisely, a performance behavior
for k = 20 can be easily interpolated from the behavior of k = 10 and k = 30.

Performance counters were not used for this parallel analysis, because effi-
cient tools that give correct and fine measurements in a multicore environment

36 S. Zuckerman, M. Pérache, and W. Jalby

are almost inexistant. You can find good sequential measurement tools such as
Perfmon or Intel VTune. Of course, the sequential behavior of a given kernel
can help to fine-tune its parallel counterpart (for example, a kernel that already
saturates the main memory bandwidth is going to be trouble in parallel). But
nothing can be said about cache coherency, and additional bus contention due
to several cores trying to write to main memory, for example. However, we do
use performance counters while evaluating unicore performance (cf. section 4).

Both the AN,k ×Bk,k and Ak,k ×Bk,N kernels (studied below) behave well in
a sequential, unicore environment: performance counters tell us that there is no
bandwidth shortage, nor real performance issues.

3.3 Performance Analysis of CN,k = AN,k × Bk,k(Fig. 4)

Since k is small, the only opportunity for parallelization lies in partitioning along
the first dimension. Each core has its own copy of B, and only relevant rows of
A are read. Moreover, writing to C is done row-wise, which prevents most false-
sharing from occurring. In figure 4(a) (x86 4 cores) the three matrices fit within
the cache and minimizing the partitioning on A i.e. NB1 = 4 or 8 is a fairly good
strategy. On the other hand, in fig. 4(b), when we exceed the cache size, larger
partitioning degrees of A are required. In figure 4(c) where the three arrays fit
again in cache, a minimum number of blocks of A is a very good strategy.

(a) x86 2 × 2-core
A2000,k × Bk,k

(b) x86 2 × 2-core
A6000,k × Bk,k

(c) ia64 4×2-core A6000,k×Bk,k

Fig. 4. Figures 4(a), 4(b) (resp. 4(c)) present performance variations of the primitive
CN,k = AN,k ×Bk,k on x86 (resp. ia64). The Y axis refers to the number of horizontal
blocks used for partitioning A and B, while the X axis refers to different values of k.
For each value of k, performance numbers have been normalized with respect to the
best performance number obtained for this value of k. For Figure 4(a) (resp. Fig 4(c)),
the size of the matrices is such that they fit entirely within the L2 (resp. L3) cache of
the x86 (resp. ia64) while for Fig 4(b), the size of the matrices exceed the L2 x86 cache
size.

3.4 Performance Analysis of Ck,N = Ak,k × Bk,N(Fig. 5)

This is the symmetrical counterpart of the previous case. In theory, it should
behave exactly the same way, but in practice, there is a huge performance gap.
Several factors explain this. The first one is that the performance behaviour of the

Fine Tuning Matrix Multiplications on Multicore 37

(a) x86 2×2-core Ak,k×
Bk,2000

(b) x86 2×2-core Ak,k×
Bk,6000

(c) ia64 4×2-core Ak,k×Bk,6000

Fig. 5. Ck,N = Ak,k × Bk,N DGEMMs on x86 (fig. 5(a),5(b)) and ia64 (fig. 5(b))
architectures. Data sets fit in the x86 cache (fig. 5(a)) while data sets in fig. 5(b)
exceed its cache size. Fig. 5(c) presents results on ia64 with a data set fitting in L3.

unicore block MKL kernel Bk,k×Ck,N is fairly different from the performance of
the unicore block kernel (BN,k×Ck,k). Second, generating blocks means dividing
in a column-wise manner, which is prone to provoke false-sharing.

3.5 Performance Analysis of CN,N = AN,k × Bk,N (Fig. 1)

Here we have a combination between the two previous cases, rendering perfor-
mance prediction difficult at best. However, there is a clear trend to see: when
the sub-matrices fit in cache, there is only one good partitionning strategy, i.e.
dividing according to the number of cores. On the contrary, for matrices larger
than cache size (see figures 1(d), 1(e) and 1(f)) higher degrees of partitionning
are required.

3.6 A Quick Summary of These Experiments

First, basic block performance is essential. Second, as long as we are performing
DGEMMs where (sub-)matrices fit in L2 or L3 cache, there is no need to go
further than divide the work according to the number of cores available. How-
ever, as soon as we are on the verge of getting out of cache, it is important to
increase the blocking degree so as to fit in cache once again, with a good se-
quential computation kernel. So far, all our experiments have shown that this
in-cache/out-of-cache strategy (see next section) is sufficient to get good results.

4 A Strategy to Fine-Tune Matrix Multiplication

Methodology for Fine-Tuning DGEMM Parallelization
The major difficulty in the parallelization strategy is in fact the right choice
of block sizes (i.e. partitioning of the matrices). Let us first introduce a few

38 S. Zuckerman, M. Pérache, and W. Jalby

notations. Our focus is the parallelization of the computation of CN1,N3 =
AN1,N2 × BN2,N3 . The number of blocks along the first dimension N1 (resp.
N2, N3) will be denoted NB1 (resp. NB2, NB3). The corresponding block sizes
will be denoted B1, B2, B3, in fact Bi = Ni/NBi, i ∈ {1, 2, 3}.

The first step of the method consists in first benchmarking unicore perfor-
mance of the basic blocks multiplication. This will give us constraints on the
block sizes of the form Bmin

1 < B1 < Bmax
1 (and the similar ones for B2 and

B3), meaning that if B1 satisfies such inequalities, we are within 10% of the
peak performance of a unicore matrix multiply. This step requires systematic
benchmarking and integrates most of the particularities of the underlying uni-
core architecture and of the library used for unicore computations. This step is
done once for all for a given unicore architecture. The results are stored in a
database and used in a later step of our strategy. It should be noted that not only
GFLOPS performance numbers are stored in this database but also bandwidth
consumption between the various cache levels (this is obtained by measuring
cache misses using hardware counters).

The second step consists in exhaustively searching all of the partitionings such
that:

1. The resulting block sizes satisfy the unicore good performance constraints
2. The sum of the sizes of the three blocks (corresponding to an elementary

block computation) is less than a quarter of the last level cache size B1B2 +
B1B3 +B2B3 < CS/4. Aiming at using only a quarter of the available cache
size, allows us to be on the safe side (i.e. being sure that the three blocks
remain in cache) and second results still in good cache miss ratio due to the
large size of L2 and L3 caches

3. The quantity NB1 × NB2 × NB3 is a multiple of the number of cores (to
insure perfect load balancing). If NB1×NB2×NB3 is less than the number
of available cores, the number of cores used is reduced accordingly to still
match the load balancing constraint

Then in third step, all of the solutions are lexicographically sorted according
to the values of NB1, NB2 NB3. This sort aims at taking into account the fact
that from the parallelization point of view the three dimensions are far from
being equivalent:

– partitioning along the first dimension induces a simple parallel construct
(DOALL type) with minimal overhead and the induced partitioning on ma-
trix C is row-wise and does not induce false-sharing

– partitioning along the third dimension induces also a simple parallel con-
struct with minimal overhead but the induced partitioning on the C matrix
is column-wise and will generate false-sharing of cache lines

– partitioning along the second dimension is more complex because it requires
synchronization to accumulate the results. In our parallelization strategy, we
chose to perform the block computations in parallel, each core accumulating
in a different temporary array. Once all of the blocks have been computed,
a single core sums up all of the temporary arrays into the final C block.

Fine Tuning Matrix Multiplications on Multicore 39

(a) x86 2 × 2-core A2000,k × Bk,2000 (b) ia64 2 × 2-core A3000,k × Bk,3000

(c) ia64 4×2-core A4000,k×Bk,4000

Fig. 6. Intel’s parallel MKL/DGEMM versus our own parallelization

Therefore, the final solution picked up is the one corresponding with the min-
imum NB2 value, then the minimum NB3 value; this corresponds to a lexico-
graphic sort of the solutions. However, in order to minimize cache thrashing,
it is important that each thread is given “contiguous” blocks: for each block of
lines in A, a given thread which has not reached its maximum number of tasks
is given a certain amount of “contiguous” blocks in B.

Very convincing results were obtained using our parallelization strategy (see
fig. 6). The most impressive ones relate to the CN,N = AN,k ×Bk,N case, where
operands do not fit in cache. This is due to the fact that MKL uses a constant
strategy of minimizing the number of blocks used (the number of blocks MKL
uses is exactly equal to the number of cores). When operands fit in cache, this
strategy works fairly well (except in Ck,N = Ak,k × Bk,N) but performs poorly
when operands do no longer fit in cache. Although these experiments show how
much gain can be obtained with a good parallel strategy, the results are far from
reaching peak performance. On the CN,N = AN,k ×Bk,N case, there are almost
ten times more memory writes than memory reads – i.e., even though there is
enough ILP to exploit per core here, writing the results back to memory is tried
all at once by all the cores, hence saturating the memory bus.

Comparison with Related Work
ATLAS. ATLAS [10] is a powerful “auto-tuned” library, i.e. upon installa-
tion, it performs various measurements (such as determining cache latencies
and throughput) in order to choose the best computation kernel adapted to the

40 S. Zuckerman, M. Pérache, and W. Jalby

underlying system. These kernels are either already supplied by expert program-
mers for a given architecture, or code generated when the underlying system is
unknown. ATLAS relies mainly on a good blocking strategy which mixes hand-
tuned kernels as well as automatically-generated code at install-time to produce
a highly optimized BLAS library. It can also be built into multithreaded library.
However, first the number of cores thus supported is fixed, and can never be in-
creased at run-time: one must recompile the whole library each time the number
of cores change. Second, ATLAS cannot take easily advantage of already existing
DGEMM libraries: it requires very specific kernels.

GotoBLAS. On the opposite side, the GotoBLAS [5, 6] provide a highly hand-
tuned BLAS library, with computation kernels programmed directly in assembly
language, and very efficient sequential performance as a result. However, these
kernels work only on very specific systems (those for which the kernels exist),
and do not exactly respect the BLAS semantics (contrary to ATLAS and Intel
MKL). Thus, although the changes to one’s code are minimal, one can not simply
“swap” BLAS libraries with GotoBLAS.

Our approach. It differs from ATLAS and GotoBLAS in different ways. AT-
LAS and GotoBLAS are above all a work to take advantage of sequential perfor-
mance. They provide hand-tuned and automatically-tuned BLAS libraries, with
an emphasis on blocking. Our approach aims parallel performance only, relying
on good sequential BLAS routines. More precisely, our blocking strategy focuses
only on parallel performance, with parallel criteria in mind, i.e. sequential ones,
as well as memory contention, false-sharing risks, etc. We could take the kernels
provided by ATLAS or (with some code modifications) GotoBLAS. Although
ATLAS does provides a way to get multi-thread BLAS, this number must be
fixed at compile-time, while our method scales with the number of cores.

5 Conclusion

Although matrix multiplication seems to be a solved problem at first, it is clear
that in the parallel case and for shared memory systems, a large amount of work
remains to be done to get peak performance. It is not enough to use a good
and efficient unicore library. Special care has to be taken to take into account
behavior of such libraries which are far from being uniform when varying matrix
sizes. To get the best out of the MKL in our case, it was necessary to make
various trade-offs between data locality, false-sharing avoidance, load-balancing,
sequential kernel selection (to get the best sub-DGEMMs cases when distributing
tasks) and memory bus contention. This has enabled us to get as much as twice
the performance offered by the MKL parallelized by Intel in the best case, in a
systematic manner. The methodology we propose is fairly systematic and can
be easily automated. However it should be noted that for some specific (small)
matrix sizes, the performance obtained is far from peak, due probably to a lack
of performance of a unicore version. Further work include improving such cases
by generating better unicore kernels then developing a fully automated version
of the library and dealing with ccNUMA aspects for larger multicore systems.

Fine Tuning Matrix Multiplications on Multicore 41

References

[1] Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: A view from berkeley. Technical report,
EECS Department, Univ. of California, Berkeley (December 2006)

[2] Cannon, L.E.: A cellular computer to implement the kalman filter algorithm. Ph.D
thesis (1969)

[3] Chan, E., Quintana-Orti, E.S., Quintana-Orti, G., van de Geijn, R.: Supermatrix
out-of-order scheduling of matrix operations for smp and multi-core architectures.
In: SPAA 2007: Proceedings of the nineteenth annual ACM symposium on Parallel
algorithms and architectures, pp. 116–125. ACM, New York (2007)

[4] Fox, G.C., Furmanski, W., Walker, D.W.: Optimal matrix algorithms on homoge-
neous hypercubes. In: Proceedings of the 3rd conference on Hypercube concurrent
computers and applications. ACM, New York (1988)

[5] Goto, K., van de Geijn, R.: High performance implementation of the level-3. Trans-
actions on Mathematical Software 35(1) (2008)

[6] Goto, K., van de Geijn, R.A.: Anatomy of a high-performance matrix multiplica-
tion. Transactions on Mathematical Software 34(3) (2008)

[7] Krishnan, M., Nieplocha, J.: Srumma: A matrix multiplication algorithm suitable
for clusters and scalable shared memory systems. In: IPDPS (2004)

[8] Marc Pérache, H.J., Namyst, R.: Mpc: a unified parallel runtime for clusters of
numa machines. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 78–88. Springer, Heidelberg (2008)

[9] Matthias Christen, O.S., Burkhart, H.: Graphical processing units as co-processors
for hardware-oriented numerical solvers. In: Workshop PARS 2007 (2006)

[10] Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of
software and the ATLAS project. In: Parallel Computing (2001)

	Fine Tuning Matrix Multiplications on Multicore
	Introduction
	Motivating Example
	DGEMM Performance Analysis
	Limiting Cache Coherency Traffic
	DGEMM Analysis
	Performance Analysis of $C_{N,k} = A_{N,k} x B_{k,k}(Fig. 4)$
	Performance Analysis of $C_{k,N} = A_{k,k} x B_{k,N}(Fig. 5)$
	Performance Analysis of $C_{N,N} = A_{N,k} x B_{k,N} (Fig. 1)$
	A Quick Summary of These Experiments

	A Strategy to Fine-Tune Matrix Multiplication
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

