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Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS

F95000, Cergy, France

January 16, 2019

S.Zuckerman (ETIS) Pthreads January 16, 2019 1 / 47



Outline

1 Resources

2 Introduction
An Introduction to Multithreading
Processes and Threads Layouts in Memory

3 PThreads Basics
A Short Introduction to POSIX Threads
PThreads Program Examples

4 Where to Learn More

S.Zuckerman (ETIS) Pthreads January 16, 2019 2 / 47



Resources

Resources

S.Zuckerman (ETIS) Pthreads January 16, 2019 3 / 47



Resources

Resources

I . . . The MAN pages!

Seriously, that’s pretty much all you need.

I If you really want to read a book about it, you can consult W.
Richard Stevens’ Advanced Programming in the UNIX
Environment (Stevens and Rago 2013).

I Another excellent resource (in French) is Christophe Blaess’
Programmation système en C sous Linux: Signaux, processus,
threads, IPC et sockets (Blaess 2011).
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Introduction An Introduction to Multithreading

An Introduction to Multithreading

Processes: a Definition

A process is a set of instructions with its own memory space which is
accessed privately. A process is composed of a sequence of instructions (its
code), as well as input and output sets (its data). Accessing the memory
allocated to a process is in general forbidden unless specific mechanisms
are being used, such as inter-process communication functions (IPCs).

Threads: a Definition

A thread is a sequence of code that is part of a process. Consequently,
processes contain at least one thread. All threads belonging to the same
process share the same address space, and thus can access the same
memory locations.
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Introduction An Introduction to Multithreading

Processes and Threads: the Bare Minimum to Know

Process

I A list of instructions

I Some memory to access with the guarantee it is exclusive to the
process

A stack to store current values with which to compute
A heap to store bigger objects that don’t fit in the stack

Thread

I A list of instructions

I A memory space

A stack to store current values with which to compute (private to the
thread)
Some heap space, shared between threads belonging to the same
process
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Introduction An Introduction to Multithreading

Various Kinds of Multithreading

I User threads

I Kernel threads

I Hybrid (M × N) threads
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Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47



Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47



Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47



Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47



Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47



Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47



Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47



Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47



Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47



Introduction An Introduction to Multithreading

Characteristics of User Threads

I 1 thread per kernel process

I Simple to implement

I Threads libraries were initially implemented this way

I Very fast: fully running in user space

I Not really suited to SMP and CMP architectures

I Usually handle system calls badly

I Example of “popular” user thread library: GNU Pth
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Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course
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Introduction An Introduction to Multithreading

Characteristics of Kernel Threads

I N kernel threads

I Well suited to SMP and CMP architectures

I Handles system calls nicely

I Completely managed at the system level

I Complex to implement

I Slower than user threads (overheads due to entering kernel space)

I Example of “popular” user thread libraries: Windows Threads,
LinuxThreads, NPTL
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Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course
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Introduction An Introduction to Multithreading

Characteristics of Hybrid Threads

I M kernel threads and N user threads: hybrid threads are also called
M × N threads (or sometimes M : N threads)

I Well suited to SMP and CMP architectures

I Most Complex to implement

I Two schedulers:

Kernel Space Scheduler
User Space Scheduler

I Efficient

I Handles system calls “well enough” (better than user threads, less
than kernel threads)

I Examples of M × N thread libraries: Solaris’ default thread library
(until Solaris v10), MPC, most efficient implementations of
OpenMP’s runtime system.
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Process Layout in Memory
An Example Implementation in the Linux OS
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Introduction Processes and Threads Layouts in Memory

Thread Layout in Memory
An Example Implementation in the Linux OS
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Introduction Processes and Threads Layouts in Memory

A Thread’s Characteristics
An Example Implementation in the Linux OS

I All threads share the same address space

I A thread’s stack never grows (except for Thread 0)

I A thread’s stack is located in the heap (except for Thread 0)

I Global variables are shared by all threads

I Threads communicate directly through memory
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PThreads Basics A Short Introduction to POSIX Threads

A Short Introduction to POSIX Threads

I Based on the IEEE POSIX 1003.1 standard

I Any POSIX-compliant system (i.e., UNIX and Linux at the very least)
implement the PThread standard:

Linux implements PThreads using kernel threads
Solaris used to implement PThreads as an M × N library, but now it
is implemented as a kernel thread library
OpenBSD used to have a user-level PThread library, but now uses
kernel-level one
There are a few third-party libraries to provide a source compatibility
with PThreads on MS-Windows systems

I Are PThreads lightweight processes?

Well, a lightweight process, in essence, is a kernel thread. So if your
PThread library is implemented as kernel threads, then yes.
In general, the answer is “it depends”
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PThreads Basics A Short Introduction to POSIX Threads

What We Will See in this Tutorial

I How to create and destroy threads

I How to make threads synchronize with each other
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PThreads Basics A Short Introduction to POSIX Threads

PThreads: Basic Types

pthread t A PThread descriptor and ID
pthread mutex t A lock for PThreads
pthread cond t A conditional variable. It is necessarily associated

with a mutex

pthread attr t Descriptor for a PThread’s properties
(e.g., scheduling hints)

pthread mutexattr t Descriptor for mutex’ properties (e.g.,
private to the process or shared between processes;
recursive or not; etc.)

pthread condattr t Descriptor for a condition variable (e.g., private
to the process, or shared between processes)
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PThreads Basics A Short Introduction to POSIX Threads

PThreads: Basic Functions
Creation and Destruction

Creation

int pthread create( pthread t* thd id, pthread attr t* attr,

void* (*code)(void*), void* data )

Creates a new PThread, using its descriptor reference, the required attributes
(or NULL for default attributes), a function pointer, and an argument pointer.
The function returns 0 if it succeeded, and −1 otherwise. The descriptor is filled
and becomes “active” if the call succeeded.

Destruction

int pthread join( pthread t tid, void** retval )

Waits for the PThread with ID tid to return, and stores its return value
retval. If retval is NULL, the return value is discarded. pthread join returns
0 on success, and −1 otherwise.

Note: Calling exit(3) from any thread will terminate the whole process, and
thus all threads will also terminate!
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PThreads Basics A Short Introduction to POSIX Threads

Usual PThread Calls from Within a Thread

void pthread exit( void* retval )

Exits from the thread calling the function. If retval is not NULL, it
contains the return value of the thread to pthread join (see below).

pthread t pthread self( void )

Retrieves a thread’s own ID.
Note: pthread t, while often implemented as an integer, does not have
to be!
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PThreads Basics PThreads Program Examples

A First PThread Example
Hello, World! . . . Headers and worker function

#include <stdio.h> // for snprintf (), fprintf (), printf (), puts ()

#include <stdlib.h> // for exit ()

#include <errno.h> // for errno (duh !)

#include <pthread.h> // for pthread_*

#define MAX_NUM_WORKERS 4UL

typedef struct worker_id_s { unsigned long id } worker_id_t;

void* worker(void* arg)

{

// Remember , pthread_t objects are descriptors , not just IDs!

worker_id_t* self = (worker_id_t *) arg; // Retrieving my ID

char hello [100]; // To print the message

int err = snprintf(hello , sizeof(hello),

"[%lu]\t Hello , World!\n", self ->id);

if (err < 0) { perror("snprintf"); exit(errno); }

puts(hello);

return arg; // so that the "master" thread

// knows which thread has returned

}
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PThreads Basics PThreads Program Examples

A First PThread Example
Hello, World! . . . main

#define ERR_MSG(prefix ,...) \

fprintf(stderr ,prefix " %lu out of %lu threads",__VA_ARGS__)

int main(void) {

pthread_t workers [ MAX_NUM_WORKERS ];

worker_id_t worker_ids [ MAX_NUM_WORKERS ];

puts("[main]\ tCreating workers ...\n");

for (unsigned long i = 0; i < MAX_NUM_WORKERS; ++i) {

worker_ids[i].id = i;

if (0 != pthread_create (& workers[i], NULL , worker , &worker_ids[i]))

{ ERR_MSG("Could not create thread", i, MAX_NUM_WORKERS );

exit(errno); }

}

puts("[main]\ tJoining the workers ...\n");

for (unsigned long i = 0; i < MAX_NUM_WORKERS; ++i) {

worker_id_t* wid = (worker_id_t *) retval;

if (0 != pthread_join(workers[i], (void **) &retval ))

ERR_MSG("Could not join thread", i, MAX_NUM_WORKERS );

else

printf("[main]\ tWorker N.%lu has returned !\n", wid ->id);

}

return 0;}
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PThreads Basics PThreads Program Examples

A First PThread Example
Hello, World! . . . Output

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c hello.c

gcc -o hello hello.o -lpthread

. . . Don’t forget to link with the PThread library!

. . . And the output:

Output of ./hello

[main] Creating workers...

[0] Hello, World!

[main] Joining the workers...

[2] Hello, World!

[main] Worker N.0 has returned!

[1] Hello, World!

[3] Hello, World!

[main] Worker N.1 has returned!

[main] Worker N.2 has returned!

[main] Worker N.3 has returned!
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PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code

#ifndef BAD_GLOBAL_SUM_H

#define BAD_GLOBAL_SUM_H

#include <stdio.h>

#include <stdlib.h>

#include "utils.h"

typedef struct bad_global_sum_s {

unsigned long *value;

} bad_global_sum_t;

#endif // BAD_GLOBAL_SUM_H

Figure: bad global sum.h
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PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code (2)

#include "bad_global_sum.h"

#define MAX_NUM_WORKERS 20UL

typedef unsigned long ulong_t;

void* bad_sum(void* frame) {

bad_global_sum_t* pgs = (bad_global_sum_t *) frame;

++*pgs ->value;

return NULL;

}

int main(void) {

pthread_t threads [ MAX_NUM_WORKERS ];

bad_global_sum_t frames [ MAX_NUM_WORKERS ];

ulong_t counter = 0;

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {

frames[i]. value = &counter;

spthread_create (& threads[i],NULL ,bad_sum ,& frames[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)

spthread_join(threads[i],NULL);

printf("%lu threads were running. Sum final value: %lu\n", MAX_NUM_WORKERS , counter );

return 0;

}
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PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code (3)

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c bad_sum_pthreads.c

gcc -o badsum bad_sum_pthreads.o -lpthread

. . . Don’t forget to link with the PThread library!

Output of ./badsum

szuckerm@evans201g:bad$ ./badsum

20 threads were running. Sum final value: 20

Hey, it’s working!

Multiple executions of ./badsum

szuckerm@evans201g:bad$ (for i in ‘seq 100‘;do ./badsum ;done)|uniq

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

Waiiiiit a minute. . .
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PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code (3)
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PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Fixing the Implementation

Mutexes

A MUTual EXclusive object (or mutex) is a synchronization object which
is either owned by a single thread, or by no-one. It is the basic block to
create critical sections.

#ifndef GLOBAL_SUM_H

#define GLOBAL_SUM_H

#include <stdio.h>

#include <stdlib.h>

#include "utils.h"

typedef struct global_sum_s {

unsigned long *value;

pthread_mutex_t *lock;

} global_sum_t;

#endif // GLOBAL_SUM_H

Figure: global sum.hS.Zuckerman (ETIS) Pthreads January 16, 2019 30 / 47



PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Fixing the Implementation (2)

#include "global_sum.h"

#define MAX_NUM_WORKERS 20UL

typedef unsigned long ulong_t;

void* sum(void* frame) {

global_sum_t* gs = (global_sum_t *) frame;

spthread_mutex_lock ( gs->lock ); /* Critical section starts here */

++*gs->value;

spthread_mutex_unlock ( gs ->lock ); /* Critical section ends here */

return NULL;

}

int main(void) {

pthread_t threads [ MAX_NUM_WORKERS ];

global_sum_t frames [ MAX_NUM_WORKERS ];

ulong_t counter = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {

frames[i] = (global_sum_t ){ .value = &counter , .lock = &m };

spthread_create (& threads[i],NULL ,sum ,& frames[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)

spthread_join(threads[i],NULL);

printf("%lu threads were running. Sum final value: %lu\n", MAX_NUM_WORKERS , counter );

return 0;

} Figure: sum pthreads.c
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PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Fixing the Implementation (3)

Compilation Process
gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c sum_pthreads.c

gcc -o sum sum_pthreads.o -lpthread

. . . Don’t forget to link with the PThread library!

Multiple executions of ./sum

szuckerm@evans201g:good$ (for i in ‘seq 100‘;do ./sum ;done)|uniq

20 threads were running. Sum final value: 20

Fixed!
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PThreads Basics PThreads Program Examples

Reacting on Specific Events I
Condition Variables

Condition variables

Condition variables are used when threads are waiting on a specific event.
When the event occurs, the code where it the event was realized signals a
condition variable, either to wake up one of the threads waiting on the
event, or all of them.

Examples of Events to Be Worth Signaling

I Availability of a resource, e.g.:

A file descriptor for a network connection,
A file descriptor for accessing (reading or writing) a regular file,
Any device handle, really

I A specific input provided by the user (string provided by the user, etc.)

I etc.
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PThreads Basics PThreads Program Examples

Reacting on Specific Events II
Condition Variables

High-Level Explanation: Waiting on a Condition

1 A condition variable is always associated with a mutex

2 To wait on an event, a thread must first acquire the mutex, then

3 Call int pthread cond wait( pthread cond t* cond,

pthread mutex t* mutex )

4 If the call succeeds, then the thread releases the mutex

5 When the condition variable is signaled, if the thread which was
“asleep” is re-awakened, the system first returns ownership of the
mutex back to it
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PThreads Basics PThreads Program Examples

Reacting on Specific Events III
Condition Variables

High-Level Explanation: Signaling an Event Has Occurred

There are two function calls to perform this function:

I int pthread cond signal( pthread cond t* cond )

To signal a single thread that the event has occurred. Note: there is no
guarantee as to which thread will wake

I int pthread cond broadcast( pthread cond t* cond )

To signal all threads that the event has occurred.

S.Zuckerman (ETIS) Pthreads January 16, 2019 35 / 47



PThreads Basics PThreads Program Examples

Reacting on Specific Events
Condition Variables

#ifndef BARRIER_H

#define BARRIER_H

#define SET_BARRIER_MSG (...) \

snprintf(buffer , sizeof(buffer), __VA_ARGS__)

#define NOT_LAST_TO_REACH \

"[%lu]\tI’m NOT the last one to reach the barrier!"

#define LAST_TO_REACH \

"[%lu]\tI am the last to reach the barrier! Waking up the others."

typedef struct barrier_s {

pthread_mutex_t *lock;

pthread_cond_t *cond;

ulong_t *count;

} barrier_t;

typedef struct context_s {

barrier_t* barrier;

ulong_t id;

} context_t;

#endif // BARRIER_H

Figure: barrier.h
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Reacting on Specific Events
Condition Variables (2)

#include "barrier.h"

void* worker(void* frame );

int main(void) {

pthread_t threads [ MAX_NUM_WORKERS ];

context_t contexts [ MAX_NUM_WORKERS ];

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

ulong_t count = MAX_NUM_WORKERS;

barrier_t barrier = {.lock = &m, .cond = &cond , .count = &count};

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {

contexts[i] = (context_t ){ .barrier = &barrier , .id = i };

spthread_create (& threads[i],NULL ,worker ,& contexts[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)

spthread_join(threads[i],NULL);

return 0;

}

Figure: barrier main.c
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PThreads Basics PThreads Program Examples

Reacting on Specific Events
Condition Variables (3)

#include "barrier.h"

void* worker(void* frame) {

char buffer [81];

context_t* c = (context_t *) frame;

printf("[%lu]\ tReaching the barrier ...\n",c->id);

spthread_mutex_lock ( c->barrier ->lock );

--*c->barrier ->count;

if (*c->barrier ->count > 0) {

SET_BARRIER_MSG(NOT_LAST_TO_REACH , c->id);

spthread_cond_wait ( c->barrier ->cond , c->barrier ->lock );

} else {

SET_BARRIER_MSG(LAST_TO_REACH , c->id);

}

puts(buffer );

spthread_mutex_unlock ( c->barrier ->lock );

pthread_cond_broadcast( c->barrier ->cond );

printf("[%lu]\ tAfter the barrier\n", c->id);

return NULL;

} Figure: barrier.c
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Reacting on Specific Events
Condition Variables (4)

szuckerm@evans201g:condvar$ gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c barrier.c

szuckerm@evans201g:condvar$ gcc -o barrier barrier.o -lpthread

szuckerm@evans201g:condvar$ ./barrier

[0] Reaching the barrier...

[2] Reaching the barrier...

[1] Reaching the barrier...

[3] Reaching the barrier...

[4] Reaching the barrier...

[5] Reaching the barrier...

[7] Reaching the barrier...

[6] Reaching the barrier...

[6] I am the last to reach the barrier! Waking up the others.

[6] After the barrier

[0] I’m NOT the last one to reach the barrier!

[0] After the barrier

[1] I’m NOT the last one to reach the barrier!

[1] After the barrier

[2] I’m NOT the last one to reach the barrier!

[2] After the barrier

[3] I’m NOT the last one to reach the barrier!

[3] After the barrier

[4] I’m NOT the last one to reach the barrier!

[4] After the barrier

[5] I’m NOT the last one to reach the barrier!

[5] After the barrier

[7] I’m NOT the last one to reach the barrier!

[7] After the barrier
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Creating Barriers More Easily

I “Hey, barriers are nice! I wish I could have a more practical construct,
though.”

I . . . Well actually, did I tell you about PThread barriers?

pthread barrier t and its associated functions

I int pthread barrier init( pthread barrier t restrict* barrier, const

pthread barrierattr t *restrict attr, unsigned count )

I int pthread barrier destroy( pthread barrier t restrict* barrier )

I int pthread barrier wait( pthread barrier t restrict* barrier )
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Updated Barrier Program
Using PThread Barriers

#ifndef BARRIER_H

#define BARRIER_H

#include "utils.h"

#define MAX_NUM_WORKERS 8UL

typedef unsigned long ulong_t;

typedef struct context_s {

pthread_barrier_t* barrier;

ulong_t id;

} context_t;

#endif // BARRIER_H Figure: pth barrier.h

#include "barrier.h"

void* worker(void* frame) {

context_t* c = (context_t *) frame;

printf("[%lu]\ tReaching the barrier ...\n",c->id);

spthread_barrier_wait( c->barrier );

printf("[%lu]\ tAfter the barrier\n", c->id);

return NULL;

} Figure: pth barrier.c (1)
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Updated Barrier Program
Using PThread Barriers (2)

#include "barrier.h"

int main(void) {

pthread_t threads [ MAX_NUM_WORKERS ];

context_t contexts [ MAX_NUM_WORKERS ];

ulong_t count = MAX_NUM_WORKERS;

pthread_barrier_t barrier;

spthread_barrier_init (&barrier ,NULL ,count);

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {

contexts[i] = (context_t ){ .barrier = &barrier , .id = i };

spthread_create (& threads[i],NULL ,worker ,& contexts[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)

spthread_join(threads[i],NULL);

spthread_barrier_destroy (& barrier );

return 0;

} Figure: pth barrier.c (2)
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Where to Learn More
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Where to Learn More

Learning More About Multi-Threading and PThreads

Books (from most theoretical to most practical)

I Tanenbaum 2007

I Herlihy and Shavit 2008

I Bovet and Cesati 2002

I Stevens and Rago 2013

Internet Resources

I “POSIX Threads Programmings” at
https://computing.llnl.gov/tutorials/pthreads/

I “Multithreaded Programming (POSIX pthreads Tutorial)” at
http://randu.org/tutorials/threads/

Food for Thoughts

I Sutter 2005 (available at http://www.gotw.ca/publications/concurrency-ddj.htm)

I Lee 2006 (available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf)

I Boehm 2005 (available at www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf)
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