
Introduction to Pthreads
Under the hood of OpenMP on UNIX/Linux

Stéphane Zuckerman

Laboratoire ETIS
Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS

F95000, Cergy, France

January 16, 2019

S.Zuckerman (ETIS) Pthreads January 16, 2019 1 / 47

Outline

1 Resources

2 Introduction
An Introduction to Multithreading
Processes and Threads Layouts in Memory

3 PThreads Basics
A Short Introduction to POSIX Threads
PThreads Program Examples

4 Where to Learn More

S.Zuckerman (ETIS) Pthreads January 16, 2019 2 / 47

Resources

Resources

S.Zuckerman (ETIS) Pthreads January 16, 2019 3 / 47

Resources

Resources

I . . . The MAN pages!

Seriously, that’s pretty much all you need.

I If you really want to read a book about it, you can consult W.
Richard Stevens’ Advanced Programming in the UNIX
Environment (Stevens and Rago 2013).

I Another excellent resource (in French) is Christophe Blaess’
Programmation système en C sous Linux: Signaux, processus,
threads, IPC et sockets (Blaess 2011).

S.Zuckerman (ETIS) Pthreads January 16, 2019 4 / 47

Resources

Resources

I . . . The MAN pages!

Seriously, that’s pretty much all you need.

I If you really want to read a book about it, you can consult W.
Richard Stevens’ Advanced Programming in the UNIX
Environment (Stevens and Rago 2013).

I Another excellent resource (in French) is Christophe Blaess’
Programmation système en C sous Linux: Signaux, processus,
threads, IPC et sockets (Blaess 2011).

S.Zuckerman (ETIS) Pthreads January 16, 2019 4 / 47

Introduction

Introduction

S.Zuckerman (ETIS) Pthreads January 16, 2019 5 / 47

Introduction An Introduction to Multithreading

An Introduction to Multithreading

Processes: a Definition

A process is a set of instructions with its own memory space which is
accessed privately. A process is composed of a sequence of instructions (its
code), as well as input and output sets (its data). Accessing the memory
allocated to a process is in general forbidden unless specific mechanisms
are being used, such as inter-process communication functions (IPCs).

Threads: a Definition

A thread is a sequence of code that is part of a process. Consequently,
processes contain at least one thread. All threads belonging to the same
process share the same address space, and thus can access the same
memory locations.

S.Zuckerman (ETIS) Pthreads January 16, 2019 6 / 47

Introduction An Introduction to Multithreading

Processes and Threads: the Bare Minimum to Know

Process

I A list of instructions

I Some memory to access with the guarantee it is exclusive to the
process

A stack to store current values with which to compute
A heap to store bigger objects that don’t fit in the stack

Thread

I A list of instructions

I A memory space

A stack to store current values with which to compute (private to the
thread)
Some heap space, shared between threads belonging to the same
process

S.Zuckerman (ETIS) Pthreads January 16, 2019 7 / 47

Introduction An Introduction to Multithreading

Various Kinds of Multithreading

I User threads

I Kernel threads

I Hybrid (M × N) threads

S.Zuckerman (ETIS) Pthreads January 16, 2019 8 / 47

Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47

Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47

Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47

Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47

Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47

Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47

Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47

Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47

Introduction An Introduction to Multithreading

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 9 / 47

Introduction An Introduction to Multithreading

Characteristics of User Threads

I 1 thread per kernel process

I Simple to implement

I Threads libraries were initially implemented this way

I Very fast: fully running in user space

I Not really suited to SMP and CMP architectures

I Usually handle system calls badly

I Example of “popular” user thread library: GNU Pth

S.Zuckerman (ETIS) Pthreads January 16, 2019 10 / 47

Introduction An Introduction to Multithreading

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 11 / 47

Introduction An Introduction to Multithreading

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 11 / 47

Introduction An Introduction to Multithreading

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 11 / 47

Introduction An Introduction to Multithreading

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 11 / 47

Introduction An Introduction to Multithreading

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 11 / 47

Introduction An Introduction to Multithreading

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 11 / 47

Introduction An Introduction to Multithreading

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 11 / 47

Introduction An Introduction to Multithreading

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 11 / 47

Introduction An Introduction to Multithreading

Characteristics of Kernel Threads

I N kernel threads

I Well suited to SMP and CMP architectures

I Handles system calls nicely

I Completely managed at the system level

I Complex to implement

I Slower than user threads (overheads due to entering kernel space)

I Example of “popular” user thread libraries: Windows Threads,
LinuxThreads, NPTL

S.Zuckerman (ETIS) Pthreads January 16, 2019 12 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

S.Zuckerman (ETIS) Pthreads January 16, 2019 13 / 47

Introduction An Introduction to Multithreading

Characteristics of Hybrid Threads

I M kernel threads and N user threads: hybrid threads are also called
M × N threads (or sometimes M : N threads)

I Well suited to SMP and CMP architectures

I Most Complex to implement

I Two schedulers:

Kernel Space Scheduler
User Space Scheduler

I Efficient

I Handles system calls “well enough” (better than user threads, less
than kernel threads)

I Examples of M × N thread libraries: Solaris’ default thread library
(until Solaris v10), MPC, most efficient implementations of
OpenMP’s runtime system.

S.Zuckerman (ETIS) Pthreads January 16, 2019 14 / 47

Introduction Processes and Threads Layouts in Memory

Process Layout in Memory
An Example Implementation in the Linux OS

S.Zuckerman (ETIS) Pthreads January 16, 2019 15 / 47

Introduction Processes and Threads Layouts in Memory

Thread Layout in Memory
An Example Implementation in the Linux OS

S.Zuckerman (ETIS) Pthreads January 16, 2019 16 / 47

Introduction Processes and Threads Layouts in Memory

A Thread’s Characteristics
An Example Implementation in the Linux OS

I All threads share the same address space

I A thread’s stack never grows (except for Thread 0)

I A thread’s stack is located in the heap (except for Thread 0)

I Global variables are shared by all threads

I Threads communicate directly through memory

S.Zuckerman (ETIS) Pthreads January 16, 2019 17 / 47

PThreads Basics

PThreads Basics

S.Zuckerman (ETIS) Pthreads January 16, 2019 18 / 47

PThreads Basics A Short Introduction to POSIX Threads

A Short Introduction to POSIX Threads

I Based on the IEEE POSIX 1003.1 standard

I Any POSIX-compliant system (i.e., UNIX and Linux at the very least)
implement the PThread standard:

Linux implements PThreads using kernel threads
Solaris used to implement PThreads as an M × N library, but now it
is implemented as a kernel thread library
OpenBSD used to have a user-level PThread library, but now uses
kernel-level one
There are a few third-party libraries to provide a source compatibility
with PThreads on MS-Windows systems

I Are PThreads lightweight processes?

Well, a lightweight process, in essence, is a kernel thread. So if your
PThread library is implemented as kernel threads, then yes.
In general, the answer is “it depends”

S.Zuckerman (ETIS) Pthreads January 16, 2019 19 / 47

PThreads Basics A Short Introduction to POSIX Threads

What We Will See in this Tutorial

I How to create and destroy threads

I How to make threads synchronize with each other

S.Zuckerman (ETIS) Pthreads January 16, 2019 20 / 47

PThreads Basics A Short Introduction to POSIX Threads

PThreads: Basic Types

pthread t A PThread descriptor and ID
pthread mutex t A lock for PThreads
pthread cond t A conditional variable. It is necessarily associated

with a mutex

pthread attr t Descriptor for a PThread’s properties
(e.g., scheduling hints)

pthread mutexattr t Descriptor for mutex’ properties (e.g.,
private to the process or shared between processes;
recursive or not; etc.)

pthread condattr t Descriptor for a condition variable (e.g., private
to the process, or shared between processes)

S.Zuckerman (ETIS) Pthreads January 16, 2019 21 / 47

PThreads Basics A Short Introduction to POSIX Threads

PThreads: Basic Functions
Creation and Destruction

Creation

int pthread create(pthread t* thd id, pthread attr t* attr,

void* (*code)(void*), void* data)

Creates a new PThread, using its descriptor reference, the required attributes
(or NULL for default attributes), a function pointer, and an argument pointer.
The function returns 0 if it succeeded, and −1 otherwise. The descriptor is filled
and becomes “active” if the call succeeded.

Destruction

int pthread join(pthread t tid, void** retval)

Waits for the PThread with ID tid to return, and stores its return value
retval. If retval is NULL, the return value is discarded. pthread join returns
0 on success, and −1 otherwise.

Note: Calling exit(3) from any thread will terminate the whole process, and
thus all threads will also terminate!

S.Zuckerman (ETIS) Pthreads January 16, 2019 22 / 47

PThreads Basics A Short Introduction to POSIX Threads

Usual PThread Calls from Within a Thread

void pthread exit(void* retval)

Exits from the thread calling the function. If retval is not NULL, it
contains the return value of the thread to pthread join (see below).

pthread t pthread self(void)

Retrieves a thread’s own ID.
Note: pthread t, while often implemented as an integer, does not have
to be!

S.Zuckerman (ETIS) Pthreads January 16, 2019 23 / 47

PThreads Basics PThreads Program Examples

A First PThread Example
Hello, World! . . . Headers and worker function

#include <stdio.h> // for snprintf (), fprintf (), printf (), puts ()

#include <stdlib.h> // for exit ()

#include <errno.h> // for errno (duh !)

#include <pthread.h> // for pthread_*

#define MAX_NUM_WORKERS 4UL

typedef struct worker_id_s { unsigned long id } worker_id_t;

void* worker(void* arg)

{

// Remember , pthread_t objects are descriptors , not just IDs!

worker_id_t* self = (worker_id_t *) arg; // Retrieving my ID

char hello [100]; // To print the message

int err = snprintf(hello , sizeof(hello),

"[%lu]\t Hello , World!\n", self ->id);

if (err < 0) { perror("snprintf"); exit(errno); }

puts(hello);

return arg; // so that the "master" thread

// knows which thread has returned

}

S.Zuckerman (ETIS) Pthreads January 16, 2019 24 / 47

PThreads Basics PThreads Program Examples

A First PThread Example
Hello, World! . . . main

#define ERR_MSG(prefix ,...) \

fprintf(stderr ,prefix " %lu out of %lu threads",__VA_ARGS__)

int main(void) {

pthread_t workers [MAX_NUM_WORKERS];

worker_id_t worker_ids [MAX_NUM_WORKERS];

puts("[main]\ tCreating workers ...\n");

for (unsigned long i = 0; i < MAX_NUM_WORKERS; ++i) {

worker_ids[i].id = i;

if (0 != pthread_create (& workers[i], NULL , worker , &worker_ids[i]))

{ ERR_MSG("Could not create thread", i, MAX_NUM_WORKERS);

exit(errno); }

}

puts("[main]\ tJoining the workers ...\n");

for (unsigned long i = 0; i < MAX_NUM_WORKERS; ++i) {

worker_id_t* wid = (worker_id_t *) retval;

if (0 != pthread_join(workers[i], (void **) &retval))

ERR_MSG("Could not join thread", i, MAX_NUM_WORKERS);

else

printf("[main]\ tWorker N.%lu has returned !\n", wid ->id);

}

return 0;}

S.Zuckerman (ETIS) Pthreads January 16, 2019 25 / 47

PThreads Basics PThreads Program Examples

A First PThread Example
Hello, World! . . . Output

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c hello.c

gcc -o hello hello.o -lpthread

. . . Don’t forget to link with the PThread library!

. . . And the output:

Output of ./hello

[main] Creating workers...

[0] Hello, World!

[main] Joining the workers...

[2] Hello, World!

[main] Worker N.0 has returned!

[1] Hello, World!

[3] Hello, World!

[main] Worker N.1 has returned!

[main] Worker N.2 has returned!

[main] Worker N.3 has returned!

S.Zuckerman (ETIS) Pthreads January 16, 2019 26 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code

#ifndef BAD_GLOBAL_SUM_H

#define BAD_GLOBAL_SUM_H

#include <stdio.h>

#include <stdlib.h>

#include "utils.h"

typedef struct bad_global_sum_s {

unsigned long *value;

} bad_global_sum_t;

#endif // BAD_GLOBAL_SUM_H

Figure: bad global sum.h

S.Zuckerman (ETIS) Pthreads January 16, 2019 27 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code (2)

#include "bad_global_sum.h"

#define MAX_NUM_WORKERS 20UL

typedef unsigned long ulong_t;

void* bad_sum(void* frame) {

bad_global_sum_t* pgs = (bad_global_sum_t *) frame;

++*pgs ->value;

return NULL;

}

int main(void) {

pthread_t threads [MAX_NUM_WORKERS];

bad_global_sum_t frames [MAX_NUM_WORKERS];

ulong_t counter = 0;

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {

frames[i]. value = &counter;

spthread_create (& threads[i],NULL ,bad_sum ,& frames[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)

spthread_join(threads[i],NULL);

printf("%lu threads were running. Sum final value: %lu\n", MAX_NUM_WORKERS , counter);

return 0;

}

Figure: bad sum pthreads.cS.Zuckerman (ETIS) Pthreads January 16, 2019 28 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code (3)

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c bad_sum_pthreads.c

gcc -o badsum bad_sum_pthreads.o -lpthread

. . . Don’t forget to link with the PThread library!

Output of ./badsum

szuckerm@evans201g:bad$./badsum

20 threads were running. Sum final value: 20

Hey, it’s working!

Multiple executions of ./badsum

szuckerm@evans201g:bad$ (for i in ‘seq 100‘;do ./badsum ;done)|uniq

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

Waiiiiit a minute. . .

S.Zuckerman (ETIS) Pthreads January 16, 2019 29 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code (3)

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c bad_sum_pthreads.c

gcc -o badsum bad_sum_pthreads.o -lpthread

. . . Don’t forget to link with the PThread library!

Output of ./badsum

szuckerm@evans201g:bad$./badsum

20 threads were running. Sum final value: 20

Hey, it’s working!

Multiple executions of ./badsum

szuckerm@evans201g:bad$ (for i in ‘seq 100‘;do ./badsum ;done)|uniq

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

Waiiiiit a minute. . .

S.Zuckerman (ETIS) Pthreads January 16, 2019 29 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code (3)

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c bad_sum_pthreads.c

gcc -o badsum bad_sum_pthreads.o -lpthread

. . . Don’t forget to link with the PThread library!

Output of ./badsum

szuckerm@evans201g:bad$./badsum

20 threads were running. Sum final value: 20

Hey, it’s working!

Multiple executions of ./badsum

szuckerm@evans201g:bad$ (for i in ‘seq 100‘;do ./badsum ;done)|uniq

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

Waiiiiit a minute. . .

S.Zuckerman (ETIS) Pthreads January 16, 2019 29 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Näıve Code (3)

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c bad_sum_pthreads.c

gcc -o badsum bad_sum_pthreads.o -lpthread

. . . Don’t forget to link with the PThread library!

Output of ./badsum

szuckerm@evans201g:bad$./badsum

20 threads were running. Sum final value: 20

Hey, it’s working!

Multiple executions of ./badsum

szuckerm@evans201g:bad$ (for i in ‘seq 100‘;do ./badsum ;done)|uniq

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

20 threads were running. Sum final value: 19

20 threads were running. Sum final value: 20

Waiiiiit a minute. . .
S.Zuckerman (ETIS) Pthreads January 16, 2019 29 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Fixing the Implementation

Mutexes

A MUTual EXclusive object (or mutex) is a synchronization object which
is either owned by a single thread, or by no-one. It is the basic block to
create critical sections.

#ifndef GLOBAL_SUM_H

#define GLOBAL_SUM_H

#include <stdio.h>

#include <stdlib.h>

#include "utils.h"

typedef struct global_sum_s {

unsigned long *value;

pthread_mutex_t *lock;

} global_sum_t;

#endif // GLOBAL_SUM_H

Figure: global sum.hS.Zuckerman (ETIS) Pthreads January 16, 2019 30 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Fixing the Implementation (2)

#include "global_sum.h"

#define MAX_NUM_WORKERS 20UL

typedef unsigned long ulong_t;

void* sum(void* frame) {

global_sum_t* gs = (global_sum_t *) frame;

spthread_mutex_lock (gs->lock); /* Critical section starts here */

++*gs->value;

spthread_mutex_unlock (gs ->lock); /* Critical section ends here */

return NULL;

}

int main(void) {

pthread_t threads [MAX_NUM_WORKERS];

global_sum_t frames [MAX_NUM_WORKERS];

ulong_t counter = 0;

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {

frames[i] = (global_sum_t){ .value = &counter , .lock = &m };

spthread_create (& threads[i],NULL ,sum ,& frames[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)

spthread_join(threads[i],NULL);

printf("%lu threads were running. Sum final value: %lu\n", MAX_NUM_WORKERS , counter);

return 0;

} Figure: sum pthreads.c

S.Zuckerman (ETIS) Pthreads January 16, 2019 31 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Fixing the Implementation (3)

Compilation Process
gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c sum_pthreads.c

gcc -o sum sum_pthreads.o -lpthread

. . . Don’t forget to link with the PThread library!

Multiple executions of ./sum

szuckerm@evans201g:good$ (for i in ‘seq 100‘;do ./sum ;done)|uniq

20 threads were running. Sum final value: 20

Fixed!

S.Zuckerman (ETIS) Pthreads January 16, 2019 32 / 47

PThreads Basics PThreads Program Examples

Incrementing a Global Counter
Fixing the Implementation (3)

Compilation Process
gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c sum_pthreads.c

gcc -o sum sum_pthreads.o -lpthread

. . . Don’t forget to link with the PThread library!

Multiple executions of ./sum

szuckerm@evans201g:good$ (for i in ‘seq 100‘;do ./sum ;done)|uniq

20 threads were running. Sum final value: 20

Fixed!

S.Zuckerman (ETIS) Pthreads January 16, 2019 32 / 47

PThreads Basics PThreads Program Examples

Reacting on Specific Events I
Condition Variables

Condition variables

Condition variables are used when threads are waiting on a specific event.
When the event occurs, the code where it the event was realized signals a
condition variable, either to wake up one of the threads waiting on the
event, or all of them.

Examples of Events to Be Worth Signaling

I Availability of a resource, e.g.:

A file descriptor for a network connection,
A file descriptor for accessing (reading or writing) a regular file,
Any device handle, really

I A specific input provided by the user (string provided by the user, etc.)

I etc.

S.Zuckerman (ETIS) Pthreads January 16, 2019 33 / 47

PThreads Basics PThreads Program Examples

Reacting on Specific Events II
Condition Variables

High-Level Explanation: Waiting on a Condition

1 A condition variable is always associated with a mutex

2 To wait on an event, a thread must first acquire the mutex, then

3 Call int pthread cond wait(pthread cond t* cond,

pthread mutex t* mutex)

4 If the call succeeds, then the thread releases the mutex

5 When the condition variable is signaled, if the thread which was
“asleep” is re-awakened, the system first returns ownership of the
mutex back to it

S.Zuckerman (ETIS) Pthreads January 16, 2019 34 / 47

PThreads Basics PThreads Program Examples

Reacting on Specific Events III
Condition Variables

High-Level Explanation: Signaling an Event Has Occurred

There are two function calls to perform this function:

I int pthread cond signal(pthread cond t* cond)

To signal a single thread that the event has occurred. Note: there is no
guarantee as to which thread will wake

I int pthread cond broadcast(pthread cond t* cond)

To signal all threads that the event has occurred.

S.Zuckerman (ETIS) Pthreads January 16, 2019 35 / 47

PThreads Basics PThreads Program Examples

Reacting on Specific Events
Condition Variables

#ifndef BARRIER_H

#define BARRIER_H

#define SET_BARRIER_MSG (...) \

snprintf(buffer , sizeof(buffer), __VA_ARGS__)

#define NOT_LAST_TO_REACH \

"[%lu]\tI’m NOT the last one to reach the barrier!"

#define LAST_TO_REACH \

"[%lu]\tI am the last to reach the barrier! Waking up the others."

typedef struct barrier_s {

pthread_mutex_t *lock;

pthread_cond_t *cond;

ulong_t *count;

} barrier_t;

typedef struct context_s {

barrier_t* barrier;

ulong_t id;

} context_t;

#endif // BARRIER_H

Figure: barrier.h

S.Zuckerman (ETIS) Pthreads January 16, 2019 36 / 47

PThreads Basics PThreads Program Examples

Reacting on Specific Events
Condition Variables (2)

#include "barrier.h"

void* worker(void* frame);

int main(void) {

pthread_t threads [MAX_NUM_WORKERS];

context_t contexts [MAX_NUM_WORKERS];

pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

ulong_t count = MAX_NUM_WORKERS;

barrier_t barrier = {.lock = &m, .cond = &cond , .count = &count};

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {

contexts[i] = (context_t){ .barrier = &barrier , .id = i };

spthread_create (& threads[i],NULL ,worker ,& contexts[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)

spthread_join(threads[i],NULL);

return 0;

}

Figure: barrier main.c
S.Zuckerman (ETIS) Pthreads January 16, 2019 37 / 47

PThreads Basics PThreads Program Examples

Reacting on Specific Events
Condition Variables (3)

#include "barrier.h"

void* worker(void* frame) {

char buffer [81];

context_t* c = (context_t *) frame;

printf("[%lu]\ tReaching the barrier ...\n",c->id);

spthread_mutex_lock (c->barrier ->lock);

--*c->barrier ->count;

if (*c->barrier ->count > 0) {

SET_BARRIER_MSG(NOT_LAST_TO_REACH , c->id);

spthread_cond_wait (c->barrier ->cond , c->barrier ->lock);

} else {

SET_BARRIER_MSG(LAST_TO_REACH , c->id);

}

puts(buffer);

spthread_mutex_unlock (c->barrier ->lock);

pthread_cond_broadcast(c->barrier ->cond);

printf("[%lu]\ tAfter the barrier\n", c->id);

return NULL;

} Figure: barrier.c
S.Zuckerman (ETIS) Pthreads January 16, 2019 38 / 47

PThreads Basics PThreads Program Examples

Reacting on Specific Events
Condition Variables (4)

szuckerm@evans201g:condvar$ gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c barrier.c

szuckerm@evans201g:condvar$ gcc -o barrier barrier.o -lpthread

szuckerm@evans201g:condvar$./barrier

[0] Reaching the barrier...

[2] Reaching the barrier...

[1] Reaching the barrier...

[3] Reaching the barrier...

[4] Reaching the barrier...

[5] Reaching the barrier...

[7] Reaching the barrier...

[6] Reaching the barrier...

[6] I am the last to reach the barrier! Waking up the others.

[6] After the barrier

[0] I’m NOT the last one to reach the barrier!

[0] After the barrier

[1] I’m NOT the last one to reach the barrier!

[1] After the barrier

[2] I’m NOT the last one to reach the barrier!

[2] After the barrier

[3] I’m NOT the last one to reach the barrier!

[3] After the barrier

[4] I’m NOT the last one to reach the barrier!

[4] After the barrier

[5] I’m NOT the last one to reach the barrier!

[5] After the barrier

[7] I’m NOT the last one to reach the barrier!

[7] After the barrier

S.Zuckerman (ETIS) Pthreads January 16, 2019 39 / 47

PThreads Basics PThreads Program Examples

Creating Barriers More Easily

I “Hey, barriers are nice! I wish I could have a more practical construct,
though.”

I . . . Well actually, did I tell you about PThread barriers?

pthread barrier t and its associated functions

I int pthread barrier init(pthread barrier t restrict* barrier, const

pthread barrierattr t *restrict attr, unsigned count)

I int pthread barrier destroy(pthread barrier t restrict* barrier)

I int pthread barrier wait(pthread barrier t restrict* barrier)

S.Zuckerman (ETIS) Pthreads January 16, 2019 40 / 47

PThreads Basics PThreads Program Examples

Creating Barriers More Easily

I “Hey, barriers are nice! I wish I could have a more practical construct,
though.”

I . . . Well actually, did I tell you about PThread barriers?

pthread barrier t and its associated functions

I int pthread barrier init(pthread barrier t restrict* barrier, const

pthread barrierattr t *restrict attr, unsigned count)

I int pthread barrier destroy(pthread barrier t restrict* barrier)

I int pthread barrier wait(pthread barrier t restrict* barrier)

S.Zuckerman (ETIS) Pthreads January 16, 2019 40 / 47

PThreads Basics PThreads Program Examples

Updated Barrier Program
Using PThread Barriers

#ifndef BARRIER_H

#define BARRIER_H

#include "utils.h"

#define MAX_NUM_WORKERS 8UL

typedef unsigned long ulong_t;

typedef struct context_s {

pthread_barrier_t* barrier;

ulong_t id;

} context_t;

#endif // BARRIER_H Figure: pth barrier.h

#include "barrier.h"

void* worker(void* frame) {

context_t* c = (context_t *) frame;

printf("[%lu]\ tReaching the barrier ...\n",c->id);

spthread_barrier_wait(c->barrier);

printf("[%lu]\ tAfter the barrier\n", c->id);

return NULL;

} Figure: pth barrier.c (1)

S.Zuckerman (ETIS) Pthreads January 16, 2019 41 / 47

PThreads Basics PThreads Program Examples

Updated Barrier Program
Using PThread Barriers (2)

#include "barrier.h"

int main(void) {

pthread_t threads [MAX_NUM_WORKERS];

context_t contexts [MAX_NUM_WORKERS];

ulong_t count = MAX_NUM_WORKERS;

pthread_barrier_t barrier;

spthread_barrier_init (&barrier ,NULL ,count);

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {

contexts[i] = (context_t){ .barrier = &barrier , .id = i };

spthread_create (& threads[i],NULL ,worker ,& contexts[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)

spthread_join(threads[i],NULL);

spthread_barrier_destroy (& barrier);

return 0;

} Figure: pth barrier.c (2)
S.Zuckerman (ETIS) Pthreads January 16, 2019 42 / 47

Where to Learn More

Where to Learn More

S.Zuckerman (ETIS) Pthreads January 16, 2019 43 / 47

Where to Learn More

Learning More About Multi-Threading and PThreads

Books (from most theoretical to most practical)

I Tanenbaum 2007

I Herlihy and Shavit 2008

I Bovet and Cesati 2002

I Stevens and Rago 2013

Internet Resources

I “POSIX Threads Programmings” at
https://computing.llnl.gov/tutorials/pthreads/

I “Multithreaded Programming (POSIX pthreads Tutorial)” at
http://randu.org/tutorials/threads/

Food for Thoughts

I Sutter 2005 (available at http://www.gotw.ca/publications/concurrency-ddj.htm)

I Lee 2006 (available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf)

I Boehm 2005 (available at www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf)

S.Zuckerman (ETIS) Pthreads January 16, 2019 44 / 47

https://computing.llnl.gov/tutorials/pthreads/
http://randu.org/tutorials/threads/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf

Bibliography

Bibliography

S.Zuckerman (ETIS) Pthreads January 16, 2019 45 / 47

Bibliography

References I

References

Bovet, Daniel and Marco Cesati (2002). Understanding the Linux Kernel,
Second Edition. Ed. by Andy Oram. 2nd ed. Sebastopol, CA, USA:
O’Reilly & Associates, Inc. isbn: 0596002130.

Boehm, Hans-J. (2005). “Threads Cannot Be Implemented As a Library”.
In: SIGPLAN Not. 40.6, pp. 261–268. issn: 0362-1340. doi:
10.1145/1064978.1065042. url:
http://doi.acm.org/10.1145/1064978.1065042.

Sutter, Herb (2005). “The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software”. In: Dr. Dobb’s Journal 30.3.

S.Zuckerman (ETIS) Pthreads January 16, 2019 46 / 47

https://doi.org/10.1145/1064978.1065042
http://doi.acm.org/10.1145/1064978.1065042

Bibliography

References II

Lee, Edward A. (2006). “The Problem with Threads”. In: Computer 39.5,
pp. 33–42. issn: 0018-9162. doi: 10.1109/MC.2006.180. url:
http://dx.doi.org/10.1109/MC.2006.180.

Tanenbaum, Andrew S. (2007). Modern Operating Systems. 3rd. Upper
Saddle River, NJ, USA: Prentice Hall Press. isbn: 9780136006633.

Herlihy, Maurice and Nir Shavit (2008). The Art of Multiprocessor
Programming. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc. isbn: 0123705916, 9780123705914.

Blaess, Christophe (2011). Programmation système en c sous linux :
signaux, processus, threads, ipc et sockets. 3rd. Eyrolles. isbn:
9782212085549.

Stevens, Richard W. and Steven A. Rago (2013). Advanced Programming
in the UNIX Environment, 3rd Edition. Indianapolis, IN, USA:
Addison-Wesley Professional. isbn: 0321637739, 9780321637734.

S.Zuckerman (ETIS) Pthreads January 16, 2019 47 / 47

https://doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180

	Resources
	Introduction
	An Introduction to Multithreading
	Processes and Threads Layouts in Memory

	PThreads Basics
	A Short Introduction to POSIX Threads
	PThreads Program Examples

	Where to Learn More
	Bibliography
	References

