
Introduction to Parallel Programming: POSIX Threads
Lab

Stéphane Zuckerman

23 January, 2018

Preliminaries

Building a PThtread program.

cc $CFLAGS -o $PROGRAM source1.c source2.c -lpthread # etc.

. . .Where $PROGRAM is the desired name for the resulting application, and $CFLAGS contains the
usual compilation flags. I suggest you use the following:

cc -Wall -Wextra -pedantic -g -std=c11 -o $PROGRAM source1.c source2.c -lpthread # etc.

Running a PThread program.

./$PROGRAM

Advice to Write PThread Programs.

• Always create a data structure that will contain all the data required by a given thread.
Each thread must be passed a specific instance of that data structure in most cases.

• Usually, the main function of a PThread program tends to only perform the same basic
steps:

1. Process the program’s inputs/parameters

2. Allocate shared variables

3. Create threads (declare pthread_t descriptors; declare arguments for each thread to
be created; call pthread_create)

4. Wait for threads to terminate (pthread_join, and possibly collect the return value
of each thread that terminated)

⇒ Avoid performing computations in this function

1 PThread Programming

1. Build a PThtread program where each thread sends a “token” to another POSIX thread
where its ID is one above. Each process must print its rank number before passing the
token to the next process. If the process with the highest rank receives the token, it sends
it back to process zero, and the program ends.

1

2. Implement a dot product (see explanations below) using a critical section (hint: use
pthread_mutext_t, pthread_mutext_lock, pthread_mutext_unlock,

and possibly pthread_mutext_trylock)

3. Implement a matrix-vector product (we provide the sequential code to compute it at the
end of this handout). The main function is in charge of initializing the matrix and the
vector to multiply.

4. Write a program which spawns N POSIX threads. The overall goal is to read from a
large array of unsigned integers (initialized randomly in the main function), and have
N − 1 threads perform partial sums of sections of the array. Once their are done summing
their associated segment of unsigned integers, each thread must then write the result to
partial_sums.txt. The N th thread waits until all threads are done writing to this file.
Implement this exercise using two variants: (1) using busy-waiting for the final
thread, and (2) using condition variables. Once it is done, the N th thread reads all
partial sums and computes the final sum. here are a few functions that may be of help
(use man to get documentation on each function):

• I/O functions: fread, fwrite, fprintf, fgets
• Converting a string to an unsigned: strtoul (usually preceded by a call to fgets)
• Signaling an event is fulfilled between POSIX threads: pthread_cond_t, pthread_cond_wait,
pthread_cond_signal, pthread_cond_broadcast

2 Stencil Codes

Stencil codes are used in many scientific computations, e.g., to compute partial differential
equations (such as heat diffusion on a plate using Laplacians, or computational fluid dynamics),
or perform image processing (where one pixel is modified according to its neighbors). Usually
the computation stops when the solution converges toward a good-enough precision, or it has
reached a specific number of computation steps. We show the code for a 5-point 2D stencil
below.

static inline void swap(void** p1, void** p2) {
void* tmp = *p1;
*p1 = *p2;
*p2 = tmp;

}

void
FivePointStencil(int tsteps, int n_rows, int n_cols,

double *p_old, double *p_new)
{

double (*m_old)[n_cols] = (double (*)[n_cols]) p_old,
(*m_new)[n_cols] = (double (*)[n_cols]) p_new;

while (tsteps-- > 0) {
for (int i = 1; i < n_rows-1; ++i)

for (int j = 1; j < n_cols-1; ++j)
m_new[i][j] = (m_old[i-1][j] + m_old[i+1][j]

+ m_old[i][j-1] + m_old[i][j+1])
/ 4;

swap(m_old,m_new);

2

}
}

Adapt the sequential code to make it work using POSIX threads.

Appendix

Dot Product

The dot product (also called the scalar product) takes two vectors V 1n and V 2n, and returns
the sum of the products of corresponding elements in V 1 and V 2:

s = V 1 · V 2 =
n∑

i=1

v1iv2i

The corresponding code is given below.

double dotproduct(double *v1, double *v2, int n)
{

double sum = 0.0;
for (int i = 0; i < n; ++i)

sum += v1[i]double * v2[i];
return sum;

}

Matrix-Vector Product

A matrix-vector multiplication is defined as the product of a matrix AM,N with a column vector
bN . The result is stored in a row vector cM : cM = AM,N × bM . The sequential code to compute
such a product is given below. Each computed element of c is the result of a dot product between
a row in A and the column vector b.

#include <string.h>
void matvec(int n_rows, int n_cols, int max_rows, int max_cols,

double A[max_rows][max_cols],
double b[max_cols], double c[max_rows])

{
memset(c,0,sizeof(double)*n_rows);
for (int i = 0; i < n_rows; ++i)

for (int j = 0; j < n_cols; ++j)
c[i] += A[i][j] * b[j];

}

3

	PThread Programming
	Stencil Codes

