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Resources

Resources I

MPI: Standards and specifications

I Graham 2009; Dongarra et al. 1995; Forum 1994

I Useful books:

Using MPI [Gropp, Lusk, and Skjellum 1999; Gropp, Lusk, and Skjellum 2014]
(latest: 3rd edition ),
Using MPI-2 [Gropp, Lusk, and Thakur 1999]
Using Advanced MPI [Gropp, Hoefler, et al. 2014]

I http://mpi-forum.org

I http://www.mcs.anl.gov/mpi
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Resources

Resources II

Available implementations

I Mpich-2: https://www.mpich.org/

I Open-MPI: https://www.open-mpi.org/

I Most supercomputer vendors provide their own implementation, often
derived from either Mpich or Open-MPI

I Personal preference: Open-MPI (more modular; more recent–benefits
from design issues found in Mpich)
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A short history of parallel programming and why we need it

In the beginning. . . I

Why parallel computing?

I Parallel programming appears very early in the life of computing.

I For every generation of high-end processor, some computations hog
all of the available resources.

I Solution: duplicate computing resources.
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A short history of parallel programming and why we need it

In the beginning. . . II

Two (non-exclusive) approaches

I Design a parallel processor/computer architecture, i.e., duplicate
functional units, provide vector units, . . . :

Cray I vector supercomputer
Connection Machine

I Design a computer made of multiple computing nodes (also called
compute nodes):

Custom clusters: SGI Altix, IBM BlueGene, . . .
Commodity supercomputers: Beowulf clusters
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A short history of parallel programming and why we need it

In the beginning. . . III

Toward standardization of parallel computing

Until the early/mid 1990s, each supercomputer vendor provides their own
parallel computing tools.

I Each new parallel computer requires to learn a new or updated
environment to get good performance

I Terrible for portability and productivity

The time was ripe for a standardization effort for all types of parallelism.
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A short history of parallel programming and why we need it

In the beginning. . . IV

Toward standardization of parallel models of computation

I Distributed memory models:

PVM (1991)
MPI standard (1992)

I Shared memory models:

POSIX.1c / IEEE Std 1003.1c-1995 — a.k.a. PThread library
OpenMP standard (1997)

The obvious benefits are portability and productivity, although
performance portability is not guaranteed (only correctness).
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A short history of parallel programming and why we need it

Why should we care about these parallel models? I

Hardware context

I End of Dennard’s scaling

I Moore’s law now used to add more computing units on a single chip
(instead of going to higher frequencies)

I Programming chip multiprocessors (CMP) is not just for
scientific/high-performance computing anymore

Embedded chips require programming models and execution models to
efficiently exploit all of the hardware
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A short history of parallel programming and why we need it

Why should we care about these parallel models? II

Software context – embedded systems

A lot of embedded systems are mainstream and general purpose nowadays

I e.g., Raspberry PI, Beagle, etc.

I They feature CMPs such as ARM multicore chips

I Even on more specialized platforms, MPI, OpenMP, or OpenCL
implementations exist:

Xilinx: “High-Level Synthesis” (HLS) in FPGAs with OpenCL
Adapteva’s Parallella board:

Zynq-7000 = dual core Cortex A9+FPGA SoC
Epiphany co-processor (16 cores with scratchpads)

There are OpenMP and MPI implementations for both ARM and Epiphany
boards.
Bottom line: “general purpose” parallelism is made available to all parallel
platforms nowadays
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A short history of parallel programming and why we need it

Why should we care about these parallel models? III

Advantages of traditional programming and execution models

I Because these models are standardized, they are made available in
mainstream programming tools

OpenMP and MPI both have free/open source implementations
available to all
Same with PGAS languages
Same with GPU-oriented languages
Performance goes from “acceptable” to “pretty good”

. . . but proprietary implementations tend to be faster because they have
better/exclusive knowledge of underlying system software and/or
hardware
. . . but not always!
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Message-passing execution models Standard Features & Execution Model

An introduction to MPI
Execution Model

Execution Model

I Relies on the notion of distributed memory

I All data transfers between MPI processes are explicit

I Processes can also be synchronized with each other

I Achieved using a library API

MPI process 6= UNIX or Windows process.

I A process = a program counter + a (separate) address space

I An MPI process could be implemented as a thread [Huang, Lawlor,
and Kale 2003]
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Message-passing execution models Standard Features & Execution Model

MPI execution model in a nutshell I
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Message-passing execution models Standard Features & Execution Model

MPI execution model in a nutshell II
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Message-passing execution models Standard Features & Execution Model

MPI execution model in a nutshell III I
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Message-passing execution models Standard Features & Execution Model

MPI-1

I Basic I/O communication functions (100+)

I Blocking send and receive operations

I Nonblocking send and receive operations

I Blocking collective communications

Broadcast, scatter, gather, etc.
Important for performance

I Datatypes to describe data layout

I Process topologies (use of communicators, tags)

I C, C++, Fortran bindings

In practice, “unofficial” bindings exist for many languages: Python,
Ruby, . . .

I Error codes and classes
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Message-passing execution models Standard Features & Execution Model

MPI-2 and beyond

I MPI-2 (2000):

Thread support
MPI-I/O: efficient (parallel) file I/O
R-DMA: remote direct memory access—asynchronous memory
accesses, possibly on memory-mapped I/Os

I MPI-2.1 (2008) and MPI-2.2 (2009):

Corrections to standard, small additional features

I MPI-3 (2012):

Lots of new features to standard (briefly discussed at the end)
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Message-passing execution models MPI Basics: Features, Compilation, Execution

MPI Basics

Stuff needed by the MPI implementation from application

I How to compile and run MPI programs

I How to identify processes

I How to describe the data
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Message-passing execution models MPI Basics: Features, Compilation, Execution

Compiling and running MPI programs

MPI is a library

Need to use function calls, to leverage MPI features.

Compilation

I Regular compilation: use of cc, e.g., gcc -o test test.c

I MPI compilation: mpicc -o test test.c

Execution

I Regular execution: ./test

I MPI execution: mpiexec -np 16 ./test
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Message-passing execution models MPI Basics: Features, Compilation, Execution

MPI process identification

MPI groups

I Each MPI process belongs to one or more groups

I Each MPI process is given one or more colors

I Group+color = communicator

I All MPI processes belong to MPI COMM WORLD when the program
starts

Identifying individual processes: ranks

I If a process belongs to two different communicators, its rank may be
different from the point of view of each communicator.
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Message-passing execution models MPI Basics: Features, Compilation, Execution

Most basic MPI program
Hello World

#i n c l u d e <mpi.h> // r e q u i r e d to use MPI f u n c t i o n s
#i n c l u d e <stdio.h>

i n t main( i n t argc , char * argv []) {

i n t rank , size;

// must ALWAYS be c a l l e d to run an MPI program
MPI In i t (&argc , &argv);

// get p r o c e s s rank / i d
MPI Comm rank(MPI_COMM_WORLD , &rank);

// get t o t a l number of p r o c e s s e s i n communicator
MPI Comm size(MPI_COMM_WOLRD , &size);

printf("I am process #%d/%d\n", rank , size);

// must ALWAYS be c a l l e d to run an MPI program
M P I F i n a l i z e ();

r e t u r n 0;

}
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Message-passing execution models MPI Basics: Features, Compilation, Execution

Basic data transfers
MPI Send

Syntax:
int MPI Send ( const void *buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm );

I buf: the buffer from where to read the data to send

I count: the number of elements to send over the network link

I datatype: the type of data that is being sent, e.g., MPI CHAR, MPI INT,
MPI DOUBLE, etc.

I dest: which process is meant to receive the data (identified by its rank)

I tag: a way to discriminate between various messages sent to the same process rank

I comm: the communicator (or “group of tasks”) to target
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Message-passing execution models MPI Basics: Features, Compilation, Execution

Basic data transfers
MPI Recv

Syntax: int MPI Recv (const void *buf, int count,
MPI Datatype datatype, int src, int tag, MPI Comm comm,
MPI Status *status);

I buf: the buffer from where to write the data to be read

I count: the number of elements to receive over the network link

count can be bigger than what was received in practice (the real count can
be obtained using MPI Get count)
If count is smaller than what is being sent, an error occurs

I datatype: the type of data that is being received, e.g., MPI CHAR, MPI INT,
MPI DOUBLE, etc.

I dest: from which process the data originates (identified by its rank)

I tag: a way to discriminate between various messages sent to the same receiving
process rank

I comm: the communicator (or “group of tasks”) to target

I status: contains the source of the message, the tag, how many elements were
sent.
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Message-passing execution models MPI Basics: Features, Compilation, Execution

Basic data transfers I
Wildcards & status

Receive wildcards

I MPI ANY SOURCE: accepts data from any sender

I MPI ANY TAG: accepts data with any tag (as long as the receiver is a
valid target)
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Message-passing execution models MPI Basics: Features, Compilation, Execution

Basic data transfers II
Wildcards & status

Status object

Objects of type MPI Status have the following accessible fields (assume
our object name is status):

I MPI SOURCE: the rank of the process which sent the message (useful
when using MPI ANY SOURCE)

I MPI TAG: the tag used to identify the received message (useful when
using MPI ANY TAG)

I MPI ERROR: the error status (assuming the MPI program does not
crash when an error is detected—which is the behavior by default).

To get the number of elements received, the user can query status using
the MPI Get count function.
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Message-passing execution models MPI Basics: Features, Compilation, Execution

A simple example to send and receive data

#i n c l u d e <mpi.h> // r e q u i r e d to use MPI f u n c t i o n s
#i n c l u d e <stdio.h>

i n t main( i n t argc , char * argv []) {

i n t rank , data [100];

MPI In i t (&argc , &argv);

MPI Comm rank(MPI COMM WORLD, &rank);

i f (rank == 0)

MPI Send(data ,100,MPI_INT ,1,0,MPI COMM WORLD);

e l s e
MPI Recv(data ,100,MPI_INT ,0,0,MPI COMM WORLD,MPI STATUS IGNORE);

M P I F i n a l i z e ();

r e t u r n 0;

}
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Message-passing execution models MPI Basics: Features, Compilation, Execution

MPI is simple

I MPI Init

I MPI Comm rank

I MPI Comm size

I MPI Send

I MPI Recv

I MPI Finalize

. . . are enough to write any application using message passing.
However, to be productive and ensure reasonable performance portability,
other functions are required.
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Message-passing execution models MPI Basics: Features, Compilation, Execution

MPI pragmatics
Building and running MPI programs

Building MPI programs

I C: mpicc

I C++: mpicxx

I Fortran: mpif77 (Fortran 77) or mpif90 (Fortran 90)

Running MPI programs

I mpiexec -np 16 ./test

. . . will run the program test on 16 MPI processes.

I mpiexec -host h1,h2,... -np 16 ./test

. . . will run the program test on the various hosts specified on the
command line in a round-robin fashion
In our example, host h1 will receive MPI processes 0,2,4,6.

Note: mpiexec or mpirun can be used interchangeably (they are aliases).
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Message-passing execution models Non-Blocking Communications

Non-blocking communications

Limits to MPI Send and MPI Recv

MPI Send and MPI Recv are blocking communication calls

I The sending process must wait until the data it is sending has been
received

I The receiving process must block once it has initiated the receiving
operation

I Consequence: data sent or received through blocking communications
is safe to (re)use

I However, this can severely hamper the overall performance of an
application

Non-blocking variants: MPI Isend and MPI Irecv

I Routine returns immediately – completion has to be tested separately

I Primarily used to overlap computation and communication
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Message-passing execution models Non-Blocking Communications

Non-blocking communications I
Syntax

API

I int MPI Isend(const void *buf, int count, MPI Datatype

datatype, int dest, int tag, MPI Comm comm, MPI Request

*request)

I int MPI Irecv(const void *buf, int count, MPI Datatype

datatype, int dest, int tag, MPI Comm comm, MPI Request

*request)

I int MPI Wait(MPI Request *request, MPI Status *status)
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Message-passing execution models Non-Blocking Communications

Non-blocking communications II
Syntax

Properties

I Non-blocking operations allow overlapping of computation and
communication

I Completion can be tested using MPI Test(MPI Request *request,

int flag, MPI Status *status)

I Anywhere one uses MPI Send or MPI Recv, one can use
MPI Isend/MPI Wait or MPI Irecv/MPI Wait pairs instead

I Combinations of blocking and non-blocking sends/receives can be
used to synchronize execution instead of barriers
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Message-passing execution models Non-Blocking Communications

Non-blocking communications III
Syntax

Multiple completions

I int MPI Waitall(int count, MPI Request

*array of requests, MPI Status *array of statuses)

I int MPI Waitany(int count, MPI Request

*array of requests, int *index, MPI Status *status)

I int MPI Waitsome(int count, MPI Request

*array of requests, int *array of indices, MPI Status

*array of status)

There are corresponding versions of MPI Test for each of those.
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Message-passing execution models Non-Blocking Communications

A simple example to use non-blocking communications

#i n c l u d e <mpi.h>

// . . .
i n t main( i n t argc , char * argv []) {

// . . .
i f (rank == 0) {

f o r (i=0; i< 100; i++) {

/∗ Compute each data element and send i t out ∗/
data[i] = compute(i);

MPI_ISend (&data[i], 1, MPI_INT , 1, 0, MPI COMM WORLD,
&request[i]);

}

MPI_Waitall (100, request , MPI_STATUSES_IGNORE)

} e l s e {

f o r (i = 0; i < 100; i++)

MPI Recv(&data[i], 1, MPI_INT , 0, 0, MPI COMM WORLD,
MPI STATUS IGNORE);

}

// . . .
}
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Message-passing execution models Collective operations

Collective operations

Introduction

I Collective operations are called by all processes belonging to the same
communicator

I MPI Bcast distributes data from one process (the root) to all others in a
communicator

I MPI Reduce combines data from all processes in the communicator and
returns it to one process

I In many (numerical) algorithms, send/receive pairs can be replaced by
broadcast/reduce ones

Simpler and more efficient

Properties

I Tags are not used; only communicators matter.

I Non-blocking collective operations were added in MPI-3

I Three classes of operations: synchronization, data movement,
collective computation
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Message-passing execution models Collective operations

Synchronization

int MPI Barrier(MPI Comm *comm)

I Blocks until all processes belonging to communicator comm call it

I No process can get out of the barrier unless all the other processes
have reached it
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Message-passing execution models Collective operations

Collective data movements
Broadcast

int MPI Bcast (void* data, int count, MPI Datatype datatype,

int root, MPI Comm communicator);

P0

P1 P2 P3

P0

P1 P2 P3

copy

copy

copy
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Message-passing execution models Collective operations

Collective data movements
Scatter

int MPI Scatter (void* send data, int send count,

MPI Datatype send datatype, void* recv data, int recv count,

MPI Datatype recv datatype, int root, MPI Comm

communicator);

P0

P1 P2 P3

P0

P1 P2 P3

copy

copy

copy
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Message-passing execution models Collective operations

Collective data movements
Gather

int MPI Gather (void* send data, int send count,

MPI Datatype send datatype, void* recv data, int recv count,

MPI Datatype recv datatype, int root, MPI Comm

communicator);

P0

P1 P2 P3

V2 V1 V1 V1

V2 V2 V2

P0

P1 P2 P3

V2 V2 V2

copy

copy

copy

V2 V2 V2
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Message-passing execution models Collective operations

Collective data movements
Other MPI Calls

I int MPI Allgather(const void *sendbuf, int sendcount, MPI Datatype

sendtype, void *recvbuf, int recvcount, MPI Datatype recvtype, MPI Comm

comm);

I int MPI Alltoall(const void *sendbuf, int sendcount, MPI Datatype sendtype,

void *recvbuf, int recvcount, MPI Datatype recvtype, MPI Comm comm);

S.Zuckerman (ETIS) Parallel Prog. October 19, 2018 42 / 48



Message-passing execution models Collective operations

Collective computations

I int MPI Reduce(const void* sendbuf, void* recvbuf, int

count, MPI Datatype datatype, MPI Op op, int root,

MPI Comm comm);

I int MPI Scan(const void* sendbuf, void* recvbuf, int

count, MPI Datatype datatype, MPI Op op, MPI Comm comm);
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Message-passing execution models Collective operations

Other MPI Collective routines

I Other useful collective operations

MPI Allgatherv

MPI Alltoallv

MPI Gatherv

MPI Scatterv

MPI Reducescatter

I “All” versions deliver results to all participating processes

I “v” versions (stands for vector) allow the chunks to have different
sizes

Important when the number of processes involved in the computation
is no a multiple of the number of data elements

I MPI Allreduce, MPI Reduce, MPI Reducescatter, and MPI Scan

take both built-in and user-defined combiner functions.
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Message-passing execution models Collective operations

Built-in collective computation operations

MPI MAX Maximum
MPI MIN Minimum
MPI PROD Product
MPI SUM Sum
MPI LAND Logical and
MPI LOR Logical or
MPI LXOR Logical exclusive or
MPI BAND Bitwise and
MPI BOR Bitwise or
MPI BXOR Bitwise exclusive or
MPI MAXLOC Maximum and location
MPI MINLOC Minimum and location
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Message-passing execution models Collective operations

Example using collective operations I

#i n c l u d e <mpi.h>

#i n c l u d e <math.h>

i n t main( i n t argc , char * argv []) {

const double g_PI25DT = 3.141592653589793238362643;

double mypi , pi, h, sum , x, a;

i n t n, myid , numprocs , i, ierr;

xMPI_Init (&argc , &argv);

xMPI_Comm_rank(MPI COMM WORLD, &myid);

xMPI_Comm_size(MPI COMM WORLD, &numprocs );

f o r (;;) {

i f (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

fflush(stdout );

scanf("%f", &n);

i f (n <= 0) break ;
}

xMPI_Bcast (&n, 1, MPI_INT , 0, MPI COMM WORLD);

i f (n < 0) { xMPI_Finalize (); exit (0); }
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Message-passing execution models Collective operations

Example using collective operations II

h = 1.0/n; sum = 0.0;

f o r ( i n t i = myid +1; i < n; i+= numprocs) {

x = h * (( double )i -0.5);
sum += (4.0 / (1.0 * x*x));

}

mypi = h*sum;

xMPI_Reduce (&mypi ,&pi ,1,MPI_DOUBLE ,MPI_SUM ,0,MPI COMM WORLD);

i f (myid == 0)

printf("pi is %f. Error is %f\n", pi, fabs(pi-g_PI25DT ));

}

xMPI_Finalize ();

r e t u r n 0;

}
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