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Resources | g UNIVERSITE

Standards and specifications

» OpenMP: [Dagum and Menon 1998; Duran et al. 2011; Ayguade et al. 2009]
@ Useful books: Using OpenMP [Chapman, Jost, and Van Der Pas 2008]
@ http://www.openmp.org

» MPI: [Graham 2009; Dongarra et al. 1995; Forum 1994]

@ Useful books:
@ Using MPI [Gropp, Lusk, and Skjellum 1999; Gropp, Lusk, and Skjellum
2014] (latest: 3™ edition ),
@ Using MPI-2 [Gropp, Lusk, and Thakur 1999]
@ Using Advanced MPI [Gropp, Hoefler, et al. 2014]
@ http://mpi-forum.org
@ http://www.mcs.anl.gov/mpi

» PGAS: http://www.pgas.org

» Accelerator programming:
@ Cuda: https://developer.nvidia.com/cuda-zone
@ OpenCL: https://www.khronos.org, in particular
https://www.khronos.org/opencl/
@ OpenACC: https://www.openacc.org
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Resources |l g UNIVERSITE

Available implementations

» OpenMP: Clang, GCC since v4.2 (proprietary implementations include Intel's ICC, IBM
XL C; etc.)

@ Note: GCC's OpenMP runtime is more of a reference implementation than anything.
@ Intel’'s runtime implementation of OpenMP is free software, and used by Clang. You
can also download it and link it to GCC.

» MPI: Mpich-2, Open-MPI
@ Most supercomputer vendors provide their own implementation, often derived from
either Mpich or Open-MPI

@ Personal preference: Open-MPI (more modular; more recent—benefits from design
issues found in Mpich)

» OpenACC: GCC since v5 (the proprietary PGl compiler also implements it)
» OpenCL: libclc on LLVM (Clang/LLVM)
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Parallel Architectures Today

General Purpose Architectures | ‘@ "/ UNIVERSITE

An Overview

Figure: Single CPU and a single DRAM bank.
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Figure: Symmetric Multi-Processor (SMP) system; single DRAM bank.
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Parallel Architecture bday

General Purpose Architectures Il @UNIVERSITE

An Overview

Figure: Symmetric Multi-Processor (SMP) system with Non-Uniform Memory Access (NUMA);
multiple DRAM banks.
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Parallel Architectures Today

General Purpose Architectures IV @UNIVERSITE

An Overview

Figure: Single CPU and a single DRAM bank.

DRAM

CPU

S.Zuckerman ( )



Parallel Architectures Today

General Purpose Architectures V @UNIVERSITE

An Overview

Figure: Single CPU: CPU, L1 data cache (L1D), L1 Instruction cache (L1l), L2 unified cache
(L2), L3 Unified cache (L3); single DRAM bank.
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Parallel Architectures Today

General Purpose Architectures VI UNIVERSITE

An Overview

Figure: Single CPU+cache hierarchy; single DRAM bank.
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Parallel Architectures Today

General Purpose Architectures VII ‘@ "/ UNIVERSITE

An Overview
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General Purpose Architectures VIII UNIVERSITE

An Overview
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Parallel Architectures Today

General Purpose Architectures X

An Overview
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A short history of parallel programming and why we need it

In the beginning... |

Why parallel computing?
» Parallel programming appears very early in the life of computing.

» For every generation of high-end processor, some computations hog
all of the available resources.

» Solution: duplicate computing resources.

S.Zuckerman ( ) January 11, 2022 18



A short history of parallel programming and why we need it

In the beginning... I

Two (non-exclusive) approaches
» Design a parallel processor/computer architecture, i.e., duplicate
functional units, provide vector units, ...:
o Cray | vector supercomputer
o Connection Machine

» Design a computer made of multiple computing nodes (also called
compute nodes):

o Custom clusters: SGI Altix, IBM BlueGene, ...
o Commodity supercomputers: Beowulf clusters

S.Zuckerman ( ) January 11, 2022




A short history of parallel programming and why we

e need it

In the beginning... I @u‘NNEstE

Toward standardization of parallel computing

Until the early/mid 1990s, each supercomputer vendor provides their own
parallel computing tools.

» Each new parallel computer requires to learn a new or updated
environment to get good performance

» Terrible for portability and productivity

The time was ripe for a standardization effort for all types of parallelism.
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A short history of parallel programming and why we need it

In the beginning... IV gU‘NNERSlTE

Toward standardization of parallel models of computation
» Distributed memory models:
o PVM (1991)
o MPI standard (1992)
» Shared memory models:

o POSIX.1c / IEEE Std 1003.1¢-1995 — a.k.a. PTHREAD library
o OpenMP standard (1997)

The obvious benefits are portability and productivity, although
performance portability is not guaranteed (only correctness).
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A short history of parallel programming and why we need it

Why should we care about these parallel models? |

Hardware context
» End of Dennard’s scaling
» Moore's law now used to add more computing units on a single chip
(instead of going to higher frequencies)

» Programming chip multiprocessors (CMP) is not just for
scientific/high-performance computing anymore
e Embedded chips require programming models and execution models to
efficiently exploit all of the hardware

S.Zuckerman ( ) January 11, 2022 22



A short history of parallel programming and why we need it

Why should we care about these parallel models? Il

Software context — embedded systems

A lot of embedded systems are mainstream and general purpose nowadays
» e.g., Raspberry Pl, Beagle, etc.
» They feature CMPs such as ARM multicore chips

» Even on more specialized platforms, MPI, OpenMP, or OpenCL
implementations exist:

o Xilinx proposes a way to synthesize circuits in FPGAs with OpenCL

o Adapteva's Parallella board: Zyng-7000 = dual core Cortex A9+FPGA SoC
+ Epiphany co-processor (16 cores with scratchpads).

@ There are OpenMP and MPI implementations for both ARM and Epiphany
boards.

@ Bottom line: “general purpose”’ parallelism is made available to all parallel
platforms nowadays

S.Zuckerman ( ) January 11, 2022 23 /11




A short history of parallel programming and why we need it

Why should we care about these parallel models? 111 gUNiVERSITE

Advantages of traditional programming and execution models

» Because these models are standardized, they are made available in
mainstream programming tools
e OpenMP and MPI both have free/open source implementations
available to all
o Same with PGAS languages
e Same with GPU-oriented languages
o Performance goes from “acceptable” to “pretty good”

@ ...but proprietary implementations tend to be faster because they have
better/exclusive knowledge of underlying system software and/or
hardware

@ ...but not always!
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execution models

An introduction to MPI
Execution Model

Execution Model
» Relies on the notion of distributed memory

» All data transfers between MPI processes are explicit
» Processes can also be synchronized with each other

» Achieved using a library API

MPI process # UNIX or Windows process.
» A process = a program counter + a (separate) address space

» An MPI process could be implemented as a thread [Huang, Lawlor,
and Kale 2003]
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execution mode

MPI execution model in a nutshell |
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MPI execution model in a nutshell Il
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Message-passing execution models

MPI-1 ’a UNIVERSITE

Basic I/O communication functions (100+)
Blocking send and receive operations
Nonblocking send and receive operations

Collective communications

o Broadcast, scatter, gather, etc.
e Important for performance

Datatypes to describe data layouet
Process topologies (use of communicators, tags)
C, C++, Fortran bindings

Error codes and classes

S.Zuckerman ( )



MPI-2 and beyond @UNIVERSITE

» MPI-2 (2000):
e Thread support
e MPI-I/O, R-DMA

» MPI-2.1 (2008) and MPI-2.2 (2009):
e Corrections to standard, small additional features
» MPI-3 (2012):

e Lots of new features to standard (briefly discussed at the end)
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se-passing execution models

MPI Basics

Stuff needed by the MPI implementation from application
» How to compile and run MPI programs
» How to identify processes

» How to describe the data

Ve Send(data)

Local Local
lemory Memory
- - N
Program Program

Receive(data) -/
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Message-passing execution models

Compiling and running MPI programs

MPI is a library
Need to use function calls, to leverage MPI features.

Compilation

» Regular compilation: use of cc, e.g., gcc -o test test.c

» MPI compilation: mpicc -o test test.c

Execution
» Regular execution: ./text

» MPI execution: mpiexec -np 16 ./test

S.Zuckerman (
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ssage-passing execution models

MPI process identification

MPI groups
» Each MPI process belongs to one or more groups
» Each MPI process is given one or more colors
» Group+color = communicator

» All MPI processes belong to MPI_COMM_WORLD when the program
starts

Identifying individual processes: ranks

» If a process belongs to two different communicators, its rank may be
different from the point of view of each communicator.
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execution models

Most basic MPI program
Hello World

#include <mpi.h>
#include <stdio.h>

int main(int argc, char*x argv([]) {
int rank, size;
MPI_Init (kargc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WOLRD, &size);
printf ("I am,process,#%d/%d\n", rank, size)
MPI_Finalize () ;
return 0;

S.Zuckerman ( )
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execution models

Basic data transfers ;
MPI_Send a UNIVERSITE

Syntax: int MPI Send (const void *buf, int count,
MPI Datatype datatype, int dest, int tag, MPI Comm comm)

» buf: the buffer from where to read the data to send
» count: the number of elements to send over the network link

» datatype: the type of data that is being sent, e.g., MPI_CHAR, MPI_INT,
MPI_DOUBLE, etc.

> dest: which process is meant to receive the data (identified by its rank)
» tag: a way to discriminate between various messages sent to the same process rank

» comm: the communicator (or “group of tasks”) to target

S.Zuckerman ( ) January 11, 2022



; execution models

Basic data transfers @UNlVERSlTE
MPI _Recv

Syntax: int MPI Recv (const void *buf, int count,
MPI_Datatype datatype, int src, int tag, MPI_Comm comm,
MPI_Status *status)

» buf: the buffer from where to write the data to be read

» count: the number of elements to receive over the network link
@ count can be bigger than what was received in practice (the real count can
be obtained using MPI_Get_count)
@ If count is smaller than what is being sent, an error occurs
datatype: the type of data that is being received, e.g., MPI_CHAR, MPI_INT,
MPI_DOUBLE, etc.

dest: from which process the data originates (identified by its rank)

v

v

» tag: a way to discriminate between various messages sent to the same receiving
process rank

» comm: the communicator (or “group of tasks”) to target

» status: contains the source of the message, the tag, how many elements were
sent.
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Basic data transfers |
Wildcards & status

Receive wildcards
» MPI_ANY SOURCE: accepts data from any sender

» MPI_ANY TAG: accepts data with any tag (as long as the receiver is a

valid target)

S.Zuckerman ( )
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execution models

Basic data transfers Il
Wildcards & status

Status object

Objects of type MPI_Status have the following accessible fields (assume
our object name is status):

» MPI_SOURCE: the rank of the process which sent the message (useful
when using MPI_ANY_SOURCE)

» MPI _TAG: the tag used to identify the received message (useful when
using MPI_ANY_TAG)

» MPI_ERROR: the error status (assuming the MPI program does not
crash when an error is detected—which is the behavior by default).

To get the number of elements received, the user can query status using
the MPI _Get_count function.

S.Zuckerman ( )



~ Message-passing exceution models |NEEEE IR U O
) ) UNIVERSITE
A simple example to send and receive data

#include <mpi.h> // required to use MPI functions
#include <stdio.h>

int main(int argc, charx argv[]) {
int rank, datal[100];

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI.COMM_WORLD, &rank);

if (rank == 0)
MPI_Send (data,100,MPI_INT,1,0,MPLLCOMM_WORLD) ;
else

MPI_Recv (data,100,MPI_INT,0,0,MPLLCOMM_WORLD, MPI_STATUS_IGNORE) ;

MPI_Finalize ();
return 0;
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execution models

guNIVERSITE
MPI is simple

MPI_Init
MPI_Comm_rank
MPI Comm_size
MPI_Send

MPI Recv

MPI Finalize

...are enough to write any application using message passing.
However, to be productive and ensure reasonable performance portability,
other functions are required.

vVvyVvYyVvyyvyy
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ssage-passing execution models

MPI pragmatics
Building and running MPI programs

Building MPI programs
» C:mpicc
» C4++: mpicxx
» Fortran: mpif77 (Fortran 77) or mpif90 (Fortran 90)

Running MPI programs
> mpiexec -np 16 ./test
o ... will run the program test on 16 MPI processes.
» mpiexec -host hl,h2,... -np 16 ./test

o ...will run the program test on the various hosts specified on the
command line in a round-robin fashion
@ In our example, host h1 will receive MPI processes 0,2,4,6.

Note: mpiexec or mpirun can be used interchangeably (they are aliases).

S.Zuckerman ( ) January 11, 2022 41



se-passing execution models

Non-blocking communications

Limits to MPI_Send and MPI Recv
MPI_Send and MPI Recv are blocking communication calls

» The sending process must wait until the data it is sending has been
received

» The receiving process must block once it has initiated the receiving
operation

» Consequence: data sent or received through blocking communications
is safe to (re)use

» However, this can severely hamper the overall performance of an
application

Non-blocking variants: MPI_Isend and MPI Irecv

» Routine returns immediately — completion has to be tested separately

» Primarily used to overlap computation and communication

v
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execution models

Non-blocking communications |

Syntax
API

» int MPI_Isend(const void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm, MPI_Request
*xrequest)

» int MPI Irecv(const void *buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm, MPI Request
*request)

» int MPI Wait(MPI_Request *request, MPI_Status *status)
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se-passing execution models

Non-blocking communications |l
Syntax

Properties
» Non-blocking operations allow overlapping of computation and
communication
» Completion can be tested using MPI_Test (MPI Request *request,
int flag, MPI_Status *status)
» Anywhere one uses MPI_Send or MPI_Recv, one can use
MPI_Isend/MPI_Wait or MPI_Irecv/MPI Wait pairs instead

» Combinations of blocking and non-blocking sends/receives can be
used to synchronize execution instead of barriers
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execution models

CERGY PAR

Non-blocking communications |11 UNIVERSITE
Syntax

Multiple completions
» int MPI Waitall(int count, MPI Request
*array_of requests, MPI Status *array_of_statuses)

» int MPI_Waitany(int count, MPI_Request
*array_of requests, int *index, MPI Status *status)
» int MPI Waitsome(int count, MPI Request
*array_of _requests, int *array_of_indices, MPI_Status
*array_of status)

There are corresponding versions of MPI_Test for each of those.
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g execution models

) _ o aGNiVERSITE
A simple example to use non-blocking communications

#include <mpi.h>

int main(int argc, charx argv[]) {

if (rank == 0) {
for (i=0; i< 100; i++) {

datal[i] = compute(i);

MPI_ISend (&datal[il, 1, MPI_INT, 1, 0, MPLCOMM_WORLD,
&request [i]);

}
MPI_Waitall (100, request, MPI_STATUSES_IGNORE)
} else {

for (i = 0; i < 100; i++)

MPI_Recv (&datal[i], 1, MPI_INT, O, 0, MPIL.COMM.WORLD,
MPI_STATUS_IGNORE) ;

kerman (
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essage-passing execution models

Collective operations
Introduction
» Collective operations are called by all processes belonging to the same
communicator

» MPI_Bcast distributes data from one process (the root) to all others
in a communicator

» MPI_Reduce combines data from all processes in the communicator
and returns it to one process

» In many (numerical) algorithms, send/receive pairs can be replaced by
broadcast/reduce ones

e Simpler and more efficient

Properties
» Tags are not used; only communicators matter.
» Non-blocking collective operations were added in MPI-3

» Three classes of operations: synchronization, data movement,

collective comﬁutation




passing execution models

Synchronization

int MPI Barrier(MPI_Comm *comm)
» Blocks until all processes belonging to communicator comm call it

» No process can get out of the barrier unless all the other processes
have reached it

S.Zuckerman ( )



Message-passing execution models

Collective data movements gUNNERSlTE

» MPI_Bcast

» MPI Scatter
» MPI_Gather

» MPI_Allgather
» MPI_Alltoall
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essage-passing execution models

Collective computations g UNIVERSITE

» MPI_Reduce
» MPI_Scan
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se-passing execution models

Other MPI Collective routines @UNNERSlTE

» Other useful collective operations
o MPI_Allgatherv
o MPI_Alltoallv
o MPI_Gatherv
e MPI_Scatterv
o MPI_Reducescatter

> “All" versions deliver results to all participating processes
> “V’ versions (stands for vector) allow the chunks to have different
sizes
e Important when the number of processes involved in the computation
is no a multiple of the number of data elements
» MPI_Allreduce, MPI_Reduce, MPI_Reducescatter, and MPI_Scan

take both built-in and user-defined combiner functions.

S.Zuckerman ( )



Message-passing execution models

Built-in collective computation operations gUNIVERSITE

MPI_MAX Maximum
MPI_MIN Minimum
MPI_PROD Product
MPI_SUM Sum
MPI_LAND Logical and
MPI_LOR Logical or

MPI_LXOR Logical exclusive or
MPI_BAND Bitwise and

MPI_BOR Bitwise or

MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum and location
MPI_MINLOC Minimum and location
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Example using collective operations | gUN|VERSITE

#include <mpi.h>

#include <math.h>

int main(int argc, charx argv([]) {
const double g_PI25DT = 3.141592653589793238362643;
double mypi, pi, h, sum, x, a;
int n, myid, numprocs, i, ierr;

xMPI_Init (&argc, &argv);
xMPI_Comm_rank (MPLCOMM_WORLD, &myid) ;
xMPI_Comm_size (MP.LCOMM_WORLD, &numprocs);

for (550 {
if (myid == 0) {
printf ("Enter_the_ number of intervals: (0 quits) ");
fflush(stdout);
scanf ("%f", &n);
if (n <= 0) break;
}

xMPI_Bcast (&n, 1, MPI_INT, 0, MPI.COMM_WORLD) ;
if (n < 0) { xMPI_Finalize(); exit(0); 1}
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Example using collective operations Il gU‘NIVERSITE

h = 1.0/n; sum = 0.0;

for (int i = myid+1; i < n; i+=numprocs) {
x = h * ((double)i-0.5);
sum += (4.0 / (1.0 * x*x));

}

mypi = h*sum;

xMPI_Reduce (&mypi ,&pi,1,MPI_DOUBLE ,MPI_SUM,0,MPI.COMM_WORLD) ;

if (myid == 0)
printf ("piyisy%f. Erroryisy%f\n", pi, fabs(pi-g_PI25DT));
}
xMPI_Finalize ();
return 0;

}






Shared-memory execution models

Introduction to OpenMP |

The OpenMP Framework
» Stands for Open MultiProcessing

» Three languages supported: C, C++, Fortran

» Supported on multiple platforms: UNIX, Linux, Windows, etc.

Very portable

» Many compilers provide OpenMP capabilities:

The GNU Compiler Collection (gcc) — OpenMP 3.1

Intel C/C++ Compiler (icc) — OpenMP 3.1 (and partial support of OpenMP 4.0)
Oracle C/C++ — OpenMP 3.1

IBM XL C/C++ — OpenMP 3.0

Microsoft Visual C++ — OpenMP 2.0

etc.
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d-memory execution models

Introduction to OpenMP Il

OpenMP’s Main Components
» Compiler directives
» A functions library

» Environment variables

S.Zuckerman ( )
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Shared-memory execution models

The OpenMP Model @uNNERsnE

» An OpenMP program is executed using a unique process
» Threads are activated when entering a parallel region

» Each thread executes a task composed of a pool of instructions

» While executing, a variable can be read and written in memory:

@ It can be defined in the stack of a thread: the variable is private
o It can be stored somewhere in the heap: the variable is shared by all
threads

S.Zuckerman ( )



Running OpenMP Programs: Execution Overview

»

# Tasks

OpenMP: Program Execution IIII

» An OpenMP program is a sequence of serial

and parallel regions I

» A sequential region is always executed by the
master thread: Thread 0

» A parallel region can be executed by multiple IIII
tasks at a time

» Tasks can share work contained within the I

parallel region III
v

¥y Time
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Running OpenMP Programs: Execution Overview

OpenMP: Program Execution
» An OpenMP program is a sequence of serial
and parallel regions

» A sequential region is always executed by the
master thread: Thread 0

» A parallel region can be executed by multiple
tasks at a time

» Tasks can share work contained within the
parallel region

uckerman ( Parallel Prog
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Shared-memory execution models

OpenMP Parallel Structures

» Parallel loops

January 11, 2022 60 /115



Shared-memor

OpenMP Parallel Structures

» Parallel loops

» Sections

[ function(...); }

s DY
for(i=...;i<N;i+=...) (‘

Sections
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OpenMP Parallel Structures

» Parallel loops
» Sections

» Procedures through orphaning

A
e N
X = a+b; [funcnon(.._)
y=x+c;
L function(...);
Y
for(i=...;i<N;i+=...) (‘
\)------ﬁ/‘
Orphan
Sections Procedures
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OpenMP Parallel Structures

» Parallel loops

» Sections

» Procedures through orphaning

» Tasks

L function(...);
-

Y
for(i=...;i<N;i+=...) (‘

[

.
function(...)

Sections

Parallel Prog

Orphan
Procedures
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Shared-memory execution models

OpenMP Structure |

Compilation Directives and Clauses
They define how to:

» Share work

» Synchronize

» Share data

They are processed as comments unless the right compiler option is
specified on the command line.

Fonctions and Subroutines
They are part of a library loaded at link time

S.Zuckerman ( ) January 11, 2022



Shared-memory execution models

OpenMP Structure Il

Environment Variables
Once set, their values are taken into account at execution time

uckerman ( ) January 11, 2022
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OpenMP vs. MPI | '@ UNIVERSITE

These two programming models are complementary:
» Both OpenMP and MPI can interface using C, C++, and Fortran

» MPI is a multi-process environment whose communication mode is
explicit (the user is in charge of handling communications)

» OpenMP is a multi-tasking environment whose communication
between tasks is implicit (the compiler is in charge of handling
communications)

» In general, MPI is used on multiprocessor machines using distributed
memory

» OpenMP is used on multiprocessor machines using shared memory

» On a cluster of independent shared memory machines, combining two
levels of parallelism can significantly speed up a parallel program’s
execution.
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OpenMP: Principles

>

>

The developer is in charge of
introducing OpenMP directives

When executing, the OpenMP
runtime system builds a parallel
region relying on the “fork-join”
model

When entering a parallel region,
the master task spawns
(“forks") children tasks which
disappear or go to sleep when
the parallel region ends

Only the master task remains

active after a parallel region is
done

S.Zuckerman ( )
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Principal Directives |

Creating a Parallel Region: the parallel Directive
#pragma omp parallel

kerman  (
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Principal Directives Il

Data Sharing Clauses

» shared(...): Comma-separated list of all variables that are to be
shared by all OpenMP tasks

» private(...): Comma-separated list of all variables that are to be
visible only by their task.

@ Variables that are declared private are “duplicated:” their content is unspecified
when entering the parallel region, and when leaving the region, the privatized
variable retains the content it had before entering the parallel region

» firstprivate(...): Comma-separated list of variables whose
content must be copied (and not just allocated) when entering the
parallel region.

@ The value when leaving the parallel remains the one from before entering it.
» default(none|shared|private): Default policy w.r.t. sharing
variables. If not specified, defaults to “shared”
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A First Example: Hello World ®UN|VERS|TE

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic \
-03 -o omp_hello omp_hello.c

#include <stdio.h>

#include <stdlib.h> examples$ ./hello
#include <omp.h> [0] Hello, World!
#ifndef _OPENMP [3] Hello, World!
#define omp_get_thread_num() O [1] Hello, World
#endif [2] Hello, World!

int main(void)

{
#pragma omp parallel
{
int tid = omp_get_thread_num();
printf (" [%d]l\tHello, World!\n", tid);
}
return EXIT_SUCCESS;
}

Figure: omp_hello.c
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Example: Privatizing Variables @UNIVERSITE

examples:$ gcc -std=c99 -Wall -Wextra -pedantic -03 \
-0 omp_private omp_private.c
omp_private.c: In function ‘main._omp_fn.0’:
omp_private.c:8:11: warning: ‘a’ is used uninitialized
in this function [-Wuninitialized]
a=a+ 716.;

omp_private.c:4:11: note: ‘a’ was declared here
float a = 1900.0;

#include <stdio.h>

#include <omp.h> [2] a = 716.00

int main() { [1] a = 716.00
float a = 1900.0; [0] a = 716.00
#pragma omp parallel default(none) private(p)[3] a = 716.00
{ [0] a = 1900.00

a = a + 716.;
printf (" [%d]\tay=y%.2f\n" ,omp_get_thread_num(), a);

}
printf (" [%d]\tay=,%.2f\n" ,omp_get_thread_num(), a);
return O;
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Sharing Data Between Threads guNNERSWE

examples:$ gcc -std=c99 -Wall -Wextra -pedantic -03 \
-o omp_hello2 omp_hello2.c

#include <stdio.h>

#include <stdlib.h> examples$ ./hello2
#include <omp.h> [0] Hello, World!
#ifndef _OPENMP [3] Hello, World!
#define omp_get_thread_num() O [1] Hello, World
#endif [2] Hello, World!

int main(void)

{
int ids[] = {0, 1, 2, 3, 4, 5, 6, 7};
#pragma omp parallel default(none) shared(ids)
printf (" [%d]\tHello,_ World!\n", ids[omp_get_thread_num()]);
}
return EXIT_SUCCESS;
}
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Capturing Privatized Variables’ Initial Values gUNIVERSITE

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic -03\
-o omp_firstprivate omp_firstprivate.c

#include <stdio.h> examples$ ./omp_firstprivate
#include <omp.h> a = 19716.000000
int main() { 19716.000000

float a = 1900.0; 19716.000000
19716.000000
19000.000000

(SR
o

#pragma omp parallel \
default (none) firstprivate(a)

{

a = a + 716.;

printf ("ay=y%f\n",a);
}

printf ("ay=_,%f\n",a);

return O0;

Figure: omp_firstprivate.c
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Scope of OpenMP Parallel Regions gUNIVERSITE

When calling functions from a parallel region, local and automatic
variables are implicitly private to each task (they belong to their respective
task’s stack). Example:

#include <stdio.h>
#include <omp.h>
void sub(void);
int main(void) {
#pragma omp parallel default(shared)

{
sub ();
}
return O;
}
void sub(void) {
int a = 19716;
a += omp_get_thread_num();
printf ("ay=g%d\n", a);
}
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Parallel Loops @UNIVERSITE

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic -03\
-o omp_for parallel_for.c

#include <stdio.h> examples$ ./omp_for
#include <omp.h> [1] Hellow, World!
[0] Hellow, World!
int [3] Hellow, World!
main (void) [2] Hellow, World!
{
#pragma omp parallel
{
int n_threads = omp_get_num_threads ();
#pragma omp for
for (int i = 0; i < n_threads; ++i) {
printf (" [%d]\tHellow, World!\n", i);
}
}

Figure: parallel_for.c
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Parallel Loops: A Few Things to Remember

o

2]

The iterator of a omp for loop must use additions/substractions to
get to the next iteration (no i *= 10 in the postcondition)

The iterator of the outermost loop (which directly succeeds to the
omp for directive) is always private, but not the ones in other nested
loops!

There is an implicit barrier at the end of the loop. You can remove it
by adding the clause nowait on the same line: #pragma omp for
nowait

How the iterations are distributed among threads can be defined
using the schedule clause.
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Parallel Loops |
Specifying the Schedule Mode

The syntax to define a scheduling policy is schedule (ScheduleType, chunksize).
The final line should like this:

#pragma omp parallel default(none) \
shared (...) private(...) firstprivate(...)

{
#pragma omp for schedule(...) lastprivate(...)
for (int i = InitVal; ConditionOn(i); i += Stride)
{ /% loop body */ }

}

// or, all 4in one directive:

#pragma omp parallel for default(none) shared(...) private(...) \
firstprivate(...) lastprivate(...)
for (int i = InitVal; ConditionOn(i); i += Stride) {
/* loop body */
}
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Parallel Loops Il
Specifying the Schedule Mode

The number of iterations in a loop is computed as follows:

|FinalVal — InitVal|
Stride

Numlterations = L J + |FinalVal — InitVal| mod Stride

The number of iteration chunks is thus computed like this:

Numlterations

NumChunks = { ChunkSize

J 4+ Numlterations mod ChunkSize
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Parallel Loops Il aGNiVERSITE
Specifying the Schedule Mode

Static Scheduling
schedule(static,chunksize) distributes the iteration chunks across threads in a round-robin
fashion

» Guarantee: if two loops with the same “header” (precondition, condition, postcondition,
and chunksize for the parallel for directive) succeed to each other, the threads will be
assigned the same iteration chunks

» By default, chunksize is equal to OMP_NUM_THREADS

» Very useful when iterations take roughly the same time to perform (e.g., dense linear
algebra routines)

Dynamic Scheduling

schedule (dynamic,chunksize) divides the iteration space according to chunksize, and creates
an “abstract” queue of iteration chunks. If a thread is done processing its chunk, it dequeues
the next one from the queue. By default, chunksize is 1.

Very useful if the time to process individual iterations varies.
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Parallel Loops IV gUNiVERSITE
Specifying the Schedule Mode

Guided Scheduling

guided, chunksize Same behavior as dynamic, but the chunksize is divided by two each time a
threads dequeues a new chunk. The minimum size is one, and so is the default.
Very useful if the time to process individual iterations varies, and the amount of work has a

“trail”
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Parallel Loops
Specifying the Schedule Mode |

g UNIVERSITE

#include
#include
#include
#include

<unistd.h>
<stdio.h>
<stdlib.h>
<omp.h>

const double MAX = 1

double sum(const int n) {
const int id = o
double f = 0.0;
const int bound

for (int i = 0;
f += i,

return f;

00000. ;

mp_get_thread_num () ;
= id == 0 ? n*x1001 : n;

i < bound; ++i)

S.Zuckerman
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Parallel Loops gUNlVERSlTE
Specifying the Schedule Mode II

int main(void) {

printf ("MAX,=4%.2f\n" ,MAX);

double acc = 0.0;

int* sum_until = malloc (MAX*sizeof (int));

if (!sum_until) perror("malloc"), exit( EXIT_FAILURE );

for (int i = 0; i < (int)MAX; ++i) sum_until[i] = rand () % 100;

#pragma omp parallel default(none) \

shared (sum_until) firstprivate (acc)

{ /* Use the OMP_SCHEDULE enviromment wariable on the command
* line to specify the type of scheduling you want, e.g.:
* export OMP_SCHEDULE="static" or OMP_SCHEDULE="dynamic ,10"
% or OMP_SCHEDULE="guided ,b100"; ./omp_schedule

*/
#pragma omp for schedule(runtime)
for (int i = 0; i < bound; i+=1) {
acc += sum( sum_until[i] );
}
printf (" [%d]\tMy,sum_ = %.2f\n", omp_get_thread_num(), acc);

}
free(sum_until);
return O;
} Figure: omp_for_schedule.c
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Parallel Loops gUNlVERSlTE
Specifying the Schedule Mode: Outputs |

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic \

szuckerm@evans201g:examples$ export OMP_SCHEDULE="static"
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 41299239778797.00

[1] My sum = 40564464.00
[3] My sum = 40174472.00
[2] My sum = 40502412.00

real Om11.911s
user 0m11.930s
sys Om0.004s
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Parallel Loops gUNNERSlTE
Specifying the Schedule Mode: Outputs |

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic \

szuckerm@evans201g:examples$ export OMP_SCHEDULE="static"
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 41299239778797.00

[1] My sum = 40564464.00
[3] My sum = 40174472.00
[2] My sum = 40502412.00

real Om11.911s
user 0m11.930s
sys Om0.004s

uckerm@evans20tg rexanptes$—export— OMP-SCHEPYEE="static;t
szuckerm@evans201g:examples$ time ./omp_schedule
MAX = 100000.00
[0] My sum = 41487115603934.00
[1] My sum = 40266669.00
[3] My sum = 40319644.00
[2] My sum = 40468898.00

real Om11.312s
user Om11.356s
OmQ.004.
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Parallel Loops gU‘NIVERSITE
Specifying the Schedule Mode: Outputs Il

TckeTmeevans20tgrexamptes$expoTt—OMP_SCHEDYEE="dymamic; 1666
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 1661647855868.00

[1] My sum = 55011312.00

[2] My sum = 46974801.00

[3] My sum = 58218664.00

real 0m0.546s
user 0m0.576s
OmQ.004.
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ition mc

Parallel Loops gUNlVERSlTE
Specifying the Schedule Mode: Outputs Il

TckeTmeevans20tgrexamptes$expoTt—OMP_SCHEDYEE="dymamic; 1666
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 1661647855868.00

[1] My sum = 55011312.00

[2] My sum = 46974801.00

[3] My sum = 58218664.00

real 0m0.546s
user 0m0.576s
OmQ.004.

uckerm@evans20tgrexampties$—export—OMP-SCHEDUEE="dymramic;+
szuckerm@evans201g:examples$ time ./omp_schedule
MAX = 100000.00
[1] My sum = 57886783.00
[0] My sum = 76809786053.00
[2] My sum = 47423265.00
[3] My sum = 56452544.00

real 0m0.023s
user O0m0.059s
ys 0m0. Q04

ETIN ) January 11, 2022 81/115



1emor

Parallel Loops gU‘NIVERSITE
Specifying the Schedule Mode: Outputs Il

TCkeTmeevans20tgrexamptes$expoTt—BMP_SCHEDYLE="guided; 1660
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 30922668944167.00

[3] My sum = 44855495.00

[2] My sum = 45989686.00

[1] My sum = 40596797.00

real Om8.437s
user Om8.452s
OmQ..008:
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Parallel Loops gUNlVERSlTE
Specifying the Schedule Mode: Outputs Il

TCkeTmeevans20tgrexamptes$expoTt—BMP_SCHEDYLE="guided; 1660
szuckerm@evans201g:examples$ time ./omp_schedule
MAX = 100000.00
[0] My sum = 30922668944167.00
[3] My sum = 44855495.00
[2] My sum = 45989686.00
[1] My sum = 40596797.00

real Om8.437s
user Om8.452s
OmQ..008:

uckerm@evans20tgrexamptes$—export—OMP-SCHEDUEE="guided; +*
szuckerm@evans201g:examples$ time ./omp_schedule
MAX = 100000.00
[0] My sum = 17508269385607.00
[1] My sum = 49603788.00
[2] My sum = 40584346.00
[3] My sum = 54438904.00

real Om5.401s
user Om5.438s
ys Om0.008:
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Parallel Loops gUNIVERSITE

The lastprivate Clause

int main(void) {
double acc = 0.0; const int bound = MAX;
printf (" [%dI\tMAX,=_,%.2f\n" ,omp_get_thread_num() ,MAX);
int* sum_until = smalloc (MAX*sizeof (int));
for (int i = 0; i < bound; ++i)
sum_until[i] = rand () % 100;
#pragma omp parallel for default(none) shared(sum_until) \
schedule (runtime) firstprivate(acc) lastprivate (acc)
for (int i = 0; i < bound; i+=1)
acc += sum( sum_until[i] );
printf ("Valueyof,the,last thread to write togaccy=y%.2f\n" ,acc);
free(sum_until);
return EXIT_SUCCESS;
} Figure: omp_for_lastprivate.c
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Incrementing a Global Counter |

aUNlVERSITE
Racy OpenMP Version

#include <stdio.h>

#include <stdlib.h>
#include <omp.h>

unsigned long g_COUNTER = O;

int
main (void)
{
int n_threads = 1;
#pragma omp parallel default(none) \
shared(n_threads , stdout ,g_COUNTER)

{
#pragma omp master
{
n_threads = omp_get_num_threads();
printf ("n_threads,=,%d\t",n_threads); fflush(stdout);
}
++g_COUNTER;
}

printf ("g_COUNTER,=_%lu\n",g_COUNTER);

S.Zuckerman ( )
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Incrementing a Global Counter Il gUNIVERSITE
Racy OpenMP Version

return EXIT_FAILURE; ‘

}

szuckerm@evans201g:examples$ for i in $(seq 100)
> do ./global_counter ;donelsort|uniq

n_threads = 4 g_COUNTER = 2
n_threads = 4 g_COUNTER = 3
n_threads = 4 g_COUNTER = 4
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Incrementing a Global Counter
Using a Critical Section

g UNIVERSITE

#include <stdio.h>

#include <stdlib.h>
#include <omp.h>

unsigned long g_COUNTER = O;

int main(void) {
int n_threads = 1;
#pragma omp parallel default(none) \
shared(n_threads , stdout ,g_COUNTER)

{
#pragma omp master
{
n_threads = omp_get_num_threads();
printf ("n_threads=_%d\t",n_threads); fflush(stdout);
}
#pragma omp critical
{ ++g_COUNTER; }
}

printf ("g_COUNTER_,=_,%lu\n",g_COUNTER);
return EXIT_FAILURE;
}

S.Zuckerman ( )
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Incrementing a Global Counter
Using an Atomic Section

a UNIVERSITE

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

unsigned long g_COUNTER = O;

int main(void) {
int n_threads = 1;
#pragma omp parallel default(none) \
shared(n_threads , stdout ,g_COUNTER)

{
#pragma omp master
{
n_threads = omp_get_num_threads();
printf ("n_threads=_%d\t",n_threads); fflush(stdout);
}
#pragma omp atomic
++g_COUNTER;
}

printf ("g_COUNTER_,=_,%lu\n",g_COUNTER);
return EXIT_FAILURE;
}

S.Zuckerman ( )
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Synchronization in OpenMP |

critical Directive

#pragma omp critical [(name)]

Guarantees that only one thread can access the sequence of instructions
contained in the (named) critical section. If no name is specified, an
“anonymous” name is automatically generated.

atomic Directive

#pragma omp atomic

Guarantees the atomicity of the single arithmetic instruction that follows.
On architectures that support atomic instructions, the compiler can
generate a low-level instruction to ensure the atomicity of the operation.
Otherwise, atomic is equivalent to critical.
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Synchronization in OpenMP |1

barrier Directive

#pragma omp barrier

All threads from a given parallel region must wait at the barrier. All
parallel regions have an implicit barrier. All omp for loops do too. So
do single regions.

single Directive

Guarantees that a single thread will execute the sequence of instructions
located in the single region, and the region will be executed only once.
There is an implicit barrier at the end of the region.
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Synchronization in OpenMP IlI gUN]VERSWE

master Directive

Guarantees that only the master thread (with /D = 0) will execute the
sequence of instructions located in the single region, and the region will

be executed only once. There is NO implicit barrier at the end of the
region.

nowait Clause

nowait can be used on omp for, single, and critical directives to
remove the implicit barrier they feature.
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Tasking in OpenMP guNIVERSITE

OpenMP 3.x brings a new way to express parallelism: tasks.
» Tasks must be created from within a single region
» A task is spawned by using the directive #pragma omp task

» Tasks synchronize with their siblings (i.e., tasks spawned by the same
parent task) using #pragma omp taskwait
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Case Study: Fibonacci Sequence @UNNERSWE

We'll use the Fibonacci numbers example to illustrate the use of tasks:

/% *

* \brief Computes Fibonacci numbers
* \param n the Fibonacci number to compute
*/
ué4 xfib(ué64 n) {
return n < 2 ? // base case?
n : // fib(0) = 0, Fib(1) = 1
xfib(n-1) + xfib(n-2);

Average Time (cycles)
Sequential - Recursive 196051726.08

Table: Fibonacci(37), 50 repetitions, on Intel i7-2640M CPU @ 2.80GHz
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Computing Fibonacci Numbers: Headers | ;
utils.h, common.h, and mt.h gUMVERSWE

#ifndef UTILS_H_GUARD
#define UTILS_H_GUARD
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <stdint.h>
#include "rdtsc.h"

static inline void fatal(const char* msg) {
perror (msg), exit(errno);
}
static inline void sfree(voidx* p) {
if (p) { *(char*)p = 0;} free(p);
}
static inline void* scalloc(size_t nmemb, size_t size) {
void* p = calloc(nmemb,size);
if (!'p) { fatal("calloc"); 1}
return p;
}

static inline void* smalloc(size_t size) {
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Computing Fibonacci Numbers: Headers Il ;
utils.h, common.h, and mt.h gUMVERSWE

void* p = malloc(size);
if (!'p) { fatal("malloc"); }
return p;
}
static inline void usage (const char* progname) {
printf ("USAGE:_ %syupositive_number\n", progname);
exit (0);
}
void u64_measure(u64 (*xfunc)(u64), u64 n,
u64 n_reps, const char* msg);
void u64func_time (u64 (*func)(u64), u64 n,
const char* msg);
#endif // UTILS_H_GUARD
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Computing Fibonacci Numbers: Headers Il gU‘NIVERSITE

utils.h, common.h, and mt.h

#ifndef COMMON_H_GUARD

#define COMMON_H_GUARD

#include "utils.h" // for smalloc(), sfree(), fatal(), scalloc(),
#define FIB_THRESHOLD 20

typedef uint64_t u64; typedef uint32_t u32; typedef uintl6_t ul6;
typedef uint8_t u8; typedef int64_t s64; typedef int32_t s32;
typedef intl6_t s16; typedef int8_t s8;

u64 xfib(u64) ; u64 trfib (u64 ,u64 ,u64);
u64 trFib (u64); u64 sfib(u64);
u64 memoFib (u64); u64 memofib (u64d ,u6b4dx*);

void* mt_memofib(voidx); u64d mt_memoFib (u64);
void* mtfib(voidx*); u64d mtFib (u64) ;
u64 oFib (u64); u64 ofib(u64);

u64 o_memoFib (u64); u64 o_memofib (u64d ,u6d*);
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Computing Fibonacci Numbers: Headers IV gU‘NIVERSITE

utils.h, common.h, and mt.h

#endif * COMMON _H GUARD  *

#define MT_H_GUARD

#include <pthread.h>

typedef struct fib_s { u64 *up, n; } fib_t;

typedef struct memofib_s { u64 *up, *vals, n; } memofib_t;

static inline pthread_t* spawn(void* (*func)(void*), void* data) {
pthread_t* thread = smalloc(sizeof (pthread_t)); int error = O0;

do {
errno = error = pthread_create(thread,NULL, func,data);
} while (error == EAGAIN);

if (error) fatal("pthread_create");
return thread;

}
static inline void sync(pthread_t#* thread) {
int error = 0; void* retval = NULL;
if ( (errno = ( error = pthread_join(*thread, &retval) ) ) )

fatal("pthread_join");
sfree(thread);
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Computing Fibonacci Numbers: Headers V gUN|VERSITE

utils.h, common.h, and mt.h

}
#endif // MT_H_GUARD
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Computing Fibonacci Numbers: Code | gU‘NIVERSITE
Naive Pthread and OpenMP

#include "common.h"
#include "mt.h"
void* mtfib(void* frame) {
fib_t*x f = (fib_t*) frame;
u64 n = f->n, *up = f->up;
if (n < FIB_THRESHOLD)
*up = sfib(n), pthread_exit (NULL);
u64 nl1 = 0, n2 = 0;
fib_t framel = { .up = &nl, .n = f->n-1 },
frame2 = { .up = &n2, .n = f->n-2 };
pthread_t *thdl = spawn(mtfib,&framel),
*thd2 = spawn(mtfib,&frame2);
sync (thdl); sync(thd2);
*up = nl+n2;
return NULL;
}
u64 mtFib(u64 n) {
u64 result = 0; fib_t f = { .up = &result, .n = n };
(void)mtfib (&£f);
return result;
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Shared-memory execution models

Computing Fibonacci Numbers: Code I gUN|VERSITE
Naive Pthread and OpenMP

#include "common.h"
#include <omp.h>

u64 ofib(u64 n) { u64 ni1, n2;
if (n < FIB_THRESHOLD) return sfib(n);
# pragma omp task shared(nl)
nl = ofib(n-1);
# pragma omp task shared(n2)
n2 = ofib(n-2);
# pragma omp taskwait
return nl + n2;

}

u64 oFib(u64 n) { u64 result = 0;
# pragma omp parallel
{
# pragma omp single nowait
{ result = ofib(n); }
} // parallel
return result;

}
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Shared-memory execution models

Computing Fibonacci Numbers: Code Il

aUNlVERSITE
Naive Pthread and OpenMP

Average Time (cycles)

Sequential - Recursive 196051726.08
Parallel - PThread 2837871164.24
Parallel - OpenMP 17707012.14

Table: Fibonacci(37), 50 repetitions, on Intel i7-2640M CPU @ 2.80GHz
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Shared-memory execution models

Computing Fibonacci Numbers: Code | gU‘NIVERSITE
Memoization using Serial, Pthread and OpenMP

#include "common.h"
#include "mt.h"

void* mt_memofib(void* frame) { memofib_t* f = (memofib_t*) frame;
ué4 n = f->n *vals = f->vals, *up = f->up;
if (n < FIB_THRESHOLD) *up = vals[n] = sfib(n), pthread_exit (NULL)
if (vals[n] == 0) { u64 n1 = 0, n2 = 0;
memofib_t framel = {.up=&nil,.n=f->n-1,.vals=vals},
frame2 = {.up=&n2,.n=f->n-2,.vals=vals};
pthread_t *thdl = spawn(mt_memofib ,&framel),
*thd2 = spawn(mt_memofib ,&frame2);

sync (thd1l); sync(thd2);
vals[n] = n1 + n2; }
*up = vals[n], pthread_exit (NULL);
}
u64 mt_memoFib(u64 n) { u64 result = 0;
u64* fibvals = scalloc(n+1l,sizeof(u64));
fibvals[1]=1; memofib_t f={.up=&result,.n=n,.vals=fibvals};
(void)mt_memofib (&f);
return result;
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Shared-memory execution models

Computing Fibonacci Numbers: Code I gUNiVERSITE

Memoization using Serial, Pthread and OpenMP
#include "common.h"
#include <omp.h>
u64 o_memofib(u64 n, ubd*x vals) {
if (n < FIB_THRESHOLD) return sfib(n);
if (vals[n] == 0) { u64 n1 = 0, n2 = 1;
# pragma omp task shared(nl,vals)
nl = o_memofib(n-1,vals);
# pragma omp task shared(n2,vals)
n2 = o_memofib(n-2,vals);
# pragma omp taskwait
vals[n] = nl + n2;

}
return vals[n];
}
u64 o_memoFib(u64 n) {
u64 result=0, *fibvals=calloc(n+1,sizeof (u64));
# pragma omp parallel
{
# pragma omp single nowait
{ fibvals[1] = 1; result = o_memofib(n,fibvals); }
}

return result; }
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Shared-memory execution models

Computing Fibonacci Numbers: Code Il gUN|VERSITE
Memoization using Serial, Pthread and OpenMP

#include "common.h"

u64 memofib(u64 n, u6d* vals) {
if (n < 2)
return n;
if (vals[n] == 0)
vals[n] = memofib(n-1,vals) + memofib(n-2,vals);
return vals[n];

}

u64 memoFib(u64 n) {
u64* fibvals = calloc(n+1,sizeof(u64));
fibvals [0] = 0; fibvals[1] = 1;
u64 result = memofib(n,fibvals);
sfree(fibvals);
return result;
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Shared-memory execution models

Computing Fibonacci Numbers: Code IV gU‘NIVERSITE
Memoization using Serial, Pthread and OpenMP

Average Time (cycles)

Sequential - Recursive 196051726.08
Parallel - PThread 2837871164.24
Parallel - OpenMP 17707012.14
Parallel - PThread - Memoization 2031161888.56
Parallel - OpenMP - Memoization 85899.58
Sequential - Memoization 789.70

Table: Fibonacci(37), 50 repetitions, on Intel i7-2640M CPU @ 2.80GHz
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Shared-memory execution models

Computing Fibonacci Numbers: Code |
When Serial is MUCH Faster Than Parallel

g UNIVERSITE

#include "common.h"
u64 trfib(u64 n, u64 accl, u64 acc2) {
return n < 2 7
acc2

}
u64 trFib(u64 n) { return trfib(a, O,

trfib( n-1, acc2, accl+acc2);

1);

#include "common.h"
u64 sfib(u64 n) {
u64 nl1 = 0, n2 =1, r = 1;

for (u64 i = 2; i < n; ++i) {
nl = n2;
n2 = r;
r = nl + n2;

}

return r;
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Shared-memory execution models

Computing Fibonacci Numbers: Code II gUNIVERSITE
When Serial is MUCH Faster Than Parallel

Average Time (cycles)

Sequential - Recursive 196051726.08
Parallel - PThread 2837871164.24
Parallel - OpenMP 17707012.14
Parallel - PThread - Memoization 2031161888.56
Parallel - OpenMP - Memoization 85899.58
Sequential - Memoization 789.70
Sequential - Tail Recursive 110.78
Sequential - Iterative 115.02

Table: Fibonacci(37), 50 repetitions, on Intel i7-2640M CPU @ 2.80GHz
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Memory Models

Learning More About Multi-Threading and OpenMP

Books (from most theoretical to most practical)
» Herlihy and Shavit 2008
» Riinger and Rauber 2013
» Kumar 2002
» Chapman, Jost, and Pas 2007

Internet Resources

» “The OpenMP(R) API specification for parallel programming” at openmp.org

@ Provides all the specifications for OpenMP, in particular OpenMP 3.1 and 4.0
@ Lots of tutorials (see http://openmp.org/wp/resources/#Tutorials)

» The Wikipedia article at http://en.wikipedia.org/wiki/OpenMP

Food for Thoughts

» Sutter 2005 (available at http://www.gotw.ca/publications/concurrency-ddj.htm)

> Lee 2006 (available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf)

» Boehm 2005 (available at
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf)

.
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