Introduction to Parallel Programming J

Stéphane ZUCKERMAN
Laboratoire ETIS

Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS
F95000, Cergy, France

Equipes Traitement ERGY PARIS .
e (@Y UNIVERSITE E @
et Systemes N A

January 11, 2022

S.Zuckerman () Parallel Prog January 11, 2022 1/115

Outline aﬁﬁﬁ‘VERSWE’

@ Resources
© Parallel Architectures Today
e A short history of parallel programming and why we need it

o Message-passing execution models
@ Standard Features & Execution Model
@ MPI Basics: Features, Compilation, Execution
@ Non-Blocking Communications
@ Collective operations

© Shared-memory execution models
® Introduction to OpenMP
@ OpenMP Basics
® Learning More About Shared-Memory Models

@ References
~ S.Zuckerman (ETIS) | Parallel Prog. January 11,2022 2/115

Resources | g UNIVERSITE

Standards and specifications

» OpenMP: [Dagum and Menon 1998; Duran et al. 2011; Ayguade et al. 2009]
@ Useful books: Using OpenMP [Chapman, Jost, and Van Der Pas 2008]
@ http://www.openmp.org

» MPI: [Graham 2009; Dongarra et al. 1995; Forum 1994]

@ Useful books:
@ Using MPI [Gropp, Lusk, and Skjellum 1999; Gropp, Lusk, and Skjellum
2014] (latest: 3™ edition),
@ Using MPI-2 [Gropp, Lusk, and Thakur 1999]
@ Using Advanced MPI [Gropp, Hoefler, et al. 2014]
@ http://mpi-forum.org
@ http://www.mcs.anl.gov/mpi

» PGAS: http://www.pgas.org

» Accelerator programming:
@ Cuda: https://developer.nvidia.com/cuda-zone
@ OpenCL: https://www.khronos.org, in particular
https://www.khronos.org/opencl/
@ OpenACC: https://www.openacc.org

uckerman () January 11, 2022

http://www.openmp.org
http://mpi-forum.org
http://www.mcs.anl.gov/mpi
http://www.pgas.org
https://developer.nvidia.com/cuda-zone
https://www.khronos.org
https://www.khronos.org/opencl/
https://www.openacc.org

Resources

Resources |l g UNIVERSITE

Available implementations

» OpenMP: Clang, GCC since v4.2 (proprietary implementations include Intel's ICC, IBM
XL C; etc.)

@ Note: GCC's OpenMP runtime is more of a reference implementation than anything.
@ Intel’'s runtime implementation of OpenMP is free software, and used by Clang. You
can also download it and link it to GCC.

» MPI: Mpich-2, Open-MPI
@ Most supercomputer vendors provide their own implementation, often derived from
either Mpich or Open-MPI

@ Personal preference: Open-MPI (more modular; more recent—benefits from design
issues found in Mpich)

» OpenACC: GCC since v5 (the proprietary PGl compiler also implements it)
» OpenCL: libclc on LLVM (Clang/LLVM)

S.Zuckerman () January 11, 2022 5/115

Zuckerman)

Parallel Architectures Today

General Purpose Architectures | ‘@ "/ UNIVERSITE

An Overview

Figure: Single CPU and a single DRAM bank.

DRAM

CPU

S.Zuckerman ()

Parallel Architectures Today

General Purpose Architectures |l

An Overview

UNIVERSITE

Figure: Symmetric Multi-Processor (SMP) system; single DRAM bank.

DRAM

CPU

CPU|.

CPU

S.Zuckerman

()

Parallel Architecture bday

General Purpose Architectures Il @UNIVERSITE

An Overview

Figure: Symmetric Multi-Processor (SMP) system with Non-Uniform Memory Access (NUMA);
multiple DRAM banks.

| Interconnect |
I

DRAM DRAM DRAM

CPU CPU CPU

Parallel Architectures Today

General Purpose Architectures IV @UNIVERSITE

An Overview

Figure: Single CPU and a single DRAM bank.

DRAM

CPU

S.Zuckerman ()

Parallel Architectures Today

General Purpose Architectures V @UNIVERSITE

An Overview

Figure: Single CPU: CPU, L1 data cache (L1D), L1 Instruction cache (L1l), L2 unified cache
(L2), L3 Unified cache (L3); single DRAM bank.

DRAM

L3

L2
L1D /L1l

CPU

S.Zuckerman () January 11, 2022 11 /115

Parallel Architectures Today

General Purpose Architectures VI UNIVERSITE

An Overview

Figure: Single CPU+cache hierarchy; single DRAM bank.

DRAM

L3 L3
L2 L2
L1D /L1l L1D /L1l

S.Zuckerman (ETIS)

Parallel Architectures Today

General Purpose Architectures VII ‘@ "/ UNIVERSITE

An Overview

Interconnect

DRAM| |DRAM DRAM

L3 L3 L3
L2 L2 L2
L1D /L1l L1D /L1l L1D /L1l
CPU CPU CPU

S.Zuckerman ()

Parallel Architectures Today

General Purpose Architectures VIII UNIVERSITE

An Overview

DRAM

L3

L2 L2 L2 L2
L1D /L1l L1D /L1l L1D /L1l L1D /L1l

CPU CPU CPU CPU

S.Zuckerman ()

el Architectu

General Purpose Architectures IX)" UNIVERSITE

An Overview

DRAM

L3 L3 L3
L2 | L2 L2 L2 L2 L2 L2 | L2 fes L2 L2
(TSR] [SToRHT) (SToyJT) [ETogt] [(S Ty (S Ty] (ST STy TS (STo] (ST] (o]

CPU | CPU | CPU | CPU CPU [CPU [CPU | CPU

Parallel Architectures Today

General Purpose Architectures X

An Overview

ndo

ndd

ndd

ndo

IT1/atT|

1T1/aT7]

IT1/art1

IT1/atT|

ndo

Nndd [NdD

ndo

a1

4

21

a1

1T/ at|

IT1/4T17{1T1/dT11

IT1/atT|

€1

a1

1 | a1

a1

€1

DRAM

DRAM

DRAM

DRAM

L3

L2

L2

L2

L2

L3

L1D /L1l

L1D /L1l

L1D /L1l

L1D /L1l

L2

L2 | L2

L2

CPU

CPU

CPU

CPU

S.Zuckerman ()

L1D /L1l

L1D /L1IJL1D / L1l

L1D /L1l

CPU

CPU [CPU

CPU

UNIVERSITE

S.Zuckerman

A short history of parallel programming and why we need it

In the beginning... |

Why parallel computing?
» Parallel programming appears very early in the life of computing.

» For every generation of high-end processor, some computations hog
all of the available resources.

» Solution: duplicate computing resources.

S.Zuckerman () January 11, 2022 18

A short history of parallel programming and why we need it

In the beginning... I

Two (non-exclusive) approaches
» Design a parallel processor/computer architecture, i.e., duplicate
functional units, provide vector units, ...:
o Cray | vector supercomputer
o Connection Machine

» Design a computer made of multiple computing nodes (also called
compute nodes):

o Custom clusters: SGI Altix, IBM BlueGene, ...
o Commodity supercomputers: Beowulf clusters

S.Zuckerman () January 11, 2022

A short history of parallel programming and why we

e need it

In the beginning... I @u‘NNEstE

Toward standardization of parallel computing

Until the early/mid 1990s, each supercomputer vendor provides their own
parallel computing tools.

» Each new parallel computer requires to learn a new or updated
environment to get good performance

» Terrible for portability and productivity

The time was ripe for a standardization effort for all types of parallelism.

S.Zuckerman () January 11, 2022 20 /115

A short history of parallel programming and why we need it

In the beginning... IV gU‘NNERSlTE

Toward standardization of parallel models of computation
» Distributed memory models:
o PVM (1991)
o MPI standard (1992)
» Shared memory models:

o POSIX.1c / IEEE Std 1003.1¢-1995 — a.k.a. PTHREAD library
o OpenMP standard (1997)

The obvious benefits are portability and productivity, although
performance portability is not guaranteed (only correctness).

S.Zuckerman () January 11, 2022 21 /115

A short history of parallel programming and why we need it

Why should we care about these parallel models? |

Hardware context
» End of Dennard’s scaling
» Moore's law now used to add more computing units on a single chip
(instead of going to higher frequencies)

» Programming chip multiprocessors (CMP) is not just for
scientific/high-performance computing anymore
e Embedded chips require programming models and execution models to
efficiently exploit all of the hardware

S.Zuckerman () January 11, 2022 22

A short history of parallel programming and why we need it

Why should we care about these parallel models? Il

Software context — embedded systems

A lot of embedded systems are mainstream and general purpose nowadays
» e.g., Raspberry Pl, Beagle, etc.
» They feature CMPs such as ARM multicore chips

» Even on more specialized platforms, MPI, OpenMP, or OpenCL
implementations exist:

o Xilinx proposes a way to synthesize circuits in FPGAs with OpenCL

o Adapteva's Parallella board: Zyng-7000 = dual core Cortex A9+FPGA SoC
+ Epiphany co-processor (16 cores with scratchpads).

@ There are OpenMP and MPI implementations for both ARM and Epiphany
boards.

@ Bottom line: “general purpose”’ parallelism is made available to all parallel
platforms nowadays

S.Zuckerman () January 11, 2022 23 /11

A short history of parallel programming and why we need it

Why should we care about these parallel models? 111 gUNiVERSITE

Advantages of traditional programming and execution models

» Because these models are standardized, they are made available in
mainstream programming tools
e OpenMP and MPI both have free/open source implementations
available to all
o Same with PGAS languages
e Same with GPU-oriented languages
o Performance goes from “acceptable” to “pretty good”

@ ...but proprietary implementations tend to be faster because they have
better/exclusive knowledge of underlying system software and/or
hardware

@ ...but not always!

S.Zuckerman () January 11, 2022 24 /115

S.Zuckerman

execution models

An introduction to MPI
Execution Model

Execution Model
» Relies on the notion of distributed memory

» All data transfers between MPI processes are explicit
» Processes can also be synchronized with each other

» Achieved using a library API

MPI process # UNIX or Windows process.
» A process = a program counter + a (separate) address space

» An MPI process could be implemented as a thread [Huang, Lawlor,
and Kale 2003]

S.Zuckerman (January 11, 2022 26 /115

execution mode

MPI execution model in a nutshell |

Local
Memory

Program

Local
Memory

Program

Interconnection
Network

Local
Memory

Program

Local
Memory

Program

ssing execution models

| .
5 4 UNIVERSITE
MPI execution model in a nutshell Il

Local Local
Memory Memory

Program - EVERGe A 0gram

S.Zuckerman (ETIS)

Message-passing execution models

MPI-1 ’a UNIVERSITE

Basic I/O communication functions (100+)
Blocking send and receive operations
Nonblocking send and receive operations

Collective communications

o Broadcast, scatter, gather, etc.
e Important for performance

Datatypes to describe data layouet
Process topologies (use of communicators, tags)
C, C++, Fortran bindings

Error codes and classes

S.Zuckerman ()

MPI-2 and beyond @UNIVERSITE

» MPI-2 (2000):
e Thread support
e MPI-I/O, R-DMA

» MPI-2.1 (2008) and MPI-2.2 (2009):
e Corrections to standard, small additional features
» MPI-3 (2012):

e Lots of new features to standard (briefly discussed at the end)

S.Zuckerman () January 11, 2022 30 /115

se-passing execution models

MPI Basics

Stuff needed by the MPI implementation from application
» How to compile and run MPI programs
» How to identify processes

» How to describe the data

Ve Send(data)

Local Local
lemory Memory
- - N
Program Program

Receive(data) -/

S.Zuckerman ()

Message-passing execution models

Compiling and running MPI programs

MPI is a library
Need to use function calls, to leverage MPI features.

Compilation

» Regular compilation: use of cc, e.g., gcc -o test test.c

» MPI compilation: mpicc -o test test.c

Execution
» Regular execution: ./text

» MPI execution: mpiexec -np 16 ./test

S.Zuckerman (

January 11, 2022

ssage-passing execution models

MPI process identification

MPI groups
» Each MPI process belongs to one or more groups
» Each MPI process is given one or more colors
» Group+color = communicator

» All MPI processes belong to MPI_COMM_WORLD when the program
starts

Identifying individual processes: ranks

» If a process belongs to two different communicators, its rank may be
different from the point of view of each communicator.

S.Zuckerman () January 11, 2022 33

execution models

Most basic MPI program
Hello World

#include <mpi.h>
#include <stdio.h>

int main(int argc, char*x argv([]) {
int rank, size;
MPI_Init (kargc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WOLRD, &size);
printf ("I am,process,#%d/%d\n", rank, size)
MPI_Finalize () ;
return 0;

S.Zuckerman ()

s

January 11, 2022

34

115

execution models

Basic data transfers ;
MPI_Send a UNIVERSITE

Syntax: int MPI Send (const void *buf, int count,
MPI Datatype datatype, int dest, int tag, MPI Comm comm)

» buf: the buffer from where to read the data to send
» count: the number of elements to send over the network link

» datatype: the type of data that is being sent, e.g., MPI_CHAR, MPI_INT,
MPI_DOUBLE, etc.

> dest: which process is meant to receive the data (identified by its rank)
» tag: a way to discriminate between various messages sent to the same process rank

» comm: the communicator (or “group of tasks”) to target

S.Zuckerman () January 11, 2022

; execution models

Basic data transfers @UNlVERSlTE
MPI _Recv

Syntax: int MPI Recv (const void *buf, int count,
MPI_Datatype datatype, int src, int tag, MPI_Comm comm,
MPI_Status *status)

» buf: the buffer from where to write the data to be read

» count: the number of elements to receive over the network link
@ count can be bigger than what was received in practice (the real count can
be obtained using MPI_Get_count)
@ If count is smaller than what is being sent, an error occurs
datatype: the type of data that is being received, e.g., MPI_CHAR, MPI_INT,
MPI_DOUBLE, etc.

dest: from which process the data originates (identified by its rank)

v

v

» tag: a way to discriminate between various messages sent to the same receiving
process rank

» comm: the communicator (or “group of tasks”) to target

» status: contains the source of the message, the tag, how many elements were
sent.

S.Zuckerman () January 11, 2022 36 /115

ssage-passing execution models

Basic data transfers |
Wildcards & status

Receive wildcards
» MPI_ANY SOURCE: accepts data from any sender

» MPI_ANY TAG: accepts data with any tag (as long as the receiver is a

valid target)

S.Zuckerman ()

January 11, 2022

execution models

Basic data transfers Il
Wildcards & status

Status object

Objects of type MPI_Status have the following accessible fields (assume
our object name is status):

» MPI_SOURCE: the rank of the process which sent the message (useful
when using MPI_ANY_SOURCE)

» MPI _TAG: the tag used to identify the received message (useful when
using MPI_ANY_TAG)

» MPI_ERROR: the error status (assuming the MPI program does not
crash when an error is detected—which is the behavior by default).

To get the number of elements received, the user can query status using
the MPI _Get_count function.

S.Zuckerman ()

~ Message-passing exceution models |NEEEE IR U O
)) UNIVERSITE
A simple example to send and receive data

#include <mpi.h> // required to use MPI functions
#include <stdio.h>

int main(int argc, charx argv[]) {
int rank, datal[100];

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI.COMM_WORLD, &rank);

if (rank == 0)
MPI_Send (data,100,MPI_INT,1,0,MPLLCOMM_WORLD) ;
else

MPI_Recv (data,100,MPI_INT,0,0,MPLLCOMM_WORLD, MPI_STATUS_IGNORE) ;

MPI_Finalize ();
return 0;

S.Zuckerman (Parallel Prog January 11, 2022 39 /115

execution models

guNIVERSITE
MPI is simple

MPI_Init
MPI_Comm_rank
MPI Comm_size
MPI_Send

MPI Recv

MPI Finalize

...are enough to write any application using message passing.
However, to be productive and ensure reasonable performance portability,
other functions are required.

vVvyVvYyVvyyvyy

S.Zuckerman ()

ssage-passing execution models

MPI pragmatics
Building and running MPI programs

Building MPI programs
» C:mpicc
» C4++: mpicxx
» Fortran: mpif77 (Fortran 77) or mpif90 (Fortran 90)

Running MPI programs
> mpiexec -np 16 ./test
o ... will run the program test on 16 MPI processes.
» mpiexec -host hl,h2,... -np 16 ./test

o ...will run the program test on the various hosts specified on the
command line in a round-robin fashion
@ In our example, host h1 will receive MPI processes 0,2,4,6.

Note: mpiexec or mpirun can be used interchangeably (they are aliases).

S.Zuckerman () January 11, 2022 41

se-passing execution models

Non-blocking communications

Limits to MPI_Send and MPI Recv
MPI_Send and MPI Recv are blocking communication calls

» The sending process must wait until the data it is sending has been
received

» The receiving process must block once it has initiated the receiving
operation

» Consequence: data sent or received through blocking communications
is safe to (re)use

» However, this can severely hamper the overall performance of an
application

Non-blocking variants: MPI_Isend and MPI Irecv

» Routine returns immediately — completion has to be tested separately

» Primarily used to overlap computation and communication

v

S.Zuckerman () January 11, 2022 42 /115

execution models

Non-blocking communications |

Syntax
API

» int MPI_Isend(const void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm, MPI_Request
*xrequest)

» int MPI Irecv(const void *buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm, MPI Request
*request)

» int MPI Wait(MPI_Request *request, MPI_Status *status)

S.Zuckerman () January 11, 2022 43 /115

se-passing execution models

Non-blocking communications |l
Syntax

Properties
» Non-blocking operations allow overlapping of computation and
communication
» Completion can be tested using MPI_Test (MPI Request *request,
int flag, MPI_Status *status)
» Anywhere one uses MPI_Send or MPI_Recv, one can use
MPI_Isend/MPI_Wait or MPI_Irecv/MPI Wait pairs instead

» Combinations of blocking and non-blocking sends/receives can be
used to synchronize execution instead of barriers

S.Zuckerman () January 11, 2022 44 /115

execution models

CERGY PAR

Non-blocking communications |11 UNIVERSITE
Syntax

Multiple completions
» int MPI Waitall(int count, MPI Request
*array_of requests, MPI Status *array_of_statuses)

» int MPI_Waitany(int count, MPI_Request
*array_of requests, int *index, MPI Status *status)
» int MPI Waitsome(int count, MPI Request
*array_of _requests, int *array_of_indices, MPI_Status
*array_of status)

There are corresponding versions of MPI_Test for each of those.

S.Zuckerman (January 11, 2022 45 /115

g execution models

) _ o aGNiVERSITE
A simple example to use non-blocking communications

#include <mpi.h>

int main(int argc, charx argv[]) {

if (rank == 0) {
for (i=0; i< 100; i++) {

datal[i] = compute(i);

MPI_ISend (&datal[il, 1, MPI_INT, 1, 0, MPLCOMM_WORLD,
&request [i]);

}
MPI_Waitall (100, request, MPI_STATUSES_IGNORE)
} else {

for (i = 0; i < 100; i++)

MPI_Recv (&datal[i], 1, MPI_INT, O, 0, MPIL.COMM.WORLD,
MPI_STATUS_IGNORE) ;

kerman (

January 11, 2022 46 /115

essage-passing execution models

Collective operations
Introduction
» Collective operations are called by all processes belonging to the same
communicator

» MPI_Bcast distributes data from one process (the root) to all others
in a communicator

» MPI_Reduce combines data from all processes in the communicator
and returns it to one process

» In many (numerical) algorithms, send/receive pairs can be replaced by
broadcast/reduce ones

e Simpler and more efficient

Properties
» Tags are not used; only communicators matter.
» Non-blocking collective operations were added in MPI-3

» Three classes of operations: synchronization, data movement,

collective comﬁutation

passing execution models

Synchronization

int MPI Barrier(MPI_Comm *comm)
» Blocks until all processes belonging to communicator comm call it

» No process can get out of the barrier unless all the other processes
have reached it

S.Zuckerman ()

Message-passing execution models

Collective data movements gUNNERSlTE

» MPI_Bcast

» MPI Scatter
» MPI_Gather

» MPI_Allgather
» MPI_Alltoall

S.Zuckerman () January 11, 2022 49 /115

essage-passing execution models

Collective computations g UNIVERSITE

» MPI_Reduce
» MPI_Scan

S.Zuckerman () January 11, 2022 50 /115

se-passing execution models

Other MPI Collective routines @UNNERSlTE

» Other useful collective operations
o MPI_Allgatherv
o MPI_Alltoallv
o MPI_Gatherv
e MPI_Scatterv
o MPI_Reducescatter

> “All" versions deliver results to all participating processes
> “V’ versions (stands for vector) allow the chunks to have different
sizes
e Important when the number of processes involved in the computation
is no a multiple of the number of data elements
» MPI_Allreduce, MPI_Reduce, MPI_Reducescatter, and MPI_Scan

take both built-in and user-defined combiner functions.

S.Zuckerman ()

Message-passing execution models

Built-in collective computation operations gUNIVERSITE

MPI_MAX Maximum
MPI_MIN Minimum
MPI_PROD Product
MPI_SUM Sum
MPI_LAND Logical and
MPI_LOR Logical or

MPI_LXOR Logical exclusive or
MPI_BAND Bitwise and

MPI_BOR Bitwise or

MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum and location
MPI_MINLOC Minimum and location

S.Zuckerman () January 11, 2022 52 /115

Example using collective operations | gUN|VERSITE

#include <mpi.h>

#include <math.h>

int main(int argc, charx argv([]) {
const double g_PI25DT = 3.141592653589793238362643;
double mypi, pi, h, sum, x, a;
int n, myid, numprocs, i, ierr;

xMPI_Init (&argc, &argv);
xMPI_Comm_rank (MPLCOMM_WORLD, &myid) ;
xMPI_Comm_size (MP.LCOMM_WORLD, &numprocs);

for (550 {
if (myid == 0) {
printf ("Enter_the_ number of intervals: (0 quits) ");
fflush(stdout);
scanf ("%f", &n);
if (n <= 0) break;
}

xMPI_Bcast (&n, 1, MPI_INT, 0, MPI.COMM_WORLD) ;
if (n < 0) { xMPI_Finalize(); exit(0); 1}

S.Zuckerman () January 11, 2022 53 /115

S.Zuckerman () January 11, 2022 54

Example using collective operations Il gU‘NIVERSITE

h = 1.0/n; sum = 0.0;

for (int i = myid+1; i < n; i+=numprocs) {
x = h * ((double)i-0.5);
sum += (4.0 / (1.0 * x*x));

}

mypi = h*sum;

xMPI_Reduce (&mypi ,&pi,1,MPI_DOUBLE ,MPI_SUM,0,MPI.COMM_WORLD) ;

if (myid == 0)
printf ("piyisy%f. Erroryisy%f\n", pi, fabs(pi-g_PI25DT));
}
xMPI_Finalize ();
return 0;

}

Shared-memory execution models

Introduction to OpenMP |

The OpenMP Framework
» Stands for Open MultiProcessing

» Three languages supported: C, C++, Fortran

» Supported on multiple platforms: UNIX, Linux, Windows, etc.

Very portable

» Many compilers provide OpenMP capabilities:

The GNU Compiler Collection (gcc) — OpenMP 3.1

Intel C/C++ Compiler (icc) — OpenMP 3.1 (and partial support of OpenMP 4.0)
Oracle C/C++ — OpenMP 3.1

IBM XL C/C++ — OpenMP 3.0

Microsoft Visual C++ — OpenMP 2.0

etc.

S.Zuckerman () January 11, 2022 56

d-memory execution models

Introduction to OpenMP Il

OpenMP’s Main Components
» Compiler directives
» A functions library

» Environment variables

S.Zuckerman ()

January 11, 2022

Shared-memory execution models

The OpenMP Model @uNNERsnE

» An OpenMP program is executed using a unique process
» Threads are activated when entering a parallel region

» Each thread executes a task composed of a pool of instructions

» While executing, a variable can be read and written in memory:

@ It can be defined in the stack of a thread: the variable is private
o It can be stored somewhere in the heap: the variable is shared by all
threads

S.Zuckerman ()

Running OpenMP Programs: Execution Overview

»

Tasks

OpenMP: Program Execution IIII

» An OpenMP program is a sequence of serial

and parallel regions I

» A sequential region is always executed by the
master thread: Thread 0

» A parallel region can be executed by multiple IIII
tasks at a time

» Tasks can share work contained within the I

parallel region III
v

¥y Time
Parallel Prog January 11, 2022 59 /115

Running OpenMP Programs: Execution Overview

OpenMP: Program Execution
» An OpenMP program is a sequence of serial
and parallel regions

» A sequential region is always executed by the
master thread: Thread 0

» A parallel region can be executed by multiple
tasks at a time

» Tasks can share work contained within the
parallel region

uckerman (Parallel Prog

L

Tasks
Barrier
Barrier I I
Barrier
Barrier IIII
Barrier
Barrier I

y Time
January 11, 2022 59 /115

Shared-memory execution models

OpenMP Parallel Structures

» Parallel loops

January 11, 2022 60 /115

Shared-memor

OpenMP Parallel Structures

» Parallel loops

» Sections

[function(...); }

s DY
for(i=...;i<N;i+=...) (‘

Sections

January 11, 2022

60

115

OpenMP Parallel Structures

» Parallel loops
» Sections

» Procedures through orphaning

A
e N
X = a+b; [funcnon(.._)
y=x+c;
L function(...);
Y
for(i=...;i<N;i+=...) (‘
\)------ﬁ/‘
Orphan
Sections Procedures

Parallel Prog January 11, 2022

60

115

OpenMP Parallel Structures

» Parallel loops

» Sections

» Procedures through orphaning

» Tasks

L function(...);
-

Y
for(i=...;i<N;i+=...) (‘

[

.
function(...)

Sections

Parallel Prog

Orphan
Procedures

January 11, 2022

60

115

Shared-memory execution models

OpenMP Structure |

Compilation Directives and Clauses
They define how to:

» Share work

» Synchronize

» Share data

They are processed as comments unless the right compiler option is
specified on the command line.

Fonctions and Subroutines
They are part of a library loaded at link time

S.Zuckerman () January 11, 2022

Shared-memory execution models

OpenMP Structure Il

Environment Variables
Once set, their values are taken into account at execution time

uckerman () January 11, 2022

Shared-memory execution models

OpenMP vs. MPI | '@ UNIVERSITE

These two programming models are complementary:
» Both OpenMP and MPI can interface using C, C++, and Fortran

» MPI is a multi-process environment whose communication mode is
explicit (the user is in charge of handling communications)

» OpenMP is a multi-tasking environment whose communication
between tasks is implicit (the compiler is in charge of handling
communications)

» In general, MPI is used on multiprocessor machines using distributed
memory

» OpenMP is used on multiprocessor machines using shared memory

» On a cluster of independent shared memory machines, combining two
levels of parallelism can significantly speed up a parallel program’s
execution.

S.Zuckerman ()

Shared-memory execution models

OpenMP: Principles

>

>

The developer is in charge of
introducing OpenMP directives

When executing, the OpenMP
runtime system builds a parallel
region relying on the “fork-join”
model

When entering a parallel region,
the master task spawns
(“forks") children tasks which
disappear or go to sleep when
the parallel region ends

Only the master task remains

active after a parallel region is
done

S.Zuckerman ()

a UNIVERSITE

Barrier

January 11, 2022 64 /115

Shared-memory execution models

Principal Directives |

Creating a Parallel Region: the parallel Directive
#pragma omp parallel

kerman (

January 11, 2022

Shared-memory execution models

Principal Directives Il

Data Sharing Clauses

» shared(...): Comma-separated list of all variables that are to be
shared by all OpenMP tasks

» private(...): Comma-separated list of all variables that are to be
visible only by their task.

@ Variables that are declared private are “duplicated:” their content is unspecified
when entering the parallel region, and when leaving the region, the privatized
variable retains the content it had before entering the parallel region

» firstprivate(...): Comma-separated list of variables whose
content must be copied (and not just allocated) when entering the
parallel region.

@ The value when leaving the parallel remains the one from before entering it.
» default(none|shared|private): Default policy w.r.t. sharing
variables. If not specified, defaults to “shared”

S.Zuckerman () January 11, 2022 66 /115

Shared-memory execution models

A First Example: Hello World ®UN|VERS|TE

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic \
-03 -o omp_hello omp_hello.c

#include <stdio.h>

#include <stdlib.h> examples$./hello
#include <omp.h> [0] Hello, World!
#ifndef _OPENMP [3] Hello, World!
#define omp_get_thread_num() O [1] Hello, World
#endif [2] Hello, World!

int main(void)

{
#pragma omp parallel
{
int tid = omp_get_thread_num();
printf (" [%d]l\tHello, World!\n", tid);
}
return EXIT_SUCCESS;
}

Figure: omp_hello.c

) January 11, 2022 67 /115

Shared-memory execution models

Example: Privatizing Variables @UNIVERSITE

examples:$ gcc -std=c99 -Wall -Wextra -pedantic -03 \
-0 omp_private omp_private.c
omp_private.c: In function ‘main._omp_fn.0’:
omp_private.c:8:11: warning: ‘a’ is used uninitialized
in this function [-Wuninitialized]
a=a+ 716.;

omp_private.c:4:11: note: ‘a’ was declared here
float a = 1900.0;

#include <stdio.h>

#include <omp.h> [2] a = 716.00

int main() { [1] a = 716.00
float a = 1900.0; [0] a = 716.00
#pragma omp parallel default(none) private(p)[3] a = 716.00
{ [0] a = 1900.00

a = a + 716.;
printf (" [%d]\tay=y%.2f\n" ,omp_get_thread_num(), a);

}
printf (" [%d]\tay=,%.2f\n" ,omp_get_thread_num(), a);
return O;

) January 11, 2022 68 /115

Shared-memory execution models

Sharing Data Between Threads guNNERSWE

examples:$ gcc -std=c99 -Wall -Wextra -pedantic -03 \
-o omp_hello2 omp_hello2.c

#include <stdio.h>

#include <stdlib.h> examples$./hello2
#include <omp.h> [0] Hello, World!
#ifndef _OPENMP [3] Hello, World!
#define omp_get_thread_num() O [1] Hello, World
#endif [2] Hello, World!

int main(void)

{
int ids[] = {0, 1, 2, 3, 4, 5, 6, 7};
#pragma omp parallel default(none) shared(ids)
printf (" [%d]\tHello,_ World!\n", ids[omp_get_thread_num()]);
}
return EXIT_SUCCESS;
}

Cirmiivns a1l A0 A
) January 11, 2022 69 /115

Shared-memory execution models

Capturing Privatized Variables’ Initial Values gUNIVERSITE

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic -03\
-o omp_firstprivate omp_firstprivate.c

#include <stdio.h> examples$./omp_firstprivate
#include <omp.h> a = 19716.000000
int main() { 19716.000000

float a = 1900.0; 19716.000000
19716.000000
19000.000000

(SR
o

#pragma omp parallel \
default (none) firstprivate(a)

{

a = a + 716.;

printf ("ay=y%f\n",a);
}

printf ("ay=_,%f\n",a);

return O0;

Figure: omp_firstprivate.c

) January 11, 2022 70 /115

Shared-memory execution models

Scope of OpenMP Parallel Regions gUNIVERSITE

When calling functions from a parallel region, local and automatic
variables are implicitly private to each task (they belong to their respective
task’s stack). Example:

#include <stdio.h>
#include <omp.h>
void sub(void);
int main(void) {
#pragma omp parallel default(shared)

{
sub ();
}
return O;
}
void sub(void) {
int a = 19716;
a += omp_get_thread_num();
printf ("ay=g%d\n", a);
}

S.Zuckerman () January 11, 2022 71 /115

Shared-memory execution models

Parallel Loops @UNIVERSITE

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic -03\
-o omp_for parallel_for.c

#include <stdio.h> examples$./omp_for
#include <omp.h> [1] Hellow, World!
[0] Hellow, World!
int [3] Hellow, World!
main (void) [2] Hellow, World!
{
#pragma omp parallel
{
int n_threads = omp_get_num_threads ();
#pragma omp for
for (int i = 0; i < n_threads; ++i) {
printf (" [%d]\tHellow, World!\n", i);
}
}

Figure: parallel_for.c

Shared-memory execution models

Parallel Loops: A Few Things to Remember

o

2]

The iterator of a omp for loop must use additions/substractions to
get to the next iteration (no i *= 10 in the postcondition)

The iterator of the outermost loop (which directly succeeds to the
omp for directive) is always private, but not the ones in other nested
loops!

There is an implicit barrier at the end of the loop. You can remove it
by adding the clause nowait on the same line: #pragma omp for
nowait

How the iterations are distributed among threads can be defined
using the schedule clause.

S.Zuckerman () January 11, 2022

Parallel Loops |
Specifying the Schedule Mode

The syntax to define a scheduling policy is schedule (ScheduleType, chunksize).
The final line should like this:

#pragma omp parallel default(none) \
shared (...) private(...) firstprivate(...)

{
#pragma omp for schedule(...) lastprivate(...)
for (int i = InitVal; ConditionOn(i); i += Stride)
{ /% loop body */ }

}

// or, all 4in one directive:

#pragma omp parallel for default(none) shared(...) private(...) \
firstprivate(...) lastprivate(...)
for (int i = InitVal; ConditionOn(i); i += Stride) {
/* loop body */
}

S.Zuckerman () January 11, 2022

Shared-memory execution models

Parallel Loops Il
Specifying the Schedule Mode

The number of iterations in a loop is computed as follows:

|FinalVal — InitVal|
Stride

Numlterations = L J + |FinalVal — InitVal| mod Stride

The number of iteration chunks is thus computed like this:

Numlterations

NumChunks = { ChunkSize

J 4+ Numlterations mod ChunkSize

S.Zuckerman ()

Shared-memory execution models

Parallel Loops Il aGNiVERSITE
Specifying the Schedule Mode

Static Scheduling
schedule(static,chunksize) distributes the iteration chunks across threads in a round-robin
fashion

» Guarantee: if two loops with the same “header” (precondition, condition, postcondition,
and chunksize for the parallel for directive) succeed to each other, the threads will be
assigned the same iteration chunks

» By default, chunksize is equal to OMP_NUM_THREADS

» Very useful when iterations take roughly the same time to perform (e.g., dense linear
algebra routines)

Dynamic Scheduling

schedule (dynamic,chunksize) divides the iteration space according to chunksize, and creates
an “abstract” queue of iteration chunks. If a thread is done processing its chunk, it dequeues
the next one from the queue. By default, chunksize is 1.

Very useful if the time to process individual iterations varies.

January 11, 2022 76 /115

Shared-memory execution models

Parallel Loops IV gUNiVERSITE
Specifying the Schedule Mode

Guided Scheduling

guided, chunksize Same behavior as dynamic, but the chunksize is divided by two each time a
threads dequeues a new chunk. The minimum size is one, and so is the default.
Very useful if the time to process individual iterations varies, and the amount of work has a

“trail”

S.Zuckerman () January 11, 2022 77 /115

Shared-memory execution models

Parallel Loops
Specifying the Schedule Mode |

g UNIVERSITE

#include
#include
#include
#include

<unistd.h>
<stdio.h>
<stdlib.h>
<omp.h>

const double MAX = 1

double sum(const int n) {
const int id = o
double f = 0.0;
const int bound

for (int i = 0;
f += i,

return f;

00000. ;

mp_get_thread_num () ;
= id == 0 ? n*x1001 : n;

i < bound; ++i)

S.Zuckerman

(

January 11, 2022 78 /115

Shared-memory execution models

Parallel Loops gUNlVERSlTE
Specifying the Schedule Mode II

int main(void) {

printf ("MAX,=4%.2f\n" ,MAX);

double acc = 0.0;

int* sum_until = malloc (MAX*sizeof (int));

if (!sum_until) perror("malloc"), exit(EXIT_FAILURE);

for (int i = 0; i < (int)MAX; ++i) sum_until[i] = rand () % 100;

#pragma omp parallel default(none) \

shared (sum_until) firstprivate (acc)

{ /* Use the OMP_SCHEDULE enviromment wariable on the command
* line to specify the type of scheduling you want, e.g.:
* export OMP_SCHEDULE="static" or OMP_SCHEDULE="dynamic ,10"
% or OMP_SCHEDULE="guided ,b100"; ./omp_schedule

*/
#pragma omp for schedule(runtime)
for (int i = 0; i < bound; i+=1) {
acc += sum(sum_until[i]);
}
printf (" [%d]\tMy,sum_ = %.2f\n", omp_get_thread_num(), acc);

}
free(sum_until);
return O;
} Figure: omp_for_schedule.c

S.Zuckerman () January 11, 2022 79 /115

ition mc

Parallel Loops gUNlVERSlTE
Specifying the Schedule Mode: Outputs |

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic \

szuckerm@evans201g:examples$ export OMP_SCHEDULE="static"
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 41299239778797.00

[1] My sum = 40564464.00
[3] My sum = 40174472.00
[2] My sum = 40502412.00

real Om11.911s
user 0m11.930s
sys Om0.004s

rman) January 11, 2022 80 /115

ition mc

Parallel Loops gUNNERSlTE
Specifying the Schedule Mode: Outputs |

szuckerm@evans201g:examples$ gcc -std=c99 -Wall -Wextra -pedantic \

szuckerm@evans201g:examples$ export OMP_SCHEDULE="static"
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 41299239778797.00

[1] My sum = 40564464.00
[3] My sum = 40174472.00
[2] My sum = 40502412.00

real Om11.911s
user 0m11.930s
sys Om0.004s

uckerm@evans20tg rexanptes$—export— OMP-SCHEPYEE="static;t
szuckerm@evans201g:examples$ time ./omp_schedule
MAX = 100000.00
[0] My sum = 41487115603934.00
[1] My sum = 40266669.00
[3] My sum = 40319644.00
[2] My sum = 40468898.00

real Om11.312s
user Om11.356s
OmQ.004.

rman) January 11, 2022 80 /115

1emor

Parallel Loops gU‘NIVERSITE
Specifying the Schedule Mode: Outputs Il

TckeTmeevans20tgrexamptes$expoTt—OMP_SCHEDYEE="dymamic; 1666
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 1661647855868.00

[1] My sum = 55011312.00

[2] My sum = 46974801.00

[3] My sum = 58218664.00

real 0m0.546s
user 0m0.576s
OmQ.004.

() January 11, 2022 81/115

ition mc

Parallel Loops gUNlVERSlTE
Specifying the Schedule Mode: Outputs Il

TckeTmeevans20tgrexamptes$expoTt—OMP_SCHEDYEE="dymamic; 1666
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 1661647855868.00

[1] My sum = 55011312.00

[2] My sum = 46974801.00

[3] My sum = 58218664.00

real 0m0.546s
user 0m0.576s
OmQ.004.

uckerm@evans20tgrexampties$—export—OMP-SCHEDUEE="dymramic;+
szuckerm@evans201g:examples$ time ./omp_schedule
MAX = 100000.00
[1] My sum = 57886783.00
[0] My sum = 76809786053.00
[2] My sum = 47423265.00
[3] My sum = 56452544.00

real 0m0.023s
user O0m0.059s
ys 0m0. Q04

ETIN) January 11, 2022 81/115

1emor

Parallel Loops gU‘NIVERSITE
Specifying the Schedule Mode: Outputs Il

TCkeTmeevans20tgrexamptes$expoTt—BMP_SCHEDYLE="guided; 1660
szuckerm@evans201g:examples$ time ./omp_schedule

MAX = 100000.00

[0] My sum = 30922668944167.00

[3] My sum = 44855495.00

[2] My sum = 45989686.00

[1] My sum = 40596797.00

real Om8.437s
user Om8.452s
OmQ..008:

() January 11, 2022 82 /115

ition mc

Parallel Loops gUNlVERSlTE
Specifying the Schedule Mode: Outputs Il

TCkeTmeevans20tgrexamptes$expoTt—BMP_SCHEDYLE="guided; 1660
szuckerm@evans201g:examples$ time ./omp_schedule
MAX = 100000.00
[0] My sum = 30922668944167.00
[3] My sum = 44855495.00
[2] My sum = 45989686.00
[1] My sum = 40596797.00

real Om8.437s
user Om8.452s
OmQ..008:

uckerm@evans20tgrexamptes$—export—OMP-SCHEDUEE="guided; +*
szuckerm@evans201g:examples$ time ./omp_schedule
MAX = 100000.00
[0] My sum = 17508269385607.00
[1] My sum = 49603788.00
[2] My sum = 40584346.00
[3] My sum = 54438904.00

real Om5.401s
user Om5.438s
ys Om0.008:

rman () January 11, 2022

Shared-memory execution models

Parallel Loops gUNIVERSITE

The lastprivate Clause

int main(void) {
double acc = 0.0; const int bound = MAX;
printf (" [%dI\tMAX,=_,%.2f\n" ,omp_get_thread_num() ,MAX);
int* sum_until = smalloc (MAX*sizeof (int));
for (int i = 0; i < bound; ++i)
sum_until[i] = rand () % 100;
#pragma omp parallel for default(none) shared(sum_until) \
schedule (runtime) firstprivate(acc) lastprivate (acc)
for (int i = 0; i < bound; i+=1)
acc += sum(sum_until[i]);
printf ("Valueyof,the,last thread to write togaccy=y%.2f\n" ,acc);
free(sum_until);
return EXIT_SUCCESS;
} Figure: omp_for_lastprivate.c

S.Zuckerman () January 11, 2022 83 /115

Shared-memory execution models

Incrementing a Global Counter |

aUNlVERSITE
Racy OpenMP Version

#include <stdio.h>

#include <stdlib.h>
#include <omp.h>

unsigned long g_COUNTER = O;

int
main (void)
{
int n_threads = 1;
#pragma omp parallel default(none) \
shared(n_threads , stdout ,g_COUNTER)

{
#pragma omp master
{
n_threads = omp_get_num_threads();
printf ("n_threads,=,%d\t",n_threads); fflush(stdout);
}
++g_COUNTER;
}

printf ("g_COUNTER,=_%lu\n",g_COUNTER);

S.Zuckerman ()

January 11, 2022 84 /115

Shared-memory execution models

Incrementing a Global Counter Il gUNIVERSITE
Racy OpenMP Version

return EXIT_FAILURE; ‘

}

szuckerm@evans201g:examples$ for i in $(seq 100)
> do ./global_counter ;donelsort|uniq

n_threads = 4 g_COUNTER = 2
n_threads = 4 g_COUNTER = 3
n_threads = 4 g_COUNTER = 4

S.Zuckerman () January 11, 2022 85 /115

Shared-memory execution models

Incrementing a Global Counter
Using a Critical Section

g UNIVERSITE

#include <stdio.h>

#include <stdlib.h>
#include <omp.h>

unsigned long g_COUNTER = O;

int main(void) {
int n_threads = 1;
#pragma omp parallel default(none) \
shared(n_threads , stdout ,g_COUNTER)

{
#pragma omp master
{
n_threads = omp_get_num_threads();
printf ("n_threads=_%d\t",n_threads); fflush(stdout);
}
#pragma omp critical
{ ++g_COUNTER; }
}

printf ("g_COUNTER_,=_,%lu\n",g_COUNTER);
return EXIT_FAILURE;
}

S.Zuckerman ()

January 11, 2022 86 /115

Shared-memory execution models

Incrementing a Global Counter
Using an Atomic Section

a UNIVERSITE

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

unsigned long g_COUNTER = O;

int main(void) {
int n_threads = 1;
#pragma omp parallel default(none) \
shared(n_threads , stdout ,g_COUNTER)

{
#pragma omp master
{
n_threads = omp_get_num_threads();
printf ("n_threads=_%d\t",n_threads); fflush(stdout);
}
#pragma omp atomic
++g_COUNTER;
}

printf ("g_COUNTER_,=_,%lu\n",g_COUNTER);
return EXIT_FAILURE;
}

S.Zuckerman ()

January 11, 2022 87 /115

Shared-memory execution models

Synchronization in OpenMP |

critical Directive

#pragma omp critical [(name)]

Guarantees that only one thread can access the sequence of instructions
contained in the (named) critical section. If no name is specified, an
“anonymous” name is automatically generated.

atomic Directive

#pragma omp atomic

Guarantees the atomicity of the single arithmetic instruction that follows.
On architectures that support atomic instructions, the compiler can
generate a low-level instruction to ensure the atomicity of the operation.
Otherwise, atomic is equivalent to critical.

uckerman () January 11, 2022 88

Shared-memory execution models

Synchronization in OpenMP |1

barrier Directive

#pragma omp barrier

All threads from a given parallel region must wait at the barrier. All
parallel regions have an implicit barrier. All omp for loops do too. So
do single regions.

single Directive

Guarantees that a single thread will execute the sequence of instructions
located in the single region, and the region will be executed only once.
There is an implicit barrier at the end of the region.

S.Zuckerman () January 11, 2022 89 /115

Shared-memory execution models

Synchronization in OpenMP IlI gUN]VERSWE

master Directive

Guarantees that only the master thread (with /D = 0) will execute the
sequence of instructions located in the single region, and the region will

be executed only once. There is NO implicit barrier at the end of the
region.

nowait Clause

nowait can be used on omp for, single, and critical directives to
remove the implicit barrier they feature.

S.Zuckerman () January 11, 2022 90 /115

Shared-memory execution models

Tasking in OpenMP guNIVERSITE

OpenMP 3.x brings a new way to express parallelism: tasks.
» Tasks must be created from within a single region
» A task is spawned by using the directive #pragma omp task

» Tasks synchronize with their siblings (i.e., tasks spawned by the same
parent task) using #pragma omp taskwait

S.Zuckerman () January 11, 2022 91 /115

Shared-memory execution models

Case Study: Fibonacci Sequence @UNNERSWE

We'll use the Fibonacci numbers example to illustrate the use of tasks:

/% *

* \brief Computes Fibonacci numbers
* \param n the Fibonacci number to compute
*/
ué4 xfib(ué64 n) {
return n < 2 ? // base case?
n : // fib(0) = 0, Fib(1) = 1
xfib(n-1) + xfib(n-2);

Average Time (cycles)
Sequential - Recursive 196051726.08

Table: Fibonacci(37), 50 repetitions, on Intel i7-2640M CPU @ 2.80GHz

S.Zuckerman ()

Shared-memory execution models

Computing Fibonacci Numbers: Headers | ;
utils.h, common.h, and mt.h gUMVERSWE

#ifndef UTILS_H_GUARD
#define UTILS_H_GUARD
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <stdint.h>
#include "rdtsc.h"

static inline void fatal(const char* msg) {
perror (msg), exit(errno);
}
static inline void sfree(voidx* p) {
if (p) { *(char*)p = 0;} free(p);
}
static inline void* scalloc(size_t nmemb, size_t size) {
void* p = calloc(nmemb,size);
if (!'p) { fatal("calloc"); 1}
return p;
}

static inline void* smalloc(size_t size) {

S.Zuckerman () January 11, 2022 93 /115

Shared-memory execution models

Computing Fibonacci Numbers: Headers Il ;
utils.h, common.h, and mt.h gUMVERSWE

void* p = malloc(size);
if (!'p) { fatal("malloc"); }
return p;
}
static inline void usage (const char* progname) {
printf ("USAGE:_ %syupositive_number\n", progname);
exit (0);
}
void u64_measure(u64 (*xfunc)(u64), u64 n,
u64 n_reps, const char* msg);
void u64func_time (u64 (*func)(u64), u64 n,
const char* msg);
#endif // UTILS_H_GUARD

S.Zuckerman () January 11, 2022 94 /115

Shared-memory execution models

Computing Fibonacci Numbers: Headers Il gU‘NIVERSITE

utils.h, common.h, and mt.h

#ifndef COMMON_H_GUARD

#define COMMON_H_GUARD

#include "utils.h" // for smalloc(), sfree(), fatal(), scalloc(),
#define FIB_THRESHOLD 20

typedef uint64_t u64; typedef uint32_t u32; typedef uintl6_t ul6;
typedef uint8_t u8; typedef int64_t s64; typedef int32_t s32;
typedef intl6_t s16; typedef int8_t s8;

u64 xfib(u64) ; u64 trfib (u64 ,u64 ,u64);
u64 trFib (u64); u64 sfib(u64);
u64 memoFib (u64); u64 memofib (u64d ,u6b4dx*);

void* mt_memofib(voidx); u64d mt_memoFib (u64);
void* mtfib(voidx*); u64d mtFib (u64) ;
u64 oFib (u64); u64 ofib(u64);

u64 o_memoFib (u64); u64 o_memofib (u64d ,u6d*);

S.Zuckerman () January 11, 2022 95 /115

Shared-memory execution models

Computing Fibonacci Numbers: Headers IV gU‘NIVERSITE

utils.h, common.h, and mt.h

#endif * COMMON _H GUARD *

#define MT_H_GUARD

#include <pthread.h>

typedef struct fib_s { u64 *up, n; } fib_t;

typedef struct memofib_s { u64 *up, *vals, n; } memofib_t;

static inline pthread_t* spawn(void* (*func)(void*), void* data) {
pthread_t* thread = smalloc(sizeof (pthread_t)); int error = O0;

do {
errno = error = pthread_create(thread,NULL, func,data);
} while (error == EAGAIN);

if (error) fatal("pthread_create");
return thread;

}
static inline void sync(pthread_t#* thread) {
int error = 0; void* retval = NULL;
if ((errno = (error = pthread_join(*thread, &retval))))

fatal("pthread_join");
sfree(thread);

S.Zuckerman () January 11, 2022 96 /115

Shared-memol

Computing Fibonacci Numbers: Headers V gUN|VERSITE

utils.h, common.h, and mt.h

}
#endif // MT_H_GUARD

S.Zuckerman () January 11, 2022 97 /115

Shared-memory execution models

Computing Fibonacci Numbers: Code | gU‘NIVERSITE
Naive Pthread and OpenMP

#include "common.h"
#include "mt.h"
void* mtfib(void* frame) {
fib_t*x f = (fib_t*) frame;
u64 n = f->n, *up = f->up;
if (n < FIB_THRESHOLD)
*up = sfib(n), pthread_exit (NULL);
u64 nl1 = 0, n2 = 0;
fib_t framel = { .up = &nl, .n = f->n-1 },
frame2 = { .up = &n2, .n = f->n-2 };
pthread_t *thdl = spawn(mtfib,&framel),
*thd2 = spawn(mtfib,&frame2);
sync (thdl); sync(thd2);
*up = nl+n2;
return NULL;
}
u64 mtFib(u64 n) {
u64 result = 0; fib_t f = { .up = &result, .n = n };
(void)mtfib (&£f);
return result;

S.Zuckerman () January 11, 2022 98 /115

Shared-memory execution models

Computing Fibonacci Numbers: Code I gUN|VERSITE
Naive Pthread and OpenMP

#include "common.h"
#include <omp.h>

u64 ofib(u64 n) { u64 ni1, n2;
if (n < FIB_THRESHOLD) return sfib(n);
pragma omp task shared(nl)
nl = ofib(n-1);
pragma omp task shared(n2)
n2 = ofib(n-2);
pragma omp taskwait
return nl + n2;

}

u64 oFib(u64 n) { u64 result = 0;
pragma omp parallel
{
pragma omp single nowait
{ result = ofib(n); }
} // parallel
return result;

}

S.Zuckerman () January 11, 2022 99 /115

Shared-memory execution models

Computing Fibonacci Numbers: Code Il

aUNlVERSITE
Naive Pthread and OpenMP

Average Time (cycles)

Sequential - Recursive 196051726.08
Parallel - PThread 2837871164.24
Parallel - OpenMP 17707012.14

Table: Fibonacci(37), 50 repetitions, on Intel i7-2640M CPU @ 2.80GHz

S.Zuckerman () January 11, 2022 100 /115

Shared-memory execution models

Computing Fibonacci Numbers: Code | gU‘NIVERSITE
Memoization using Serial, Pthread and OpenMP

#include "common.h"
#include "mt.h"

void* mt_memofib(void* frame) { memofib_t* f = (memofib_t*) frame;
ué4 n = f->n *vals = f->vals, *up = f->up;
if (n < FIB_THRESHOLD) *up = vals[n] = sfib(n), pthread_exit (NULL)
if (vals[n] == 0) { u64 n1 = 0, n2 = 0;
memofib_t framel = {.up=&nil,.n=f->n-1,.vals=vals},
frame2 = {.up=&n2,.n=f->n-2,.vals=vals};
pthread_t *thdl = spawn(mt_memofib ,&framel),
*thd2 = spawn(mt_memofib ,&frame2);

sync (thd1l); sync(thd2);
vals[n] = n1 + n2; }
*up = vals[n], pthread_exit (NULL);
}
u64 mt_memoFib(u64 n) { u64 result = 0;
u64* fibvals = scalloc(n+1l,sizeof(u64));
fibvals[1]=1; memofib_t f={.up=&result,.n=n,.vals=fibvals};
(void)mt_memofib (&f);
return result;

S.Zuckerman () January 11, 2022 101 /115

Shared-memory execution models

Computing Fibonacci Numbers: Code I gUNiVERSITE

Memoization using Serial, Pthread and OpenMP
#include "common.h"
#include <omp.h>
u64 o_memofib(u64 n, ubd*x vals) {
if (n < FIB_THRESHOLD) return sfib(n);
if (vals[n] == 0) { u64 n1 = 0, n2 = 1;
pragma omp task shared(nl,vals)
nl = o_memofib(n-1,vals);
pragma omp task shared(n2,vals)
n2 = o_memofib(n-2,vals);
pragma omp taskwait
vals[n] = nl + n2;

}
return vals[n];
}
u64 o_memoFib(u64 n) {
u64 result=0, *fibvals=calloc(n+1,sizeof (u64));
pragma omp parallel
{
pragma omp single nowait
{ fibvals[1] = 1; result = o_memofib(n,fibvals); }
}

return result; }

S.Zuckerman (

January 11, 2022 102 /115

Shared-memory execution models

Computing Fibonacci Numbers: Code Il gUN|VERSITE
Memoization using Serial, Pthread and OpenMP

#include "common.h"

u64 memofib(u64 n, u6d* vals) {
if (n < 2)
return n;
if (vals[n] == 0)
vals[n] = memofib(n-1,vals) + memofib(n-2,vals);
return vals[n];

}

u64 memoFib(u64 n) {
u64* fibvals = calloc(n+1,sizeof(u64));
fibvals [0] = 0; fibvals[1] = 1;
u64 result = memofib(n,fibvals);
sfree(fibvals);
return result;

S.Zuckerman () January 11, 2022 103 /115

Shared-memory execution models

Computing Fibonacci Numbers: Code IV gU‘NIVERSITE
Memoization using Serial, Pthread and OpenMP

Average Time (cycles)

Sequential - Recursive 196051726.08
Parallel - PThread 2837871164.24
Parallel - OpenMP 17707012.14
Parallel - PThread - Memoization 2031161888.56
Parallel - OpenMP - Memoization 85899.58
Sequential - Memoization 789.70

Table: Fibonacci(37), 50 repetitions, on Intel i7-2640M CPU @ 2.80GHz

S.Zuckerman () January 11, 2022 104 /115

Shared-memory execution models

Computing Fibonacci Numbers: Code |
When Serial is MUCH Faster Than Parallel

g UNIVERSITE

#include "common.h"
u64 trfib(u64 n, u64 accl, u64 acc2) {
return n < 2 7
acc2

}
u64 trFib(u64 n) { return trfib(a, O,

trfib(n-1, acc2, accl+acc2);

1);

#include "common.h"
u64 sfib(u64 n) {
u64 nl1 = 0, n2 =1, r = 1;

for (u64 i = 2; i < n; ++i) {
nl = n2;
n2 = r;
r = nl + n2;

}

return r;

S.Zuckerman ()

January 11, 2022 105 /115

Shared-memory execution models

Computing Fibonacci Numbers: Code II gUNIVERSITE
When Serial is MUCH Faster Than Parallel

Average Time (cycles)

Sequential - Recursive 196051726.08
Parallel - PThread 2837871164.24
Parallel - OpenMP 17707012.14
Parallel - PThread - Memoization 2031161888.56
Parallel - OpenMP - Memoization 85899.58
Sequential - Memoization 789.70
Sequential - Tail Recursive 110.78
Sequential - Iterative 115.02

Table: Fibonacci(37), 50 repetitions, on Intel i7-2640M CPU @ 2.80GHz

S.Zuckerman () January 11, 2022 106 /115

Memory Models

Learning More About Multi-Threading and OpenMP

Books (from most theoretical to most practical)
» Herlihy and Shavit 2008
» Riinger and Rauber 2013
» Kumar 2002
» Chapman, Jost, and Pas 2007

Internet Resources

» “The OpenMP(R) API specification for parallel programming” at openmp.org

@ Provides all the specifications for OpenMP, in particular OpenMP 3.1 and 4.0
@ Lots of tutorials (see http://openmp.org/wp/resources/#Tutorials)

» The Wikipedia article at http://en.wikipedia.org/wiki/OpenMP

Food for Thoughts

» Sutter 2005 (available at http://www.gotw.ca/publications/concurrency-ddj.htm)

> Lee 2006 (available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf)

» Boehm 2005 (available at
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf)

.

Parallel Prog January 11, 2022

107 /115

openmp.org
http://openmp.org/wp/resources/#Tutorials
http://en.wikipedia.org/wiki/OpenMP
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf

Zuckerman)

Bibliography |

- Forum, Message Passing (1994). MPI: A Message-Passing Interface
Standard. Tech. rep. Knoxville, TN, USA.

| Dongarra, Jack J. et al. (1995). An Introduction to the MPI Standard.
Tech. rep. Knoxville, TN, USA.

- Dagum, Leonardo and Ramesh Menon (1998). “OpenMP: an industry
standard API for shared-memory programming”. In: /EEE computational
science and engineering 5.1, pp. 46-55.

| Gropp, William, Ewing Lusk, and Anthony Skjellum (1999). Using MPI:
portable parallel programming with the message-passing interface.

Vol. 1. MIT press.

S.Zuckerman () January 11, 2022 109 /115

Bibliography II aGNNERSITE

| Gropp, William, Ewing Lusk, and Rajeev Thakur (1999). Using MPI-2:
Advanced Features of the Message-Passing Interface. Cambridge, MA,
USA: MIT Press. 1sBN: 0262571331,

- Kumar, Vipin (2002). Introduction to Parallel Computing. 2nd. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc. ISBN:
0201648652.

| Huang, Chao, Orion Lawlor, and Laxmikant V Kale (2003). “Adaptive
mpi”. In: International workshop on languages and compilers for parallel
computing. Springer, pp. 306—322.

- Boehm, Hans-J. (June 2005). “Threads Cannot Be Implemented As a
Library”. In: SIGPLAN Not. 40.6, pp. 261-268. 1SSN: 0362-1340. DOTI:
10.1145/1064978.1065042. URL:
http://doi.acm.org/10.1145/1064978.1065042.

Parallel Prog January 11, 2022 110 /115

https://doi.org/10.1145/1064978.1065042
http://doi.acm.org/10.1145/1064978.1065042

Bibliography 111 aﬁNiVERSITE

Sutter, Herb (2005). “The Free Lunch Is Over: A Fundamental Turn
Toward Concurrency in Software”. In: Dr. Dobb’s Journal 30.3.

Lee, Edward A. (May 2006). “The Problem with Threads”. In: Computer
39.5, pp. 33-42. 1ssn: 0018-9162. po1: 10.1109/MC.2006.180. URL:
http://dx.doi.org/10.1109/MC.2006.180.

Chapman, Barbara, Gabriele Jost, and Ruud van der Pas (2007). Using
OpenMP: Portable Shared Memory Parallel Programming (Scientific
and Engineering Computation). The MIT Press. 1sBN: 0262533022,
9780262533027

Chapman, Barbara, Gabriele Jost, and Ruud Van Der Pas (2008). Using
OpenMP: portable shared memory parallel programming. \ol. 10. MIT

press.

S.Zuckerman () January 11, 2022 111 /115

https://doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180

Bibliography IV @ﬁﬁi’fiEstE

| Herlihy, Maurice and Nir Shavit (2008). The Art of Multiprocessor
Programming. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc. 1sBN: 0123705916, 9780123705914.

- Ayguade, E. et al. (Mar. 2009). “The Design of OpenMP Tasks". In: |[EEE
Transactions on Parallel and Distributed Systems 20.3, pp. 404—418.
1SSN: 1045-9219. por: 10.1109/TPDS.2008.105.

Graham, Richard L. (2009). “The MPI 2.2 Standard and the Emerging
MPI 3 Standard”. In: Proceedings of the 16th European PVIM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Espoo, Finland: Springer-Verlag,
pp. 2-2. ISBN: 978-3-642-03769-6. DOTI:
10.1007/978-3-642-03770-2_2. URL:
http://dx.doi.org/10.1007/978-3-642-03770-2_2.

https://doi.org/10.1109/TPDS.2008.105
https://doi.org/10.1007/978-3-642-03770-2_2
http://dx.doi.org/10.1007/978-3-642-03770-2_2

Bibliography V UNIVERSITE

. Duran, Alejandro et al. (2011). “Ompss: a proposal for programming
heterogeneous multi-core architectures”. In: Parallel Processing Letters
21.02, pp. 173-193.

' Riinger, Gudula and Thomas Rauber (2013). Parallel Programming - for
Multicore and Cluster Systems; 2nd Edition. Springer. ISBN:
978-3-642-37800-3. boI: 10.1007/978-3-642-37801-0. URL:
http://dx.doi.org/10.1007/978-3-642-37801-0.

- Gropp, William, Torsten Hoefler, et al. (2014). Using Advanced MPI:
Modern Features of the Message-Passing Interface. The MIT Press.
ISBN: 0262527634, 9780262527637.

| Gropp, William, Ewing Lusk, and Anthony Skjellum (2014). Using MPI:
Portable Parallel Programming with the Message-Passing Interface. The
MIT Press. 1SBN: 0262527391, 9780262527392.

S.Zuckerman () Parallel Prog January 11, 2022 113 /115

https://doi.org/10.1007/978-3-642-37801-0
http://dx.doi.org/10.1007/978-3-642-37801-0

	Resources
	Parallel Architectures Today
	A short history of parallel programming and why we need it
	Message-passing execution models
	Standard Features & Execution Model
	MPI Basics: Features, Compilation, Execution
	Non-Blocking Communications
	Collective operations

	Shared-memory execution models
	Introduction to OpenMP
	OpenMP Basics
	Learning More About Shared-Memory Models

	References
	References

