
Introduction to Parallel Programming with MPI and OpenMP

Lab

Stéphane Zuckerman

Preliminaries

Where to �nd the course slides: Go to https://perso-etis.ensea.fr/zuckerman/teaching.

html. The slides for both MPI and OpenMP are available. There is also a link entitled �Addi-

tional source �les� (accessible at the address: https://perso-etis.ensea.fr/zuckerman/TP_

ParallelProg). You can build the example program by calling make:

~/Programming/C/filtre_image$ make mrproper

rm -f *.o

rm -f convolution_filter

~/Programming/C/filtre_image$ make

gcc -g -Wall -Wextra -pedantic -Wimplicit-fallthrough=0 -O3 -std=c11 -fopenmp -o main.o -c main.c

gcc -g -Wall -Wextra -pedantic -Wimplicit-fallthrough=0 -O3 -std=c11 -fopenmp -o img_convolution.o -c img_convolution.c

gcc -g -Wall -Wextra -pedantic -Wimplicit-fallthrough=0 -O3 -std=c11 -fopenmp -o img_mgmt.o -c img_mgmt.c

gcc -g -Wall -Wextra -pedantic -Wimplicit-fallthrough=0 -O3 -std=c11 -fopenmp -o convolution_filter main.o img_convolution.o img_mgmt.o

Building an MPI program.

mpicc $CFLAGS -o $PROGRAM source1.c source2.c # etc.

. . .Where $PROGRAM is the desired name for the resulting application, and $CFLAGS contains the

usual compilation �ags. I suggest you use the following:

mpicc -Wall -Wextra -pedantic -g -std=c11 -o $PROGRAM source1.c source2.c # etc.

Running an MPI program.

mpirun -oversubscribe -np $NPROCS $PROGRAM

. . . where $NPROCS is the number of desired MPI processes for this computation. Note: oversubscribe

allows you to create more MPI processes than available cores. It is usually not a good idea, as

it creates more virtual tasks than hardware processors are able to run simultaneously.

1 MPI

1.1 Basic MPI Programming

1. Build an MPI program where each process sends a �token� to an MPI process where its

rank is one above. Each process must print its rank number before passing the token to

the next process. If the process with the highest rank receives the token, it sends it back

to process zero, and the program ends.

1

https://perso-etis.ensea.fr/zuckerman/teaching.html
https://perso-etis.ensea.fr/zuckerman/teaching.html
https://perso-etis.ensea.fr/zuckerman/TP_ParallelProg
https://perso-etis.ensea.fr/zuckerman/TP_ParallelProg

2. Implement a dot product (see explanations below) using only MPI_Send and MPI_Recv.

3. Implement a matrix-vector product (we provide the sequential code to compute it at

the end of this handout). Use MPI_Send and MPI_Receive to distribute data from the

�master� process (rank 0) to the other processes. The master process (rank 0) is in charge

of initializing all the data beforehand.

1.2 Intermediate MPI Programming

1. Copy your dot product program in a new �le and modify it to use MPI_Reduce.

2. Copy your matrix-vector program in a new �le, and modify it so that the b vector is

broadcast to all MPI processes using the MPI_Bcast function call.

3. Copy the previous program into a new �le, and modify it so that instead of using MPI_Send

and MPI_Recv, your program makes use of MPI_Scatter and MPI_Gather. Note: make

sure the number of rows in matrix A is divisible by the number of MPI processes involved

in the computation.

4. Optional (if you're done with everything else, including the OpenMP exercises below):

modify your program so that it can use matrices which do not feature a number of rows

divisible by the number of MPI processes (hint: use MPI_Scatterv and MPI_Gatherv).

2 OpenMP

1. Build an OpenMP program where each thread sends a �token� to another OpenMP thread

where its ID is one above. Each thread must print its rank number before passing the

token to the next thread. If the thread with the highest rank receives the token, it sends

it back to thread zero, and the program ends.

2. Implement three variants of the dot product (see explanations below):

(a) Using the critical directive

(b) Using the atomic directive

(c) Using the reduction clause (see http://www.openmp.org to get the latest speci�ca-

tion and see how to use reduce).

3. Implement a matrix-vector product (we provide the sequential code to compute it at the

end of this handout). Use omp parallel (with the default(none) clause) and omp for

to distribute data across the threads. The various data structures must be initialized in

the sequential part of the program.

3 Stencil Codes

Stencil codes are used in many scienti�c computations, e.g., to compute partial di�erential

equations (such as heat di�usion on a plate using Laplacians, or computational �uid dynamics),

or perform image processing (where one pixel is modi�ed according to its neighbors). Usually

the computation stops when the solution converges toward a good-enough precision, or it has

reached a speci�c number of computation steps. We show the code for a 5-point 2D stencil

below.

2

http://www.openmp.org

static inline void swap(void** p1, void** p2) {
void* tmp = *p1;
*p1 = *p2;
*p2 = tmp;

}

void
FivePointStencil(int tsteps, int n_rows, int n_cols,

double *p_old, double *p_new)
{

double (*m_old)[n_cols] = (double (*)[n_cols]) p_old,
(*m_new)[n_cols] = (double (*)[n_cols]) p_new;

while (tsteps-- > 0) {
for (int i = 1; i < n_rows-1; ++i)

for (int j = 1; j < n_cols-1; ++j)
m_new[i][j] = (m_old[i-1][j] + m_old[i+1][j]

+ m_old[i][j-1] + m_old[i][j+1])
/ 4;

swap(m_old,m_new);
}

}

Adapt the sequential code to make it work in OpenMP then MPI.

Appendix

Dot Product

The dot product (also called the scalar product) takes two vectors V 1n and V 2n, and returns

the sum of the products of corresponding elements in V 1 and V 2:

s = V 1 · V 2 =
n∑

i=1

v1iv2i

The corresponding code is given below.

double dotproduct(double *v1, double *v2, int n)
{

double sum = 0.0;
for (int i = 0; i < n; ++i)

sum += v1[i]double * v2[i];
return sum;

}

Matrix-Vector Product

A matrix-vector multiplication is de�ned as the product of a matrix AM,N with a column vector

bN . The result is stored in a row vector cM : cM = AM,N × bM . The sequential code to compute

such a product is given below. Each computed element of c is the result of a dot product between
a row in A and the column vector b.

#include <string.h>
void matvec(int n_rows, int n_cols, int max_rows, int max_cols,

3

double A[max_rows][max_cols],
double b[max_cols], double c[max_rows])

{
memset(c,0,sizeof(double)*n_rows);
for (int i = 0; i < n_rows; ++i)

for (int j = 0; j < n_cols; ++j)
c[i] += A[i][j] * b[j];

}

4

	MPI
	Basic MPI Programming
	Intermediate MPI Programming

	OpenMP
	Stencil Codes

