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Abstract
Integral transforms which map functions on R3 onto their integrals on circular
cones having fixed axis direction and variable opening angle are introduced
and studied as generalizations of the known Radon transform. Besides their
intrinsic mathematical interest, they serve as backbone support to emission
imaging based on Compton scattered radiation, the way the standard Radon
transform does for emission imaging based on non-scattered radiation. In this
work, we establish its basic properties and prove analytically its invertibility.
Formulae to express it in terms of the standard Radon transform (or vice versa)
are given. We also discuss some extensions as applications.

PACS numbers: 02.30.Rz, 02.30.Uu, 02.30.Zz

1. Introduction

The Radon transform has attracted enormous interest in the last 50 years as it assumes a
dominant role in medical imaging [1] as well as in many fields such as mathematics [10],
astrophysics, geological prospecting and in particular non-destructive testing and evaluation.
In his seminal paper of 1917 [15], Radon had defined an integral transform which maps a
given function onto its integrals on hyperplanes of space. Subsequently there exist numerous
generalizations of this standard Radon transform in which one replaces the hyperplanes by
a variety of sub-manifolds in space. Of interest in many fields are quadratic surfaces such
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as spheres [2, 7], paraboloids [3], hyperboloids [6], etc. Generalized Radon transforms arise
as integral measurements of physical quantities recorded on these surfaces. Their knowledge
allows us to reconstruct the source responsible for the variations of these physical quantities
in space.

In this paper we shall consider a Radon transform on circular cones in R3 with fixed
axis orientation but with variable opening angle. They shall be called C1-cones, to distinguish
them from other types of circular cones in R3. The integral transform consists of ‘projecting’ a
function f along one sheet of a C1-cone by integrating this function f on it. The ‘data’ depend
on the cone vertex coordinates and its opening angle as the surface of the cone sheet sweeps
through space. Recall that in the standard Radon transform the plane sweeps through space by
varying the direction of its normal unit vector and its distance to the origin. Technically this
class of Radon transform occurs naturally in imaging processes involving Compton scattering
of photons from three-dimensional sources and detected by counters along a fixed spatial
direction, as proposed (but not fully treated) in [5]. An important property of this transform is
its invertibility, which is most interesting for applications in particular for object reconstruction
in imaging science as well as non-destructive control and/or evaluation. This will be used
to give an alternative proof of the invertibility of the so-called compounded conical Radon
transform, which was shown to serve as mathematical basis for a new imaging process based
on the exploitation of Compton scattered radiation in emission imaging by gamma rays
[12, 13].

This paper is organized as follows. Section 1 is devoted to definitions and notations to be
used throughout the text. In section 2, we discuss standard properties of this transform which
shall be called the C1-Radon transform. Section 3 computes its kernel, which turns out to be a
delta function concentrated on one sheet of a C1-cone. Next we work out an alternative form
of the transform which turns out to be a double Hankel transform for circular components, a
technique well known in Radon transform topics. The following section deals with the proof of
the invertibility of the C1-Radon transform. We give some examples of C1-Radon transforms
of simple functions and work out its expression in terms of standard Radon integrals. An
inverse to this formula exists also which permits us to express a standard Radon transform as
a function of C1-Radon transforms. As applications of this study, we show how one can invert
the so-called compounded canonical Radon transform introduced sometimes ago in emission
imaging by Compton scattered gamma rays. Conclusions and perspectives are given in the
last section.

2. Definition and notations

We denote a linear integral transform T acting on a set of functions f : R3 → R by T̂f (...),
where (. . .) represents the set of its parameters. Thus the standard Radon transform will be
called R̂f (pn), where n is the normal to the plane on which f is integrated and p the distance
from the origin to this plane. Similarly the Fourier transform of f is then F̂f (q) where q is a
vector in dual space.

In this paper, we consider a transformation defined by integrals of functions f on one
sheet of C1-cones defined by:

• a vertex S of Cartesian coordinates (xS, yS, 0),
• an opening angle ω,
• an axis with unit vector k = (0, 0, 1), perpendicular to the xOy plane.

A running point V on one sheet of the cone has Cartesian coordinates: (x = xS +
r sin ω cos ψ, y = yS + r sin ω sin ψ, z = r cos ω), where r is the distance SV (0 < r < ∞)
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Figure 1. C1 Radon transform with fixed axis and variable opening angle.

and ψ the polar angle (0 < ψ < 2π) in a local cylindrical coordinate system centred at S (see
figure 1).

In general f are real valued integrable functions and physical constraints require often that
they have compact support. f (V ) is understood as its expression in Cartesian coordinates, i.e.
f (V ) = f (x, y, z). But when cylindrical coordinates are used, this function will be denoted
by F(ρ, θ, z) = f (ρ cos θ, ρ sin θ, z).

Thus the map

C1 : f (V ) �−→ Ĉ1f (xS,yS ,ω), (1)

with the defining integral:

Ĉ1f (xS,yS ,ω) =
∫

r sin ω dψ drf (xS + r sin ω cos ψ, yS + r sin ω sin ψ, r cos ω) (2)

where r sin ω dψ dr is the integration measure on the C1-cone, connects a function of three
variables f (x, y, z) to another function of three variables Ĉ1f (xS,yS ,ω).

For 0 < ω < π/2 (resp. π/2 < ω < π ) we deal with the forward (resp. backward) cone
in the positive (resp. negative) direction of Oz. At ω = 0 (resp. π ) the cone becomes a positive
(resp. negative) half-line parallel to Oz and the cone integral becomes a half line integral. But
at ω = π/2, this is the integral of f on the plane xOy.

As f is a real valued integrable function with compact support, Ĉ1f (xS,yS ,ω) is also of
compact support with respect to (xS, yS) since, for given ω one can find a vertex S sufficiently
far away in the xOy plane so that the cone does not intersect the support of f so that the result
of the integration is zero. An estimate of the size of the support of Ĉ1f (xS,yS ,ω) can be obtained
by computing the size of the circle outside which the cone of vertex S in the xOy plane is no
longer tangent to the smallest sphere, for given ω containing the support of f .

3. Properties

Some simple properties are obtained directly from the above definition.
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3.1. Linear transformations

The following linear transformations preserve globally the set of C1-cones: translations,
rotations in xOy and scaling by a factor λ ∈ R in R3.

Transform of translated function f (x + ξ, y + η, z) = f (ξ,η)(x, y, z):

Ĉ1f
(ξ,η)

(xS ,yS ,ω) = Ĉ1f (xS + ξ, yS + η, ω).

Transform of a rotated function f (x cos θ + y sin θ,−x sin θ + y cos θ, z) = f (θ)(x, y, z):

Ĉ1f
(θ)

(xS ,yS ,ω) = Ĉ1f (xS cos θ + yS sin θ,−xS sin θ + yS cos θ, ω).

Transform of a scaled function f (x/λ, y/λ, z/λ) = f (λ)(x, y, z):

Ĉ1f
(λ)

(xS ,yS ,ω) = λ2Ĉ1f (xS/λ,yS/λ,ω).

Proofs are simple and require only application of the definition and change of variables.

3.2. Derivatives

• The transform of a directional derivative of a function f in the direction given by an angle
θ in the xOy plane,[

cos θ
∂

∂x
+ sin θ

∂

∂y

]
f (x, y, z) is (−)

[
cos θ

∂

∂xS

+ sin θ
∂

∂yS

]
Ĉ1f (xS,yS ,ω).

• The derivative with respect to the opening angle is

sin ω
∂

∂ω

(
Ĉ1f (xS,yS ,ω)

sin ω

)
= −

∫
r sin ω dr dψ [r(n⊥(ψ) · ∇)f (x, y, z)] ,

where n⊥(ψ) = (−cos ψ cos ω,−sin ψ cos ω, sin ω), orthogonal to the unit vector of a
cone generator n = (cos ψ sin ω, sin ψ sin ω, cos ω). At ω = π/2, n⊥ is in the direction
of Oz.

4. Kernel of the transform

The defining equation (2) may be put under the standard form of a Fredholm equation of the
first kind:

Ĉ1f (xS,yS ,ω) =
∫

dx dy dzK(xS, yS, ω|x, y, z)f (x, y, z), (3)

with kernel K(xS, yS, ω|x, y, z). We now show that this kernel is a delta function concentrated
on one sheet of the circular cone.

By construction, this kernel is the C1-Radon transform of a Dirac delta function
concentrated at point V = (x, y, z) in R3. It is called the PSF (point spread function) in
imaging science. So we set

K(xS, yS, ω|x, y, z) = P̂SF(ρ, θ, ω|x, y, z) =
∫

r sin ω dψ dr

× δ(xS + r sin ω cos ψ − x)δ(yS + r sin ω sin ψ − y)δ(r cos ω − z). (4)

To compute, we use the Fourier representation of the δ-function:

δ(x) =
∫ ∞

−∞
du e2iπux, (5)
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Figure 2. Representation of the kernel of the C1 conical Radon transform.

and switch to polar coordinates for the pair of variables (u, v) (dual to (x, y)):

u = q cos β, v = q sin β, and du dv = q dq dβ,

as well as for the vector linking the projection of the point source on the xOy plane and the
apex of the cone (xS, yS):

(x0 − xS) = σ cos γ, (y0 − yS) = σ sin γ.

Integration over dψ and over dβ yields the Bessel function J0(x):

P̂SF(ρ, θ, ω|x, y, z) = sin ω

∫
r dr

∫
q dq 2πJ0(2πqr sin ω)2πJ0(2πqσ)δ(z − r cos ω).

(6)

A final integration over dr gives the final form of the kernel which is a delta function
concentrated on one sheet of the circular cone:

P̂SF(ρ, θ, ω|x, y, z) = 1

| cos ω|δ(ρ − z tan ω) = δ
(

cos ω
√

(x − xS)2 + (y − yS)2 − z sin ω
)
,

(7)

with ρ =
√

(x − xS)2 + (y − yS)2. Finally the support of this delta function is, for a given
point (x, y, z) and ω, a circle in the plane xSOyS of equation:

ρ = /z tan ω.

(See figure 2.)

5. Analogue of the Plancherel formula

Given two functions f and g in the domain of definition of the C1-Radon transform, one
can compute the integral representing an inner product in the space of C1-Radon transformed
functions: ∫

Ĉ1f (xS,yS ,ω)Ĉ1g(xS,yS ,ω) dxS dyS dω = 〈Ĉ1f |Ĉ1g〉. (8)

We use now the kernel form of this transform:

〈Ĉ1f |Ĉ1g〉 =
∫

drf (r) dr′g(r′)
∫

dxS dyS dω δ(cos ωρ − z sin ω)δ(cos ωρ ′ − z′ sin ω), (9)
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where r (resp. r′)= (x, y, z) (resp. (x ′, y ′, z′)) and ρ (resp. ρ ′)
√

(xS − x)2 + (yS − y)2 (resp.√
(xS − x ′)2 + (yS − y ′)2). The integration on ω can be done with the variable t = tan ω and

one obtains

〈Ĉ1f |Ĉ1g〉 =
∫

dr f (r) dr′ g(r′)

×
∫

dxS dyS dω δ(z
√

(xS − x ′)2 + (yS − y ′)2 − z′√(xS − x)2 + (yS − y)2).

(10)

Given the points of coordinates (x, y) and (x ′, y ′) in the plane xOy, the vanishing of the
argument of the delta function in equation (10) means that the point of coordinates (xS, yS) is
on a circle, locus of points whose the distance ratio to the points (x, y) and (x ′, y ′) is given by
the ratio of the ordinates z and z′. The integral is simply the length of the circle, the radius of
which can be computed separately as:

zz′√(x − x ′)2 + (y − y ′)2

|z2 − z′2| ,

hence

〈Ĉ1f |Ĉ1g〉 =
∫

dr f (r) dr′ g(r′)2π

√
[(x − x ′)2 + (y − y ′)2]zz′

|z2 − z′2| . (11)

Thus this inner product is reflected in the domain of the C1-Radon transform by a metric
essentially given by the radius of a circle.

6. Alternative form of the C1 Radon transform

As in the standard Radon transform, a better insight of the C1-Radon transform can be
obtained if one applies the Fourier transform to equation (2). However, since the plane xOy

plays a special role in the cone structure, we introduce the two-dimensional (or slice-) Fourier
transform of f in this plane by:

f (x, y, z) =
∫

du dv e2iπ(ux+vy)f̃ (u, v, z). (12)

Now in order to do the circular component analysis [4], we use polar coordinates for
the cone vertex (xS = ρ cos θ, yS = ρ sin θ) and work with Ĉ1F (ρ,θ,ω) = Ĉ1f (xS,yS ,ω). The
C1-Radon transform of f is now

Ĉ1F (ρ,θ,ω) =
∫

du dv

∫
r sin ω dψ dr f̃ (u, v, r cos ω)

× exp 2iπ [u(ρ cos θ + r sin ω cos ψ) + v(ρ sin θ + r sin ω sin ψ)]. (13)

But then it is more convenient to introduce polar coordinates in (u, v) space with the
relations:

u = q cos β, v = q sin β, du dv = q dq dβ, (14)

and use the function F̃ (q, β, r cos ω) = f̃ (u, v, r cos ω).
We now assume that both Ĉ1F (ρ,θ,ω) and F̃ (q, β, r cos ω) admit decompositions in circular

components:

(Ĉ1F (ρ,θ,ω), F̃ (q, β, r cos ω)) =
∑
l∈Z

(Ĉ1F l,(ρ,ω) exp ilθ, F̃ l(q, r cos ω)) exp ilβ. (15)
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Now putting these expansions in equation (2) and assuming that one can exchange the
order of integrations, we perform the ψ and β integrations to obtain the Bessel functions
J0(r) and Jl(r). Thus an alternative form of the C1-Radon transform relating the circular
components F̃ l(q, r cos ω) to Ĉ1F l(ρ, ω) appears as

Ĉ1F l,(ρ,ω) = sin ω

∫ ∞

0
r dr

∫ ∞

0
q dq i−l2πJl(2πρq)2πJ0(2πqr sin ω)F̃ l(q, r cos ω). (16)

The circular component of the CS Radon transformed function is thus the double Hankel
transform (defined by the product of Bessel functions of order zero and of order l) of the
circular component of the Fourier transformed function.

7. Inverse transform

The interesting question to ask is how to recover f if Ĉ1f is given. This amounts to inverting
equation (13). To perform this inversion, one uses an appropriate set of variables [5] and
applies the Hankel identity for Bessel functions of order l (with l = 0, 1, 2, . . .):

1

k
δ(k − k′) =

∫ ∞

0
r dr 2πJl(2πkr)2πJl(2πk′r). (17)

The first step consists of multiplying for q ′ > 0 both sides of equation (16) by∫ ∞

0
ρ dρ 2πJl(2πρq ′)

and integrating with respect to ρ:

il
∫ ∞

0
ρ dρ 2πJl(2πρq ′)Ĉ1F l,(ρ,ω) = sin ω

∫ ∞

0
r dr 2πJ0(2πq ′r sin ω)F̃ l(q

′, r cos ω). (18)

Then the right-hand side may be viewed as the zeroth-order Hankel transform of
F̃ l(q

′, r cos ω) in the following variables:

z = r cos ω and t = tan ω,

of the function

Ĝl(ρ, t) = cos2 ω

sin ω
Ĉ1f l,(ρ,ω),

or

il
∫ ∞

0
ρ dρ 2πJl(2πρq ′)Ĝl(ρ, t) =

∫ ∞

0
z dz 2πJ0(2πq ′zt)F̃ l(q

′, z). (19)

Observe that the product zt remains always positive since simultaneously z and t are
positive (resp. negative) for ω ∈ [0, π/2[(resp.]π/2, π ]). As z is the conjugate to q ′t in the
Hankel transform of order 0, we must break up the range of ω into two parts when applying
the Hankel identity for inversion.

• 0 < ω < π/2 as t > 0 and for given Q > 0, we multiply equation (19) by∫ ∞

0
t dt 2πJ0(2πQt)

and integrate. The result is∫ ∞

0
t dt 2πJ0(2πQt)il

∫ ∞

0
ρ dρ 2πJl(2πρq ′)Ĝl(ρ, t) = 1

q ′2 F̃ l(q
′,Q/q ′). (20)

This gives the circular component F̃ l(q
′, z) of f̃ for z > 0.
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• π/2 < ω < π now z is negative and varies from 0 to −∞; this means that if we set
z = −z′ as well as t = −t ′ we have:∫ −∞

0
z dz · · · =

∫ ∞

0
z′ dz′ · · ·

thus we can conclude that∫ ∞

0
t ′ dt ′2πJ0(2πQt ′)il

∫ ∞

0
ρ dρ 2πJl(2πρq ′)Ĝl(ρ,−t ′) = 1

q ′2 F̃ l(q
′,−Q/q ′). (21)

In this case we recover the circular component F̃ l(q
′, z) for z < 0.

Now setting Q/q ′ = z, relabelling q ′ as q and taking into account the sign ε(z) of z, we
can define the function:

Ĝ(ρ, β, ε(z)t) =
∑
l∈Z

2π ilJl(2πρq)Ĝl(ρ, ε(z)t) eilβ ,

which serves to write the two-dimensional Fourier transform of the function to be
reconstructed:

F̃ (q, β, z) = q2
∫ ∞

0
t dt 2πJ0(2πqzt)

∫ ∞

0
ρ dρ Ĝ(ρ, β, ε(z)t), (22)

and the final form of the inversion formula, which makes use of equation (12) under the polar
form:

f (x, y, z) =
∫

q dq dβ exp[2iπq[x cos β + y sin β]]F̃ (q, β, z). (23)

The inversion of the C1-Radon transform is then completed and it is clear that it makes
use of all the ‘data’ from cone sheets above the xOy plane as well as below since 0 < ω < π .

Remark. Equation (18) becomes at ω = π/2:

il
∫ ∞

0
ρ dρ 2πJl(2πρq ′)Ĉ1F l,(ρ,π/2) =

∫ ∞

0
r dr 2πJ0(2πq ′r)F̃ l(q

′, 0).

But the value of the integral on the right-hand side is undefined when computed with the
Bessel recursion relation [14], but is zero when computed with a Fourier table for distributions
[11]: ∫ ∞

0
r dr 2πJ0(2πq ′r) = 0,

thus F̃ l(q
′, 0) must be obtained by a limiting procedure by approaching π/2 from above and

below.

8. Some simple C1-Radon transforms

In section 4 we have already seen the transform of a Dirac delta function concentrated at a
point. The transform of an arbitrary function may be thus seen as the sum of transforms of
delta functions of different strengths at points at which the function is defined. We shall give
two examples.
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8.1. Delta function concentrated on a straight segment

For simplicity let us assume that the linear segment of a straight line is of length L and lies
parallel to the Oz axis. It is defined by the distribution:

l(x, y, z) = δ(x − x0)δ(y)Y (L − z),

where Y (x) is the unit step distribution of Heaviside. The C1-Radon transform of this
distribution can be evaluated using the kernel of equation (7) as

Ĉ1l(xS ,yS ,ω) =
∫

dx dy dzδ(x − x0)δ(y)Y (L − z)δ
(

cos ω
√

(x − xS)2 + (y − yS)2 − z sin ω
)
.

(24)

Successive integrations on x, y and z yield the result

Ĉ1l(xS ,yS ,ω) = 1

|sin ω|Y
(
L − cot ω

√
(x0 − xS)2 + (yS)2

)
. (25)

This is the characteristic function of the volume defined in the coordinate system
(xS, yS, Lt = L tan ω) by the inequality:

Lt >
√

(x0 − xS)2 + (yS)2, (26)

for given x0. This is the interior of a circle centred at (x0, 0, 0) of radius L tan ω in the xSOyS

plane. Alternatively if Lt is viewed as a third dimension orthogonal to xSOyS , equation (26)
represents the inside volume of a circular cone with vertex at (x0, 0, 0) and opening angle π/4.
Thus the C1-Radon transform of l(x, y, z) is zero everywhere except inside this cone volume
where its value is 1/ sin ω.

8.2. Exponential function with imaginary argument

A function of the form f (x, y, z) = exp −2iπ(k · r) is essentially characterized by a vector k
and represents a physical plane wave. We shall see that its C1-Radon transform is also a plane
wave in the xSOyS plane with an amplitude dependent on ω and on k. From the definition of
equation (2) one has

Ĉ1f k,(xS ,yS ,ω) =
∫

r sin ω dψ dr exp(−2iπ [kx(ρ cos θ + r sin ω cos ψ)

+ ky(ρ sin θ + r sin ω sin ψ) + kzr cos ω].) (27)

Integration over ψ yields the Bessel function 2πJ0
(
2πr sin ω

√
k2
x + k2

y

)
and the result is

simply:

Ĉ1f (xS, yS, ω) = sin ω exp −2iπ(kxxS + kyyS)A(k, ω), (28)

where A(k, ω) is the amplitude:

A(k, ω) =
∫ ∞

0
r dr e2iπkzr cos ω2πJ0

(
2πr sin ω

√
k2
x + k2

y

)
.

A(k, ω) is computable from a Fourier transform table [11]:

A(k, ω) =
[

−|kz cos ω|(
k2
z cos2 ω − sin2 ω

(
k2
x + k2

y

))3/2

]
for |kz cos ω| > (k2

x + k2
y)

1/2 sin ω

=
[

ikz cos ω(
sin2 ω

(
k2
x + k2

y

) − k2
z cos2 ω

)3/2

]
for |kz cos ω| <

(
k2
x + k2

y

)1/2
sin ω.

(29)
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From thereon any arbitrary function f being a Fourier superposition, its C1-Radon
transform can be obtained by integrating over ‘plane waves’ in the xSOyS plane with respect
to k.

9. Relation to the standard Radon transform

We show that the C1-cone data may be expressed in terms of standard Radon data, a result
known under a restricted form in [8] for cones with two sheets. We start with the inversion
formula of the three-dimensional Radon transform [1]:

f (r) = − 1

8π2

∫
S2

dn
∫ ∞

−∞
dp δ(p − r · n)

∂2

∂p2
R̂f (pn). (30)

Now if we multiply both sides of this equation (30) by the delta function on the C1-cone
δ
(
cos ω

√
(x0 − xS)2 + (y0 − yS)2 − z0 sin ω

)
and integrate over dr we would get

Ĉ1f (xS,yS ,ω) = − 1

8π2

∫
S2

dn
∫ ∞

−∞
dp

∂2

∂p2
R̂f (pn)

∫
r sin ω dr dψ

× δ(p − −→
OS · n − r(nx sin ω cos ψ + ny sin ω sin ψ + nz cos ω)). (31)

Now inserting the coordinates of n:

nx = sin θ cos φ, ny = sin θ sin φ, nz = cos θ

and the integration measure for n (i.e. dn = sin θ dθ dφ), we could use the Fourier
representation of the delta function of equation (5) to perform the dψ integration to get
the factor 2πJ0(2πqr sin ω sin θ).

The next integration on r is simply the integral in equation (28). After reinserting the
angular values it becomes

sin ω

∫ ∞

0
r dr e2iπqr cos ω cos θ2πJ0(2πqr sin ω sin θ) = 1

(2πq)2

1

(cos (θ − ω) cos (θ + ω))3/2

×
{

−|cos θ cos ω| if (cos (θ − ω) cos (θ + ω)) > 0

i cos θ cos ω if (cos (θ − ω) cos (θ + ω)) < 0

}
. (32)

Next comes the integration over q. This is just a Fourier transform which yields the factor
−2π2|p − (

−→
OS · n)|. Putting all the partial results together, we get the final form of the

C1-Radon transform in terms of the second radial derivative of the standard Radon transform
R̂f :

Ĉ1f (xS,yS ,ω) = sin ω

16π2

∫ ∫
sin θ dθdφ

(cos (θ − ω) cos (θ + ω))3/2

×
{

−|cos θ cos ω| if (cos (θ − ω) cos (θ + ω)) > 0

i cos θ cos ω if (cos (θ − ω) cos (θ + ω)) < 0

}

×
∫ ∞

−∞
dp|p − (

−→
OS · n)| ∂2

∂p2
R̂f (pn). (33)

This result is further simplified if one observes that under partial integration the last
integral in equation (33) can be carried out to yield the Radon transform of f :
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Figure 3. The compounded conical Radon transform (CCRT) with fixed axis and variable opening
angle.

∫ ∞

−∞
dp|p − (

−→
OS · n)| ∂2

∂p2
R̂f (pn) =

∫ ∞

−∞
dp sgn(p − (

−→
OS · n))

∂

∂p
R̂f (pn)

=
∫ ∞

−∞
dp 2δ(p − (

−→
OS · n))R̂f (pn) = 2R̂f ((

−→
OS·n)n). (34)

Hence the expression of the C1-Radon transform of f is given now in terms of Radon
transforms of f on planes having normal unit vector n(θ,φ) and passing through the cone
vertex S.

Conversely, the inverse formula equation (23) allows us to compute the standard Radon
transform from the C1-Radon transform. We just have to integrate both sides of equation (23)
with the measure δ(p − r · n) dr. Hence with r = (x, y, z):

R̂f (pn) =
∫

δ(p − r · n) dx dy dz

∫
q dq dβ exp[2iπq(x cos β + y sin β)]

× q2
∫ ∞

0
t dt 2πJ0(2πqzt)

∫ ∞

0
ρ dρ Ĝ(ρ, β, ε(z)t). (35)

In the integration over z, care must be exercised to account for the sign of z in the
integrand. This result is analogous to the expression of the standard Radon transform of f

in terms of its x-ray transform (or cone-beam transform) [9] and has helped in formulating
inversion algorithms for the x-ray transform. It may also be considered as the inverse of
equation (33).

10. Compounded conical Radon transform or CCRT

In this section, we introduce an extension of the C1-Radon transform which consists in
integrating the previous C1-Radon transform along lines parallel to the Oz axis with a density
function µ(ζ ). Thus the vertex of the C1-cone is allowed to move not only in the xOy plane
but also along its axis, which keeps a fixed direction (see figure 3). Such a transform occurs
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in emission imaging process by Compton scattered ionizing radiation [12, 13] and called the
compounded conical Radon transform or CCRT.

Let µ(ζ ) be the given density function. Then the compounded conical Radon transform
of a function f (x, y, z) is defined by

ĈCRTf µ(xS, yS, ω) =
∫

dζ µ(ζ )

∫
r sin ω dr dψ

× f (xS + r sin ω cos ψ, yS + r sin ω sin ψ, ζ + r cos ω). (36)

Its kernel can be readily computed:

Kµ(xS, yS, ω|x0, y0, z0) = 1

sin ω
µ

(
z0 − cot ω

√
(x0 − xS)2 + (y0 − yS)2

)
(37)

with ρ =
√

(x0 − xS)2 + (y0 − yS)2.
Assuming interchange of integrations to be valid, we define a new function h as

h(xS + r sin ω cos ψ, yS + r sin ω sin ψ, r cos ω)

=
∫

dζ µ(ζ )f (xS + r sin ω cos ψ, yS + r sin ω sin ψ, ζ + r cos ω). (38)

In this respect we can bring the CCRT transform back to the scheme of the C1-Radon
transform acting on h instead of f . It remains to extract the true unknown function f (x, y, z)

from the knowledge of h(x, y, z).
In fact this can be done by Fourier transform. Let µ̃(λ) and f̃ z(xS + r sin ω cos ψ, yS +

r sin ω sin ψ, λ) be the Fourier transforms of µ(ζ ) and f (x, y, z), with respect to its
coordinate z.

Then equation (38) may be rewritten as

h(x, y, z) =
∫

dλ µ̃(λ)f̃ z(x, y,−λ) exp(−2iπλz). (39)

Here assuming that h is determined by the inversion procedure of section 6 for all values
of z, one can extract f by Fourier transforming equation (39) with respect to x, y, z to obtain:

µ̃(λ)f̃ (u, v,−λ) = h̃(u, v, λ), (40)

where f̃ (u, v,−λ) is the three-dimensional Fourier transform of f . This is in fact a
‘deconvolution’ transform:

f̃ (u, v,w) = h̃(u, v,−w)

µ̃(−w)
.

Then f is recovered by inverse Fourier transform. In the work on imaging processes by
scattered radiation, the function µ(ζ ) is in fact the function 1/ζ 2 where ζ is the distance from
the cone vertex to the xOy plane, and its Fourier transform is known [11]. We must also
mention that because of the assumption of spherical wave propagation the sought function
f contains also a singularity 1/r2, where r is the distance from a running point on the cone
to its vertex. The singularity can be bypassed by considering an associated CCRT transform
obtained by derivation with respect to t = tan ω. The interested reader is referred to [12, 13].

11. Conclusions and perspectives

In this paper we have studied the properties of a generalized Radon transform in R3. Many
generalizations have been proposed in the past but the cone is not a smooth surface (because
of its vertex) and has not been considered in the literature of the Radon transform. However,
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phenomena involving Compton scattering lead naturally to integrals on circular cones since
incident gamma rays scattered at a fixed scattering angle are located on a cone sheet and
converge to scatterers concentrated at the cone vertex. Another generalization consists of
considering other families of circular cones, for example, those with axis swinging around a
point in space and having variable opening angle. The corresponding compounded conical
Radon transform may also be introduced along the same lines as those in section 9 to describe
a more general imaging procedure using scattered radiation. But these interesting topics will
be deferred to future works as well as some important mathematical topics such as range
problems, existence of an analogue to the Paley–Wiener theorem or extension to distributions.
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