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Abstract

In a nuclear imaging modality, the goal is to reconstruct the object under study
from photon intensity distributions on a detector. However, photon scattering,
mainly as a consequence of the Compton effect, considerably affects the image
quality of the object. This is why most image reconstruction methods operate
only with primary or non-scattered photons. Nevertheless the restored image
remains noisy and weak in intensity. In this paper a new relation between
the object and photon intensity distributions, generated by photons scattered
at various deflection angles is established. It takes the form of an integral
transform, compounded from Fourier and Hankel transforms. Most importantly
this new transformation is invertible. As a result a novel principle for image
reconstruction using scattered photons is derived and may lead to the conception
of a new type of imaging device.

1. Introduction

From our point of view, the working principle of a nuclear imaging system, operating either
with x-rays or with gamma rays, is essentially a mapping of the object, represented by a real
density function f(r) with compact support in R?, onto measurement data, represented by
a real density function g(r’, t). Here r’ denotes a measurement site on a two-dimensional
detection space and 7 a typical relevant parameter. Let this mapping be 7 : f —> g, or
alternatively g = 7 f. Then the structure of 7 is completely specified by the process of image
formation in the imaging device.

Conversely, finding the object density function f(r) from the image distribution g(v’, 7)
(or observed images) is an image reconstruction problem. It is typically an inverse problem,
but often an ill-posed one. In this case the parameter T which brings in additional information
for finding 7! plays a crucial role in an image reconstruction procedure. As an illustration
we shall review in section 2 the case of transmission imaging with the so-called cone beam
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projection technique where the role of 7 is explicitly displayed. Our main work concerns
emission imaging and will be presented in section 3. We describe a new transform 7" which
relates the object to the distribution of scattered photons on the detector and show that 7" can
be inverted. This property gives the possibility of taking advantage of scattered photons for
reconstructing images, instead of eliminating them as usually done. It may open the way to
a new image reconstruction method using not only primary gamma rays but also scattered
ones, contributing to the improvement of signal to noise ratio (SNR) and of image quality.
Conclusions and perspectives are given in section 4.

2. Integral transform in x-ray transmission imaging

X-ray transmission through media is certainly the earliest technique used in modern
radiological imaging procedures and has been ever since helpful for medical diagnostics.
Its working principle is based on the selective absorption properties of biological tissues by
traversing x-rays, emitted from external sources. The object density function f(r) is thus
the medium linear absorption coefficient. The projection data density function g(7/, 7) is the
relative x-ray intensity measured on a two-dimensional detector (e.g. radiographic film) which
produces a radiographic picture of the organ under study (see [1], chapter 9).

However for a more accurate medical diagnostic, a three-dimensional picture of the body
organ may be needed. Therefore a reconstruction of f () must be performed. This is possible
in general if a three-dimensional collection of projection data density g(r’, t) is available and
provides the necessary information for the inversion of 7. In this section, we discuss the
technique of cone beam projection to illustrate their connection with integral transforms and
their inverses.

The object, in this case is illuminated by a conical beam of x-rays coming from a point
source at a site (), located on a space curve parametrized by t [2]. At a site 7’ on the
detector the measured data g(r’, 7) is the line integral (from r” to 7’) of the object density
function f(r), which is the logarithm of the normalized intensity of the x-ray beam traversing
the object:

1
g(r', 1) = /0 ds f(r" (1) + (r' = 7"(0))s). ey

For a given point source position r”, measurements should be made at all detector sites 7/, so
as to catch all relevant x-rays passing through the object.

The problem is now to compute f(7) from the measured g(r’, 7). To do this, one uses the
Radon transform, which associates to each function A (r), its integral on a plane with normal
unit vector n and at a distance p from the origin of coordinates:

Rh(p, n) =/dr8(r-n—p)h(r). 2)
The Radon transform is invertible and its inversion yields the formula [7, 11]:
1 92
h(r) = —@ dn th(p, n)|p:1‘-na 3)

this is an integral over all space directions of n of a radial second derivative of Rh(p, n).
However, the measured data g(r’, ) does not appear as Radon data. The conversion from
measured data to Radon data is not a trivial task. To see this difficulty, let us consider the
restriction of the object density function f(7) on a plane (P) containing the point source
r”(7) and orthogonal to the planar detector: f, ,(r, ¢), where (r, ¢) are the polar coordinates
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Figure 1. Principle of emission imaging with a gamma camera.

of a running point in (P). Then the Radon transform of f () along (P) is simply the surface
integral

Rf(p.m) = / / rdpdr fon(r. ). @

But the measured quantity is the line integral: [  f, ,(r, ¢) dr. The problem of converting
measured data into Radon data was solved by Grangeat [3] and generalized by Tam [4]. These
authors have established a relation between %’R f(p,n)and g(7/, T), such that with measured
data multiplied by an appropriate weighting function, for all possible ray directions and all
possible source positions 7" (), the inverse can be calculated. In fact, the derivative of the line
integrals along a direction perpendicular to the integration direction are identical to the radial
derivative of the Radon data. Inserting this result back to the inversion formula of the Radon
transform, one can obtain the reconstruction of f(r). Here the transformation 7 is of course
the Radon transform.

However it is essential to find out under what conditions a space curve as trajectory of
the x-ray point source r(t) would yield a complete set of projection data. The solution to
this question is obtained by Tuy [5], who gave a sufficient condition on admissible space
curves parametrized by 7. Then after gathering data for all relevant 7, one may obtain the
three-dimensional inversion of the transformation 7.

3. Emission imaging with Compton scattered photons

3.1. Set-up and working principle

In nuclear medicine the images are formed using the gamma rays emitted from a radionuclide
absorbed and unevenly distributed in the patient’s body. In particular, for example, there will
be strong accumulation of the radiopharmaceutical in a malignant region, rendering it visible
on a gamma-ray camera. Basically this apparatus consists of three superimposed parts, as
shown in figure 1:

e a collimator with parallel holes drilled in a block of lead to select only incoming photons
travelling perpendicularly to the detector plane,

e a crystal scintillator for converting photon energy into light,

¢ a set of photomultipliers and electronic devices to amplify signals or photon counts and
to store measured data.

Ideally only photons travelling along the axis of the collimator will reach the detector and
there are four signals for recording:
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o the number of photons at a site per unit time,
e the two coordinates of the arrival site,
e the energy of each incoming photon.

In the normal ‘frame’ mode, only photons, called primary photons belonging to the sharply
defined emission energy of the radionuclide (e.g. Eg ~ 140keV for " T ¢ sources) and entering
the collimator along its axis are collected. But they represent only a very small part (around
one in 10* photons) of the total number of emitted photons. The recorded image is thus weak
in intensity and also suffers from additional causes of degradation such as attenuation due to
absorption by the traversed medium and overwhelmingly Compton scattering by free electrons
in the surrounding medium. Up to now, most efforts are devoted to the restoration of the image
in such gamma cameras, by elimination of the scattered photons.

3.2. Compton scattering

So perhaps it is meaningful to look at those of the emitted photons which undergo Compton
scattering at various levels and study how they may turn out to be relevant for image
improvement [6]. Before dealing with the heart of the matter we shall first recall some facts
about Compton scattering (see [1], vol 1, appendix C.3).

At sufficiently high energy photons exhibit particle behaviour and are elastically scattered
by free electrons at rest in the biological medium of the body. A scattered photon goes off
with an energy

_ 1

= Eo3 +e(1—cosh) )

where 0 is the scattering angle as measured from the incident photon direction; Ey, the photon
initial energy; ¢, the ratio ,ffz and mc? the rest energy of the electron. The Compton scattering
is also a quantum phenomena: the emergence of the scattered photon has a probability of

occurrence given by the Compton differential cross section

do _re b 6
@_3() (6)

where r, is the classical radius of the electron and P (9) the so-called Klein—Nishina probability
for deflection by an angle 6:

1 |: )
P6) = 1+cos” 0+ @)

e2(1 — cos6)?
[1+e(1 —cosh)]? :| .

1+&(1 —cosb)

As a result of Compton scattering, photons leaving an emitting point source can enter
the collimator along the direction of its axis after one or more scattering. However, since
measurements and Monte Carlo simulations [13] show that single-scattered photons dominate
the process, we shall limit ourselves to single-scattered photons.

Equation (5) shows that single-scattered photons have a continuous energy spectrum:
0 < E < Ej related to the scattering angle 6. Thus at given angle 6, let g(r/, 6) be the photon
intensity density per unit time at detector site ' (of course here 7 = ). This quantity describes
essentially a secondary emission imaging process since it is based on secondary emission sites
(collision sites) formed by the free electrons of the body biological medium. In a conventional
y-ray image processing, they are discarded by filtering or by other techniques. The question
at hand is whether or not such secondary images so obtained are of any interest.
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v Figure 2. Flux of photons arriving at the detector plane.

3.3. Integral transform T related to secondary emission imaging

Again let f(r) be the object density function of the organ under consideration. As in gamma
imaging an emission site r is called a voxel [1], we shall adopt the notation » = V/, so that
f(r)y=f(V)= f(é&y,nv, ¢v). Thisis also the number of photons emitted per unit time and
per unit object (or source) volume, uniformly distributed around the 4 solid angle at site V,
see figure 2.

Consequently in one given direction, making an angle 8 with the vertical downward
direction O¢, the number of photons emitted in a small solid angle d€2,, around site M by an
elemental source volume dV/, per unit time is

1
— f(V)dV dQy. 8)
4
Now we have dQ2y = ;‘4"‘72, where doy, is the area element around site M normal to
the direction VM (see figure 2). Consequently the flux of photons arriving at M in the VM
direction is

f(vydv 1
dr  MV?
To focus on the Compton effect, we have neglected photon absorption by body tissues,
which is a separate physical phenomena.
But at site M, there are n, d M free electrons in a small volume element d M, where 7,
is the electron density assumed to be constant in body tissues. Now since (g—g) d2p is the

©)

differential cross section of photons scattering in the 0-direction, and since d2p = %, the
number of photons reaching a unit detector surface at D per unit time (after division by the

area dop) is
V)ydv 1 2
JV)dV nedM 2 P(O) —.
47 MV? 2 M D?
Consequently the number of photons recorded per unit time and unit detector area at site D

of coordinates (¢p, np) due to all emitting point sources V' with one scattering on the vertical
line M D at site M at angle 0 is given by the integral

(10)

d¢y f(V)dV §(Cone) re P(a) (11
a7 MV?

¢(D.6) = / deys diag 18(En — Ex)S(1p — o) /
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Figure 3. Coordinate system for the calculation of 7.

where §(Cone) restricts the integration over V' to the circular cone of axis parallel to O¢, of
apex M and opening angle 6. Clearly g(D, 0) has the dimension of a photon flux density
through a plane. Thus we have the mapping

T:f(V)r— g(D,0). (12)

Note that g(D, 0) is a function belonging to a space of sufficiently smooth functions with
compact support in R? and depending on a parameter 6, whereas (V') can be a distribution
with compact support in R>.

3.4. Explicit expression of T

In the coordinate system presented in figure 3, the measuring apparatus formed by the
collimator, the detector and the photomultiplier bank is collapsed into a rectangle in the
horizontal plane O&n. The positive vertical axis O¢ is, as already seen, directed downward.
The upper side of the patient body is schematically limited by a horizontal plane of equation
& = [, and we assume that the patient’s body lies in the space below this plane and that f(V')
has compact support.

Moreover we consider a range of scattered energies such that the scattering angle 6 sweeps
the interval 0 < 8 < m. It turns out that this range provides complete information for the
reconstruction of the object. But sometimes in radiological imaging, parameters do not have
to sweep the entire geometrical range (see in [1], vol 2 section 9.3.2). The coordinates of V'
in this system are

Ey =&y +rsinb cos, Ny = Ny +rsinf sin ¢, Ly = ¢m +rcoso,

where VM = r, 0 is the scattering angle and ¢ the azimuthal angle of V' with respect to the
cone axis DM. The integration measure on the cone is r sin 6 d¢ dr. Hence equation (11)
after integration over &, and 71, becomes

ood 2T
g(D,9>=K<0>/ %/ d¢
1 Sy Jo

oo
d
x/ —rf(SD +rsinfcosg, np +rsindsing, y +rcosb) (13)
0 r
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where the factor K (9) contains the terms dependent on 6

ne r? ,
K®)=-—-5P(0)sind. (14)

4 2
In the expression (13) of g(D, 6), the integral on r is formally divergent near the origin
since f (V') is a bounded function (the activity density is everywhere finite). When r — 0 it
means that V' — M. Physically the primary point source V is sitting on top of the secondary
point source M . In this case it is the primary photon emission (of energy E() which takes over,
and the secondary process is left out. Moreover electrons and photon emitting nuclei, being
quantum mechanical particles cannot be point-wise localized. So their separation can be at best
limited by the smallest of their Compton wavelengths: €. Mathematically, the regularization
of the integral in equation (13) can be achieved by assigning € as a cut-off for the integration

in r. We write thus

) e} d{M 2
¢(D, ) = lim K(G)/ —2/ dg
e—0 i CM 0

o0
d
x/ —rf(éD+rsin9005¢>,nD+rsin95inq’),§'M+r0059). (15)
e T

As f (V) is of compact support, this integral can be understood as the sum of integrals of
f (V) on cones of axis parallel to O¢, apex M and opening angle 6 €]0, w[ combined with
sums over different altitudes of M. The object is thus represented by a set of conical integrals
instead of planar integrals. In this sense one may view this transformation 7" as a generalized
Radon transform.

Note that the conical integral part has been introduced earlier in a simpler context [8], in
which the apex of the cones are confined in a plane, instead of being in the entire biological
medium volume.

The point is now to determine whether or not this transformation is invertible and lends
itself to the process of object reconstruction.

3.5. The T -transform as a compound Fourier—Hankel transform

To this end, a more transparent form of 7 is obtained by performing some transformations on
equation (15). First we introduce the two-dimensional Fourier transform of f (V') under the
form

Fu, v, Cup) = / / d&p dnp f (. nos Cuts 0) expl—2i (up +vnp)l,  (16)

and a similar transform G (u, v, ) for g(D,6). So by applying the Fourier transform to
equation (15), we get an alternative form:

~ . o0 dé‘M o dl"
G(u,v,0) =1im K(0) — —F(u,v, ¢y +rcosb)
€0 1 S Je r

2
X / d¢ exp[2imr sin O (ucos ¢ + vsin ¢)]. (17
0

Now setting u = vu? + v?>cos ¥ and v = +/u? + v? sin ¥, we may perform the angular
integration and get the Bessel function Jy(x) [9], so that

dlu
th

% 4
x/ & F(u, v, tar + 1 cos6) (27rx/u2+v2rsin9). (18)
€ r

o0
Gu,v,0) = lirr(1)2er(0)/
€—> 1
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For a better insight and understanding of the nature of 7, we define the function

H(u,v,rcosH):/ %F(u v, {y +rcosh) (19)
l

M
and introduce the change of variables z = r cos @ and t = tan §. Note thatfor 0 < 6 < %, both
z and ¢ are positive. With the dependence on 6 replaced by the dependence on 7, G (i, v, 0)
becomes G(u, v, t) and equation (18) now appears as

Gu,v,t . °° Hu, v
G0 _ i og f 2z Iy (2725 o1 Hu,viz)
K(t) €—0 o z2
with €’ = € cos 6.
However, a proper way around the divergence problem is to calculate the derivative of the

previous equation with respect to ¢. Since J; = —J; [9], we have
9 G t Hu,v;

G v _ 47'[2)\/u2+v2/ zdz J; (2m, u2+v2z) Hu, v (20)
at K(t) €0 V4

The right-hand side of equation (20) is clearly finite for ¢’ — 0, so that from now on we
need not write the limiting procedure. This shows precisely that

(=D  9Gu,vr
2 u?+0v2 0t  K()

is the first-order Hankel transform [10, 11] of the function H (u, v; z)z ™.

3.6. Inversion of T

In this section we show that for 0 < 6 < m it is possible to express f(V') in terms of the
measured data g(D, 6). Data taken in this range of 6 yield complete information for the
reconstruction of the object density function.

Now in the range 0 < 6 < 7, equation (20) shows that the pair of variables conjugate in
the first-order Hankel transform is z < (t u?+ vz). But as it is known, the Hankel transform
is self-similar and invertible as the Fourier transform is [10]. Recalling the definition of
H (u, v; ), we can thus invert the Hankel transform:

—/ dév—MF(u v, Iy +2)
ZJi CM
—2n«/u2+v2/ ¢ dt 11 27tz u2+v2t) 9 G vin) Q1)
9 K@)

We make now a change of variables s = (¢ —[) and 0 = (z +1) to reexpress H (u, v; z)
(on the left-hand side of the last equation (21)), as

/ SN v, +2) = /oo L Fwvs+o) (22)
—F(u, v, z ——F(u,v,s +0).
L Ly M o (s+0)?
Going to the Fourier representation of F (u, v, s + o) in the third variable
Fu,v,s+o0)= / dw F(u, v, w) exp[—2irw(s + 0)], (23)
—00

where F(u, v, w) is actually the three-dimensional Fourier transform of F(V'), since from
equation (16) we see that # and v are already the Fourier variables of the two first coordinates
&p and np of f(V'). Recalling that z = r cos & we have

H(u,v,z):/oc dw F(u, v, w) exp(— 2171w0)/

(e¢]

o 1)2 exp(—2irws). (24)
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The last integral of the previous equation is nothing but the Fourier transform of the
generalized function Y (s)(s + )2, Y (s) being the unit-step Heaviside function. Its value is
given in Fourier tables [12] (e.g. Lavoine’s table, p 88):

/ (Si—sl)z exp(—2irws) = J(w) (25)
0

with

2wl

where Sgn(w) is the sign function of w, Ci(w) and Si(w) are the cosine and sine integral
functions of w (for their definitions see [9]).

Combining the results of equations (24), (25) and putting them back in the above
equation (21), we get

Ji(w) = 2imrw {exp 2imlw[CiQnl|w]) — i Sgn(w) SiQ2xlw])] — %} ,

/00 dw F(u, v, w)7 (w) exp(—2irwo)

o0
o0 1 9 Gu.v.t
= —2n(o—l)\/u2+v2/ rdr (2nt(a—l)x/u2+v2>——M.
; 2wt K@)

(26)
Recalling that the variable ¢ = (z +[) is positive, we see that o cannot yet be used as a

variable to perform the inverse Fourier transform to extract F (u, v, w), from which the object
density f(V') can be reconstructed:

f(V)= foo /00 /00 dudvdw F(u, v, w)exp[2iz (uéy + vy + wey)]. 227

To do so, one needs an extension of equation (26) for negative values of o. Observe that both
G (u, v, t) and its derivative with respect to ¢ are involved in the object reconstruction and that
K (1) is given by equation (14). The parameter / may be chosen arbitrarily small.

Now in the range 6 €]Z, 7 [, both z and ¢ are negative, i.e. (z, t) €] — 0o, O[. We may set
z = —7 and t = —¢’ where both 7’ and ¢’ are positive and instead of equation (20) we have

0 G(u,v,—t' 00 % 4
9 G v, 1) = (—47)Vu? + UZ/ dz 1, (27tz’t’\/u2 + v2> / —gF(u, v, ¢ — 7).
ar K(=t") 0 o &2

The inversion procedure goes through again except that one must take care of the change
in sign for z. Equation (26) appears now, after renaming of some integration variables under
the form

/oo dw F(u, v, w)J;(w) exp(=2izw(l — z))

o0
——— [~ —~——\ 0 G(u, v, —t
= —Z M2+U2/ tdf]] (27TZt M2+U2>E%.
0 _

Finally combining the two forms of equation (26) we have

/ dw Jj(w) F(u, v, w) exp(=2izw(l + 7)) = —|z|vVu? + 02
—0oQ
x/ tde Jy (ZJTIZINM2 + v2>
0

v EG(u,v,t) Y_)iG(u,v,—t)}
X{ (Z)at K1) * (Zar K(—1t)
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So, recalling that o = (z +1), F(u, v, w) can be extracted as follows:

— 12 2 oo
F(u, v, w) :/da exp[Zinaw]M/ tde J <27r|z|t\/u2+v2)
Ji(w) 0

{Y( )3 G(u,v, 1) LY () 0 G(u,v, —t) }

a K@) at  K(—1) (28)

The object density function f(V') is, in turns reconstructed by Fourier transform, as
indicated in equation (27).

For the special value & = 7, the cone collapses into a plane parallel to O&n. The cone
integral becomes now a planar integral or a Radon transform associated to planes parallel to
the detector.

In the two next subsections we shall consider two special situations, where calculations
can be analytically performed: plane wave approximation and point source.

3.7. Plane wave approximation and transformation T*

An interesting situation arises if the distance / is large compared to the size of the object. Then
one may assume that re-emitted photons propagate as a beam of parallel rays (plane waves).
The number of photons reaching a unit detector surface at D per unit time is the expression
given by equation (9) multiplied by the Klein—Nishina probability P (6):
fwvydav 1
47 MV?

The function H (u, v, z) is now

n, dM P(6).

H=H"(u,v,z) :/ d¢y F(u, v, {m +2). (29)
!

Under the same change of variables as in equation (22), and using again the Fourier
representation of equation (23) [12], we obtain the expression

H*(u,v,z) = /-00 dw F(u, v, w) exp(—2irw(z +l))% |:6(w) + Pf%:| . (30)
o w

This brings up a relation giving F (i, v, w) in terms of G (u, v, t)/K*(¢) via equation (20)
after integration over w:

P00+ [ au P,y py SPETE XDV
iTw
=2z’ +v )/ tdt] Zntz«/m> G(u,v,t) o
’ K*(1)

with K (1) = ErezK*(t).

Now by derivation with respect to z and by Fourier transformation we obtain directly the
two-dimensional Fourier transform of the object density function (which describes the sought
activity density function):

o
—Fu,v,z+1) =4mz(u®+v?) / tdr [JO (27rtzv u? + vz)
0
—zmvu? + v (Zntz\/ u? + vz)] G(u,v,t)

1
0 (32)
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Figure 4. Coordinates for the calculation of the PSE.

since the derivative of the Bessel function Jy is —J;. Finally f (V') is recovered explicitly by
two-dimensional Fourier transformation, after setting ¢y = z +{:

f(vV)= foo /oo du dv exp [=2im (u&y + vny)]4m(cy — D)(u? +v%)

x /OootdtG(u, v, t)K%(t) [—Jo (2m(§v — Vit + v2>

—(ty =DV + 02T, (2m(§D —l)x/u2+v2)]. (33)

The inversion of the transformation 7* is thus fully performed with more tractable
functions. Note that, as z is positive, ¢y is larger than /.

3.8. Image of a point source or point spread function (PSF)

As a second special case, let us consider a point-like object located at V4 of coordinates
(80, M0, o), see figure 4, given by

FV) = fod(&v —§0)8(nv — 10)3(Cv — &o), (34)
then from the general expression (see equation (11)) after integration on V/, the image density
function is

8D, o) = % / déy dnm 6(§p — Em)S(np — nM)ne/ f—éMfOS(Cone)MLVOzFfP@)- (35)

Now the § (§p — &) (np —nar) function means that M is on the vertical line perpendicular

to the detector at site D. Hence after the d&y, dny, integration, it remains to take care of

6(Cone), which dictates that M must be placed such that the angle between MV, and M D

is @ as specified by the scattering condition at energy E, see equation (5). Consequently, we

call g(D, 0) = h(D, V; 0) the point spread function (PSF) of this transformation, and give
its expression:

2 2

h(D,V;0) = fok e P(0)siné t_Y(({o——l)t—,o)

4 2 p* (ot — p)?
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Integral Transform

A

F(theta,alpha)

theta
Figure 5. Behaviour of the PSF as a function of 8 and the ratio « = p/{.
where p = /(€ — &p)? + (no — 1p)?, and ¢y = (o — p cot 0), see figure 4.
Thus one has after replacing ¢ by tan 6
e 12 Y((¢ —[)tan 6 —
WD, V;0) = fors "2 P©)sin 6> —— (©o=D Gk P) (36)
A 2 (Zop) (sin€ — )

So this function depends on p, the altitude of the point-like source ¢y and the scattering
angle 6. The image is rotationally symmetric with respect to the projection of V' in the detector
plane. In figure 5 we have given the behaviour of the PSF as function of 8 and p, by plotting
the expression F (0, «), as function of 6 and o = p /&y

sin*6 P(9) a7

FO,0) = >—— 2 .
©,0) =0 (sin® — o cos H)?

The curves at constant « are reminiscent of curves obtained by Monte Carlo simulations [13].

Now from three measured values of h(Dj, V;0;) with j = 1,2,3, one can use
expression (36) to calculate the coordinates of the point source V/, by solving a system of
three equations with three unknowns (£y, ny, {y). This inverse problem, in principle, can be
recast in a geometrical setting as a problem of intersection of three cones. It will be discussed
elsewhere.

If one chooses this PSF with unit intensity, i.e. fo = 1, the image density function g(D, 6)
may be expressed in terms of 2(D, V'; 6) as

~ in3
g(D,0) ~ K(9) sin’ 0 /de(V) 2 (Cy sinf — pcost)”

Again care must be exercised when dealing with the divergence in the integrand as in
equation (15).
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Note thatin the approximation of plane wave propagation discussed in the previous section,
this PSF is much simpler since we do not have to take into account the factor ¢ ,;2, hence we
only have

h*(D,V;0) =n, 4f—° o 2sin’0 P(9). (38)
T

The fact that this PSF does not depend on ¢y is consistent with the plane wave hypothesis.

4. Conclusion and perspectives

Based on physical analysis, we have found a new integral transformation, related to the
formation of secondary images by Compton single-scattered photons in gamma-emission
imaging. Moreover we have established that this transformation is invertible. This
mathematical result gives a theoretical solution to the following ill-posed inverse problem: how
to reconstruct the volume radioactive density of the object f (V') from the intensity densities
g(D, 0) measured on a planar detector but at various scattering angles 6. Thus the relevance
of this angle as a typical parameter is clearly displayed in the image reconstruction procedure.
It plays the same role as the spatial rotation angle in a standard tomography procedure, where
either the object or the detector is in motion. In the new imaging procedure, it is no longer
necessary to move either the object or the detector. This result of course may pave the way to
the conception of novel type of imaging devices, but their practical realization lies beyond the
scope of this paper.

Finally these considerations could be extended to transmission imaging systems, where
higher order Compton scatterings are to be taken into account and will be treated in future
work.
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