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Conventional tomography (X-ray scanner, Single Photon Emission Computed Tomography,
Positron Emission Tomography, etc.) is widely used in numerous fields such as biomedical
imaging, non-destructive industrial testing and environmental survey, etc. In these tomog-
raphies, a detector rotates in space to collect primary radiation emitted or transmitted by
an object under investigation. In this case Compton scattered radiation behaves as noise
hindering image quality and consequently correction to scatter should be required. How-
ever recently an interesting new imaging concept, which uses precisely scattered radiation
as imaging agent, has been advocated. The camera records now images labeled by scattered
photon energy or equivalently by scattering angle. In the present paper we propose a new
modality of Compton scattering tomography (CST), akin to the X-ray scanning tomography,
in the sense that it works in transmission modality but uses Compton scattered radiation to
recover the electron density of the studied medium. The new image formation modeling is
based on a new class of Radon transforms on circular arcs (CART). Through numerical sim-
ulation results we show the feasibility and the relevance of this new imaging process.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction to Compton scattering tomography (CST) and circular-arc Radon transform

For more than fifty years, transmitted penetrating radiation such as X- or gamma-rays have been routinely used to probe
the hidden parts of matter and/or tissues [1–3]. The measurement of their attenuation along all possible linear paths in a
plane forms a set of Radon data, which, once fed into a chosen inversion formula, provides the reconstruction of the probed
medium. In this imaging modality, scattered radiation acts as a nuisance blurring images hence it should be removed or at
least be compensated.

However it was realized, in the early seventies, that the Compton effect may give rise to new challenging imaging modal-
ities, in which the camera records images labeled by scattered photon energies. Then it is shown that the three dimensional
image reconstruction from scattered radiation data is feasible [4–8].

Let us recall that the Compton effect (Fig. 1) is the scattering of X- or gamma-photons with electric charges. The energy of
a scattered photon is related to the scattering angle x by the Compton relation
Ex ¼
E0

1þ E0
mc2 ð1� cos xÞ

; ð1Þ
. All rights reserved.
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Fig. 1. Principle of Compton scattering.
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where E0 is the emitted photon energy and mc2 represents the energy of an electron at rest (0.511 MeV).
The idea is to register the outgoing scattered photons according to their energies in order to image the hidden part of

objects of interest. This is the basic idea in Compton scattering tomography (CST).
In 1994, Norton [9] worked out a CST modality which is based on a Radon transform on circles having a fixed common

point. The functioning principle is given in Fig. 2. A point source S emits primary radiation towards an object, of which M is a
scattering site (running point). A point detector D moves along an Ox-axis and collects, at given energy Ex, scattered radi-
ation from the object. The physics of Compton scattering demand that the registered radiation flux density I at position D
is due to the contribution of all scattering sites M lying on an arc of circle from S to D subtending an angle (p �x), where
x is the scattering angle corresponding to the outgoing energy Ex (see Eq. (1)).

Norton gave the expression of the registered radiation flux density I as
Iðq;uÞ ¼ ðC1f Þðq;uÞ ¼
Z p

0
dh
Z 1

0
drf ðr; hÞwðr; h; q;uÞd½r � 2q cosðh�uÞ�;
where f(r,h) stands for the object electron density and C1 is the operator of the Norton Radon transform, d(.) is the 1-D Dirac
delta function and w(.) is defined by
wðr; h;q;uÞ ¼ a r sðhÞPðx ¼ p=2þuÞ
4p ð2qÞ3 sin2 h

¼ w1ðr; hÞ �w2ðq;uÞ:
In the above formula, a represents the area of an element of detection, s(h) expresses any angular dependance of the c-ray
source distribution, and P(x) is the Klein-Nishina differential cross-section. Mathematically, I(p,u) is essentially the Radon
transform of the object electron density f(r,h) on arcs of circle, when radiation attenuation and photometric effects on radi-
ation propagation are not taken into account.

Norton worked out an inversion formula
f ðr; hÞ ¼ 1
p2

Z 2p

0
du
Z 1

0
q dq

ðC1f Þðq;uÞ
wðr; h;q;uÞh½r � 2q cosðh�uÞ�
where
hðxÞ ¼
Z 1

�1
e�ifxjfjdf: ð2Þ
Fig. 2. Principle of Norton’s CST.
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This expression has the same the convolution kernel in the filtered Back-Projection algorithm used in X-ray transmission
CT. The difference is that the Back-Projection is performed along straight lines in transmission CT, whereas here the Back-
Projection is performed along the circles of equation r = 2q cos(h � u).

However h(x) in Eq. (2) should be interpreted as a distribution, since the f-integral does not converge. This is why Norton
proposed an ‘‘apodization’’ function A(f) which goes to zero smoothly beyond a spatial-frequency cutoff (indeed the function
f(r,h) is assumed to be bandlimited) and placed it under the integral.

Recently we have suggested a novel modality for Compton scattering tomography [10]. The physical principle is similar to
Norton’s CST, however in our configuration the source is not fixed but rotates around the object in order to collect more scat-
tered photons. In this paper we prove that the corresponding Radon transform is invertible by Back-Projection and describe
in more details the simulation process than in [10].

Section 2 shows how image formation process in the new CST is modeled and how the collected data leads to a Radon
transform on a particular class of circular arcs, which is called Circular-Arc Radon transform (CART).

Section 3 summarizes the inversion procedure of the CART which takes its origin from a relation between the CART and
the ordinary Radon transform (RT).

In Section 4 we present numerical simulations on image formation and reconstruction for a Shepp-Logan phantom and a
nuclear waste phantom to support the feasibility of the new CST. The paper ends with a short conclusion on the obtained
results and opens some future research perspectives.

2. Modeling of the new modality in Compton scattering tomography (CST)

2.1. Forward circular-arc Radon transform (CART) and associated Compton scattering tomography

Consider a 2D-object represented by its electron density, a non-negative continuous function f(r,h) with bounded support.
An emitting radiation point source S is placed at a distance 2p from a point detector D. It is important for the inversion pro-
cedure to consider only the upper part of the object, this is why an angle collimator is placed at D. The segment SD rotates
around its middle O and its angular position is given by u, see Fig. 3.

The source S irradiates the studied medium and according to Compton effect, emitted photons are scattered by interac-
tion with electric charges (see Eq. (1)). As the detector D can monitor scattered photons according to scattered energies,
some of these scattered photons are collected by the detector at their corresponding energies Ex. Thus, for a fixed u, to each
energy Ex corresponds a set of scattering sites on a circular-arc C(u,x).

Finally the detected radiation flux density g(u,x) is proportional to the integral of the electron density f(M) with
M 2 C(u,x). It can be written as
gðu;xÞ ¼
Z
ðr;hÞ2Cðu;xÞ

wðr; h;u;xÞf ðr; hÞds ð3Þ
where ds is the elementary length of circular-arc to be computed from the circular arc equation
r ¼ pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2 cos2 c

p
� s cos cÞ; ð4Þ
where s = cotx and c = h � u, with ðu;xÞ 2 ½0;2p� � �0; p2 ½. In Eq. (3), the weighting function w(r,h;u,x) incorporates phys-
ical effects: angular dependance of the Compton scattering and radiation divergence and is given by
wðr; h;u;xÞ ¼ b PðxÞ
ð1þ tan2 xÞ � ðp2 � r2Þ2

¼ w1ðrÞ �w2ðxÞ;
Fig. 3. Principle of the new CST based on the CAR transform.
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where b is a constant, P(x) is the Klein-Nishina probability and the factor represents the product of traveling square
distances of a detected photon
SM2 �MD2 ¼ ð1þ tan2 xÞ � ðp2 � r2Þ2:
Due to the form of the weighting function w which can be separated in two functions w1(r) and w2(x) and hence does not
change the inversion procedure, we restrict our forward transform to the integral of a function f over correspondings circular
arcs. Thus g(u,x) appears as the Radon transform on arcs of circles of f(r,h), i.e. the CART ðC2f Þðu; sÞ given by
gðu;xÞ ¼ ðC2f Þðu; sÞ ¼
Z p

2

�p
2

f ðrðcÞ; cþuÞrðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2 cos2ðcÞ
p dc: ð5Þ
Eq. (5) describes image formation.

2.2. Modeling of image formation process

For fixed (u,x), we calculate the set of points (r,h) on the circular-arc C(u,x) (Eq. (4)). Then to get g(u,x) (or projections),
we multiply f(r,h) by a differential element (Eq. (5)) and sum over pixels along the circular arc C(u,x). Fig. 4 shows how we
scan the object to simulate measurements.

For small values of x(x � 0), the scanning of the circular-arc becomes hard. According to the sampling rate dh, we can
define an angle x0, below which we cannot get all the points of the circular-arc. This is why the area under the circular-
arc C(u,x0) is ‘‘ill-observed’’ hence ‘‘ill-reconstructed’’. Numerically we can reduce this phenomenon by decreasing dh but
at the expense of the computational time.

To avoid it, we have to rewrite the image formation. Now we study a new function h(x,y) which is f(r,h) in cartesian coor-
dinates and we consider the rotating basis centered at X. The scanning of the corresponding circular-arc C(u,x) is now
parametrized by a 2 [p/2 �x,p/2 + x], see Fig. 5.

In the fixed basis centered at O a point M(x,y) of C(u,x) can be defined by a according to the following system
xðaÞ ¼ p
sin x sinðaþuÞ � p

tan x cos u
yðaÞ ¼ �p

sin x cosðaþuÞ � p
tan x sinu:

(

Considering these variables, the integral of a function f(r,h) on circular-arcs becomes the integral of the corresponding
cartesian function h(x,y) on corresponding circular sector
ðC2f Þðu; sÞ ¼
Z p

2

�p
2

f ðrðcÞ; cþuÞrðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2 cos2ðcÞ

p dc ¼
Z p

2þx

p
2�x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
hðxðaÞ; yðaÞÞda: ð6Þ
Eq. (6) is not suitable for inversion but is more adapted to a computation of the image formation.

2.3. Integral kernel and point spread function (PSF)

Alternatively Eq. (5) can be put under the form of an integral transform in u� p
2 ;uþ p

2

� �
� Rþ with a delta function kernel

concentrated on the arc of circle C(u,x)
Fig. 4. Scanning of the medium.



Fig. 5. Principle of CART in cartesian coordinates.

Fig. 6. 3D representation of a point object.
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C2f ðu; sÞ ¼
Z uþp

2

u�p
2

Z 1

0
f ðr; hÞKC2 ðu; sjr; hÞrdrdh ð7Þ
with
KC2 ðu; sjr; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2 cos2ðh�uÞ
p dðr � pð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2 cos2ðh�uÞ

q
� s cosðh�uÞÞÞ: ð8Þ
For a single point object (Fig. 6), located at (r0,h0), represented by
f0ðr; hÞ ¼
1
r

dðr � r0Þdðh� h0Þ;
the response of the CART (Eq. (7)), called the point spread function (PSF), is given by the equation
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ðC2f0Þðu; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2 cos2ðh0 �uÞ

p dðr0 � pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2 cos2ðh0 �uÞ

q
� s cosðh0 �uÞÞÞ:
Rewriting the kernel in terms of a s-integration by transforming the delta-function, the PSF takes the following form
ðC2f0Þðu; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

p cosðh0 �uÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2 cos2ðh0 �uÞ

p
� s cosðh0 �uÞÞ

d s� p2 � r2
0

2pr0 cosðh0 �uÞ

� �
:

So the support of the PSF is the curve x(u) defined by
x ¼ arctan
2pr0

p2 � r2
0

cosðh0 �uÞ
� �

:

Fig. 7 shows the shape of the arctan function which characterizes the PSF support. In future works, we could study others
mathematical properties of the circular-arc Radon transform such as its null space or its relation to orthogonal functions
[11].

3. The inverse transform of the circular-arc Radon transform

The inverse transform can be worked out using the A.M. Cormack’s technique [12] using Fourier angular components of f
and of C2f
f ðr; hÞ ¼
P

l
flðrÞeilh

with
flðrÞ ¼ 1

2p

R 2p
0 f ðr; hÞe�ilhdh

8>><
>>: and

ðC2f Þðu; sÞ ¼
P

l
ðC2f ÞlðsÞeilu

with
ðC2f ÞlðsÞ ¼ 1

2p

R 2p
0 ðC

2f Þðu; sÞe�iludu:

8>><
>>:
Eq. (5) now takes the form
ðC2f ÞlðsÞ ¼ 2
Z p

2

0
rðcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2 cos2ðcÞ

p flðcÞ cosðlcÞdc:
The inverse formula is given in [13],
flðrÞ ¼ ð�Þ
2pðp2 þ r2Þ
pðp2 � r2Þ2

d
dt

Z 1

t

cosh lcosh�1 q
t

� �	 

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q
t

� �2 � 1
q ðC2f Þl 1

q

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p dq

2
64

3
75

t¼ 2pr
p2�r2

; ð9Þ
where q = 1/s. Finally f(r,h) is reconstructed through its Fourier expansion with the circular components fl(r).
In principle, one can use Eq. (9) to perform numerical computations. However Eq. (9) is numerically unstable. Assuming

that the original function is bounded, a close inspection of the integral kernel of Eq. (9) shows that it behaves as
Fig. 7. CAR transform of a point object (PSF) in Fig. 6.
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lim
q!þ1

cosh jljcosh�1 q
t

� �	 

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q
t

� �2 � 1
q � lim

u!þ1
2 eðjlj�2Þu; ð10Þ
where u ¼ cosh�1 q
t

� �
. Eq. (10) presents an apparent divergence when jlj > 2, since for q ?1 the integrand grows very rapidly.

The presence of noise in the data ðC2f Þlð1=qÞ for large q is badly propagated into the calculation of fl(r) which prevents sim-
ulation studies. Thus Eq. (9) needs to be regularized.

By introducing
�f l t ¼ 2pr
p2�r2

	 

¼ ðp2�r2Þ2

2pðp2þr2Þ � flðrÞ

�glðqÞ ¼
ðC2 f Þl 1

qð Þffiffiffiffiffiffiffiffi
1þq2
p :

8><
>:
we obtain
�f lðtÞ ¼ ð�Þ
1
p

Z 1

t
dq

coshðjljcosh�1ðq=tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � t2

p d�glðqÞ
dq

�����
t¼ 2pr

p2�r2

: ð11Þ
Eq. (11) is precisely the inverse formula of the standard Radon transform in terms of circular harmonic components. So
the Radon’s problem in the case of the CART could be solved by going to another space in which functions f and C2f becomes
the associated functions �f and �g in the standard Radon’s space. Therefore another way to obtain image reconstruction based
on ‘‘Filtered Back-Projection’’ can be proposed.

To make the ramp filter appear in the inversion formula, we proceed as follows. First we rewrite Eq. (11) as
�f ðt; hÞ ¼ 1
2p2

Z p

0
du p:v:

Z 1

�1
dq
@�gðu; qÞ
@q

� 1
q� t cosðh�uÞ

� 

;

Next we have
@�gðu; qÞ
@q

¼ �
Z 1

�1
du d0ðq� uÞ�gðu; uÞ;
so that
�f ðt; hÞ ¼
Z p

0
du
Z 1

�1
du�gðu;uÞ

Z 1

�1
dq

1
2p2

1
q� t cosðh�uÞ d

0ðq� uÞ: ð12Þ
Now then set s = (q � u), the q-integral in Eq. (12) is in fact the convolution product
Z 1

�1
dq

1
2p2

1
q� t cosðh�uÞ d

0ðq� uÞ ¼
Z 1

�1
dsd0ðsÞ 1

2p2

1
s� ðt cosðh�uÞ � uÞ ¼ d0ðsÞH 1

2p2

1
s

� �
s¼ðt cosðh�uÞ�uÞ

:

Since the Fourier transforms of d0(s) (resp. of 1
2p2

1
s

�
is 2ipm (resp. �ip sgn m), (their product being consequently 2p2jmj), the

convolution product has the Fourier representation
d0ðsÞH 1
2p2

1
s

� �
s¼ðt cosðh�uÞ�uÞ

¼
Z 1

�1
dmjmje2ipmðt cosðh�uÞ�uÞ:
Hence the inversion formula will take the form
�f ðt; hÞ ¼
Z p

0
du
Z 1

�1
dmjmje2ipmðt cosðh�uÞÞ

Z 1

�1
du�gðu;uÞe�2ipmu:
This formula is just the summation image of the filtered (ramp filter) of the Back-Projected Radon data in (q,u)-space.
Moreover we have a link between the function defined in the standard Radon transform space and the original function f

defined in the original space
f ðr; hÞ ¼ 2pðp2 þ r2Þ
ðp2 � r2Þ2

�f
2pr

p2 � r2 ; h

� �
;

as well as
�gðu;uÞ ¼ ðC
2f Þðu;1=uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p ;
we can write down the final inversion formula
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f ðr; hÞ ¼ 2pðp2 þ r2Þ
ðp2 � r2Þ2

Z p

0
du
Z 1

�1
dmjmje

2ipm 2pr
p2�r2 cosðh�uÞ
	 
 Z 1

�1
du
ðC2f Þðu;1=uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p e�2ipmu

¼ 2pðp2 þ r2Þ
ðp2 � r2Þ2

Z p

0
du�g� u;

2pr
p2 � r2 cosðh�uÞ

� �
:

This approach has the advantage to be easily implementable with short computing time. It is illustrated in Fig. 8.

4. Numerical analysis and simulation results

4.1. Numerical computation for the forward circular-arc Radon transform

Eq. (5) describes the image formation process but we have seen an alternative formulation, Eq. (6), which is more suited
to a numerical computation since it considers the cartesian representation of the studied function f, h. In order to simplify the
calculation of the forward CART, we use the parameter x and the cartesian representation. From now on we consider the
following notation for the image formation process
ðC2hÞðu;xÞ ¼
Z p

2þx

p
2�x

p
sin x

hðxðaÞ; yðaÞÞda: ð13Þ
Let:

� H: be the original matrix of size N � N (the studied function h(x,y)).
� �x: be a linearly spaced vector of size Nx from dx to xmax where
xmax ¼ arctan

ffiffiffi
2
p

pN

p2 � N2

2

 !
represents the maximum value of the angle x considering a scattering medium of size N � N and dx ¼ xmax
Nx

stands for the
sampling step,

� �u: be a linearly spaced vector of size Nu from du to 2p where du ¼ 2p
Nu

is the sampling step,
� P: be the projection matrix of size Nu � Nx corresponding to the forward CART of the cartesian function h(x,y),
� �aj: be a linearly spaced vector of size Na from p

2 �xj
� �

to p
2 þxj
� �

defined for each value of xj 2 �x with a sampling step
da ¼ 2xj

Na
,

� the following parametric system be:
8ðui;xj;akÞ 2 �u� �x� �aj;
xijk ¼ p

sin xj
sinðak þuiÞ � p

tan xj
cos ui

yijk ¼ �p
sin xj

cosðak þuiÞ �
p

tan xj
sin ui:

(

To calculate the numerical value of this integral, we use the trapezoidal rule to interpolate Hijk from h(xijk,yijk) and we
obtain the following sum
Pij ¼
2p
Na

xj

sinxj

PNa

k¼1
Hijk:
Fig. 8. Reconstruction algorithm based on ‘‘Filtered Back-Projection’’ over circular-arcs.



Fig. 9. Original Shepp-Logan medical phantom.

Fig. 10. Original nuclear waste phantom.
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4.2. Numerical computation for the image reconstruction

Before reconstructing the original image, h(x,y), we have to compute the filtering of the projections. The analytical inver-
sion formula gives
hðx; yÞ ¼ 2pðp2 þ ðx2 þ y2ÞÞ
ðp2 � ðx2 þ y2ÞÞ2

Z p

0

�g� u;
2p

p2 � ðx2 þ y2Þ ðx cos uþ y sinuÞ
� �

du:
The function �g�ðu; qÞ corresponds to the filtering of the function �gðu; qÞ ¼ ðC
2hÞðu;arctan qÞffiffiffiffiffiffiffiffi

1þq2
p . This last function is the same as in

the classical Radon transform, that is to say
�g�ðu; qÞ ¼ F�1fjmj � Ff�gðu; qÞgg;
where F (resp. F�1) stands for the 1D-Fourier transform (resp. the inverse 1D-Fourier transform). Its computation is per-
formed by a Fast Fourier transform (FFT). Because of frequency unstability and cut-off we have to apodize the ramp filter,
jmj, with a smooth function. We choose the Hann filter defined by:



Fig. 11. CART of the medical phantom shown in Fig. 9.

Fig. 12. Radon transform of the medical phantom shown in Fig. 9.
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HðmÞ ¼ 0:5 1þ cos p m
mmax

	 
	 

if jmj < mmax

0 if jmjP mmax;

(

where mmax is the maximum value of the frequency of the discretized projections. Thus the ramp filter becomes HðmÞjmj.
Then Back-Projection is applied on the curve
q ¼ 2p
p2 � ðx2 þ y2Þ ðx cos uþ y sinuÞ;
which is the arc of circle C(u,x). Therefore the Back-Projection is performed over the same circular arcs as in the forward
transform.

Let

� �q: be a linearly spaced vector of size Nq from tandx to tanxmax and
� G: be the filtered projections matrix of size Nu � Nq.



Fig. 13. CART of the nuclear waste phantom shown in Fig. 10.

Fig. 14. Radon transform of the nuclear waste phantom shown in Fig. 10.
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Therefore the Back-Projection corresponds to
8ði; jÞ 2 ½1;N�2; Hij ¼
4p
Nu

p p2 þ x2
i þ y2

j

	 
	 

p2 � x2

i þ y2
j

	 
	 
2

PNu

k¼1
Gijk;

0 1

where Gijk is calculated by linear interpolation of �g� uk;

2p

p2� x2
i
þy2

j

	 
 ðxi cos uk þ yj sin ukÞ@ A on the vector �q.

4.3. Simulation results

In this section, we present the simulation results of our novel reconstruction algorithm based on the ‘‘Filtered Back-Pro-
jection’’ over circular-arcs in the case of the CART and compare them to the reconstruction obtained by the Radon transform
Filtered Back-Projection (RT FBP).

As an illustration of the feasibility of the new CST, we carried out numerical simulations on formation and on image
reconstruction for two original objects: a Shepp-Logan medical phantom (Fig. 9) and a nuclear waste phantom (Fig. 10).
In order to have a ‘‘well-conditioned’’ problem, the number of projections (Nu � Nx) must be larger than the number of stud-
ied points (N � N here). We take Nu = Nx = p = N = 256.



Fig. 15. Reconstruction of the medical phantom shown in Fig. 9 using CART-FBP and data in Fig. 11.

Fig. 16. Reconstruction of the nuclear waste phantom shown in Fig. 10 using CART-FBP and data in Fig. 13.

G. Rigaud et al. / Simulation Modelling Practice and Theory 33 (2013) 28–44 39
To compare the quality of the reconstructions, we define the Normalized Mean Squared Error (NMSE) and the Normalized
Mean Absolute Error(NMAE)
NMSE ¼ 1
N2

P
ði;jÞ2½1;N�2 jI rði; jÞ � I oði; jÞj2

maxði;jÞ2½1;N�2fIoði; jÞg2 and NMAE ¼ 1
N2

P
ði;jÞ2½1;N�2 jI rði; jÞ � I oði; jÞk
maxði;jÞ2½1;N�2fIoði; jÞg

;

where I r is the reconstructed image and Io is the original image.
Figs. 11 and 12 (resp. Figs. 13 and 14) show the CART2 and the forward Radon transform of the Shepp-Logan phantom

(resp. of the nuclear waste phantom). The CART-FBP approach gives in general a reasonable image quality in the reconstruc-
tion of the medical phantom (Fig. 15) and of the nuclear waste phantom (Fig. 16): contours and small structures are well
recovered. The numerical error measurements obtained using the CART-FBP are very close to those of the ordinary Radon
transform (Figs. 17 and 18), see Tab. 1. Nevertheless our reconstructions show a lot of artifacts at the corners. This is due
to the non-homogeneous distribution of the intersections between circular-arcs, see Fig. 19a, this is why we have less infor-
mation about the areas near the souce and the detector. This is not the case for the straigth lines which have a homogeneous
distribution of the intersections, see Fig. 19b. This puts forward a sampling issue in the case of the CART. Even if the artifacts
does not hinder the quality of the reconstruction, a better sampling could be studied in order to decrease the artifacts.



Fig. 17. Reconstruction of the medical phantom shown in Fig. 9 using RT-FBP and data in Fig. 12.

Fig. 18. Reconstruction of the nuclear waste phantom shown in Fig. 10 using RT-FBP and data in Fig. 14.
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These results prove the feasibility and the interest of our algorithm in the field of medical imaging and of non-destructive
testing (see Table 1).

5. Model validation using Monte-Carlo simulation

Under realistic working conditions, traveling radiation is affected by medium attenuation and by dispersion due to pho-
tometric propagation effects. In this case, these effects can be taken into account considering the following factor
e�
R

MS
lðx;yÞdl

MS
� e�

R
MD

lðx;yÞdl

MD
ð14Þ
where l(x,y) is the attenuation map of the studied medium. So far we have not included this factor because its presence
makes the inversion of the corresponding Radon transform impossible. Moreover the Compton effect is modeled by the dif-
ferential cross-section given by Klein and Nishina,
PðxÞ ¼ r2
e

2
1

1þ �ð1� cos xÞ2
1þ cos2 xþ �2ð1� cos xÞ2

1þ �ð1� cos xÞ

 !
with � ¼ E0

mc2 ;



(a)

(b)

Fig. 19. Distribution of the intersections for the CART (a) and for the ordinary RT (b).

Table 1
NMSE and NMAE of different reconstructions of the Shepp-Logan phantom (Fig. 9) and of the nuclear waste (Fig. 10).

NMAE (%) NMSE (%)

Shepp-logan RT-FBP Fig. 17 1.9 0.03
CART-FBP Fig. 15 1.85 0.027

Nuclear waste RT-FBP Fig. 18 2 0.07
CART-FBP Fig. 16 2.5 0.05
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where re stands for the classical radius of an electron. Using the expression
MS �MD ¼ ðp2 � r2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s�2

p
; ð15Þ
an exponential Circular-Arc Radon transform can be defined as:
C/neðu; sÞ ¼
px I0 P tan�1 1

s

� �� �
4p

Z p=2

�p=2
s2 e�

R
MS

lðx;yÞdl�
R

MD
lðx;yÞdl

p2 � rðcÞ2
rðcÞneðrðcÞ; c�uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2 cos2ðcÞ
p dc; ð16Þ



Fig. 20. Principle of the IPC algorithm for the CART.
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with px is the length of the detection area and I0 is the source activity. This expression cannot be inverted with the present
method. This is why we have to apply an attenuation correction algorithm. We choose the Iterative Pre Correction algorithm
(IPC) proposed by Maze [14] and of which the principle is presented by Fig. 20.

First we calculate the forward CART applied on a Shepp-Logan phantom of size 30 cm � 30 cm (128 � 128 pixels) with a
Monte-Carlo simulation of our CST (Fig. 21). For this simulation we consider a detection length of 1cm and a source activity
of 1 MBq. The magnitude of the electron density is 3.34 � 1023 e�/cm3 and of the attenuation map is 0.157 cm�1. The relative
errors obtained between this simulation and the forward CART calculated by Eq. (16) are
NMAE ¼ 4:6% and NMSE ¼ 0:56%;
which validates the feasibility of our approach as far as data generation is concerned. Then the reconstruction is performed
by the IPC-algorithm using the data in Fig. 22. Contours and small structures are well recovered and the relative errors ob-
tained between this reconstructed phantom and the original electron density are
NMAE ¼ 3:7% and NMSE ¼ 0:08%;
which proves the feasibility of our CST.



Fig. 21. Monte-Carlo simulation of the CART of the medical phantom shown in Fig. 9.

Fig. 22. Reconstruction of the medical phantom shown in Fig. 9 using CART-FBP with attenuation correction and data in Fig. 20.

G. Rigaud et al. / Simulation Modelling Practice and Theory 33 (2013) 28–44 43
6. Conclusion and perspectives

A fast algorithm based on the so-called ‘‘Filtered Back-Projection’’ is established in the case of a novel circular-arc Radon
transform. This algorithm solves the inversion issue in the case of a new Compton scattering tomography based on CART and
simulations prove the feasibility of this new modality. In this new imaging, matter is characterized by its electron density
(scattering sites), which has the advantage of being less sensitive to matter aging than its attenuation coefficient used in
X-ray tomography. Since this CST modality recovers the electron density of the studied medium whereas the conventional
modality recovers the attenuation map, it is hard to compare it. Due to the distribution of the intersections, the CART-FBP
gives a reconstruction with more artifacts than the RT-FBP. A sampling theory could be conceived to avoid a too bad distri-
bution of the intersections, and hence increase the quality of the reconstruction, but a linear sampling seems to be sufficient
to identify the small structures. It looks like the ordinary Radon transform leads to a good reconstruction quality because it
does not include Compton effect in image formation. The CAR transform solves the Compton scattering problem which re-
mains a major technical challenge until now (scattered photons cause blurs, loss of contrast of image and false detections).
Moreover the new CST proposes an alternative to the current tomographies keeping at least the same quality of image recon-
struction. Transmission Compton tomography can be combined with emission Compton tomography to form a new bimodal
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imaging process based on scattered radiation. Modeling and simulation of the last one may be the subject of future
investigations.
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