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Compton scattering tomography (CST) is an alternative imaging process which
reconstructs, in a two-dimensional slice, the electron density of an object by
collecting radiation emitted from an external source and scattered throughout this
object. The collected data at specific scattering energies appears essentially as the
integral of the electron density on definite families of arcs of circles.
Reconstruction of the unknown electron density is achieved by the inversion of
the corresponding circular-arcs Radon transforms (CART). We review two
existing CST modalities, their corresponding CART and establish their numerical
inversion algorithms in the formalism of the so-called circular harmonic
decomposition (CHD) for a function. The quality of the reconstructed images
is illustrated by numerical simulations on test phantoms. Comparison with
standard tomography performances demonstrates the efficiency and interest of
this inversion method via CHD in imaging science such as biomedical imaging
and non-destructive industrial testing.

Keywords: compton scattering tomography; inverse problems; numerical algo-
rithm; biomedical imaging; non-destructive testing

AMS Subject Classifications: 92C55 Biomedical imaging and signal processing;
44A12 Radon Transform; 65R10 Integral transforms; 65J22 Inverse problems

1. Introduction

Conventional tomography (X-ray scanner, Single Photon Emission Computed
Tomography, Positron Emission Tomography, etc.) is widely used in numerous fields
such as biomedical imaging, non-destructive industrial testing, environmental survey, etc.
In these tomographies, only primary radiation is used for imaging whereas Compton
scattered radiation is considered as noise reducing image quality. Therefore, the effects of
scattered radiation are routinely eliminated or at least compensated for [1].

However, one may turn the problem around and ask whether scattered radiation may
be used as an imaging agent. This point of view has been advocated since the middle of the
last century in medical imaging as well as in industrial control [2–5]. The idea has many
highly desirable features. In the field of diagnostic medical imaging, radiography using
scattered radiation could provide a direct and quantitative measurement of the density of
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the studied object. In non-destructive testing, three advantages can be pointed out. It
permits to place both the radiation source and the detector on the same side of the object.
It has also greater sensitivity to low-density materials such as gases. Finally, it allows direct
spatial definition with high contrast resolution.

In this work we shall focus on Compton scattering tomography (CST), an imaging
principle which makes use of integral measurements. There are at least two such CST
modalities: Norton’s [6] and ours proposed in 2010 [7] where the measurements are
modelled by Radon transforms on definite families of arcs of circles. Image reconstruction
amounts to inverting the corresponding circular-arc Radon transform (CART).

Since the seminal work of Radon [8], many extensions of this integral transform have
been widely discussed, in particular in the literature of imaging science. This is the case
when the results of measurements appear under the form of integrals of a physical quantity
over lower dimensional manifolds. The relevant problem to solve is the recovery of the
physical quantity of interest as a function in R

2.
In 1981, Cormack [9,10] studied Radon transforms on two remarkable families of

curves in the plane defined by

r� cos �ð� � ’Þð Þ ¼ p�, with � � ’
�� �� � �

2�
,

in the case of the �-curves (�> 0) and by

p� cos �ð� � ’Þð Þ ¼ r�, with � � ’
�� �� � �

2�
,

in the case of the �-curves (�> 0). Cormack was able to show several properties of the
circular harmonic components of the Radon transforms on these two classes of curves and
has established an inversion formula in terms of the circular harmonic components of the
unknown function.

Then he derived a consistency condition for the data which permits to regularize the
inverse formulas. From the regularized formulas, Chapman and Cary [11] discussed an
alternative inversion algorithm to the ‘Filtered Back-Projection’ (FBP) algorithm for the
standard Radon transform (RT) and showed that the fulfilment of the consistency
criterion of the data reduces the number of artefacts. This is not so in the well-known FBP
algorithm.

In 1994, Norton [6] proposed a Compton scattering tomographic device in which the
primary radiation point-source (S) is fixed and the point-like detector (D) moves along a
straight line passing through the point-source. Norton showed that integral data collected
on isogonal arcs of circle can be useful for image reconstruction if they are identified with
an RT on arcs of circle passing through a fixed point (S). We shall call it CART1. Norton
gave an inversion formula for the CART1 via the so-called FBP algorithm
(CART1�FBP).

On the other hand, the CART1 is precisely the RT defined on the �¼ 1-curves and
admits readily an analytic inverse as shown by Cormack [9]. In this article, we develop a
new numerical inversion procedure via circular harmonic decomposition for the CART1

(CART1�CHD) and compare it to Norton’s FBP algorithm (CART1�FBP).
Moreover, in 2010 we have proposed a new CST modality [7] in which the segment

source-detector (SD) rotates around its middle point and the integral data collected
on isogonal arcs of circle are adequately modelled by an RT on circular arcs of circle
which subtend a chord of fixed length and rotate around its middle point. This new RT
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(called circular-arc Random transform (CART2)) can be viewed as the RT on the (�¼ 1)-
curves after a change of functions. The CART2 requires to work in polar coordinates and
since the circular harmonic decomposition (CHD) is adapted to a polar approach,
the inversion procedure can be advantageously made in the circular harmonic domain.
This is why, we develop a new numerical inversion algorithm for CART2 in the CHD
framework (CART2�CHD).

In this article we review two modalities in CST: Norton’s device (CST1) and ours
(CST2), and the two corresponding circular-arcs RT: CART1 and CART2 for Norton’s
case and ours, respectively. The novelty in this work is the development of two numerical
inversions via CHD for two circular-arcs RTs (CART1 and CART2) for the first time.
Until now, the CHD approach has not been widely used for image reconstruction.
However, this approach offers many advantages, in particular in the case of Radon data
[9–11], for example consistency between the image reconstruction formula and the data,
stable algorithms, reduced artefacts, less complexity in algorithms and less computing
time.

This article is organized as follows. Section 2 reviews the working principle of Norton’s
CST modality and the associated CART1. Section 3 reviews our CST and the
corresponding CART2. In Section 4 the novel numerical inversion via CHD for CART1

is developed and compared to Norton’s FBP algorithm. In Section 5 the numerical
inversion for CART2 is worked out and image reconstruction in CST2 is compared with
those obtained in conventional tomography modelled by the classical RT and computed
by the FBP algorithm (RT�FBP). Section 6 deals with the attenuation correction and the
robustness to the Poisson noise in our two transforms. Finally, a conclusion and research
perspectives are presented in the last section.

2. Norton’s CST1 and RT defined on arcs of circles passing through a fixed

point (CART1)

2.1. Working principle and Norton’s inversion method

Norton [6] worked out a CST modality which is based on an RT on circles having a fixed
common point. The working principle is given by Figure 1. A point source S emits primary
radiation towards an object defined by its electron density function ne(r, �), of whichM is a
scattering site (running point).

A point detector D moves along an Ox-axis and collects, at given energy E, scattered
radiation from the object. The physics of Compton scattering demands that the registered
radiation flux density g at site D is due to the contribution of all scattering sites M lying on
an arc of circle from S to D subtending an angle (��!), where ! is the scattering angle
corresponding to the outgoing energy E, as given by the Compton formula:

E ¼
E0

1þ E0

mc2
ð1� cos!Þ

, ð1Þ

where E0 is the emitted photon energy and mc2 represents the energy of an electron at rest
(0.511MeV).

Norton gave the expression of the projections g as:

gð�, ’Þ ¼

Z ’þ�=2

’��=2

d�

Z 1
�1

dr 2�neðr, �Þwðr, �; �, ’Þ � � r� 2� cosð� � ’Þ½ �, ð2Þ

Inverse Problems in Science and Engineering 811
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where �(�) is the Dirac delta function concentrated on a circular-arc of equation r¼ 2�
cos(�� ’) and w(�) is defined by:

wðr, �; �, ’Þ ¼
arsð�ÞPð’þ �=2Þ

4�ð2�Þ4 sin2 �
:

In the above equation, a represents the area of an element of detection, s(�) expresses any
angular dependence of the gamma-ray source distribution and P(!) (where !¼�/2þ ’) is
the Klein–Nishina differential cross section,

Pð!Þ ¼
r2e
2

1

1þ �ð1� cos!Þ2
1þ cos2 !þ

�2ð1� cos!Þ2

1þ �ð1� cos!Þ

� �
with � ¼

E0

mc2
:

Mathematically, g is essentially the RT of the object electron density ne(M) on arcs of

circle (CART1), when radiation attenuation and photoelectric effects on radiation

propagation are neglected.
Norton gave an inverse formula

neðr, �Þ ¼
1

�2

Z 2�

0

d’

Z 1
0

d�
gð�, ’Þ

wðr, �; �, ’Þ
h r� 2� cosð� � ’Þ½ �,

where

hðxÞ ¼

Z 1
�1

e�i	x 	j jd	: ð3Þ

Following Norton, Equation (3) is the same convolution kernel employed in the FBP

algorithm used in X-ray transmission computed tomography (CT). The difference is that

the Back-Projection is performed along straight lines in transmission CT, whereas here this

is performed along the circles r¼ 2� cos(�� ’) (we call it CART1�FBP in Subsection 4.2).

Ω

S D

ρ

M
(r2,θ2)

2

Source

ω

ω

Detector

ϕθ2

θ1

M
(r1,θ1)

1

r1

r2

Object

Figure 1. Principle of Norton’s CST (CST1).
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The image reconstruction in the Norton’s case amounts to calculating this FBP

associated to the CART1. Nevertheless, we will study the CART1 in a new way via CHD

in Section 2.2 and propose an alternative numerical inversion method in Section 4.

2.2. Radon transform on arcs of circle through a fixed common point (CART1) and CHD

We start from Equation (2). Let:

C
1f ð�, ’Þ ¼ gð�, ’Þ

ð2�Þ4

Pð’þ �=2Þ

f ðr, �Þ ¼ neðr, �Þ
asð�Þr

4� sin2 �
p ¼ 2�:

8>>>>><
>>>>>:

ð4Þ

Substituting Equation (4) into (2), we obtain

C
1f ð p, ’Þ ¼

Z ’þ�=2

’��=2

d�

Z þ1
�1

drpf ðr, �Þ� r� p cosð� � ’Þ
� �

: ð5Þ

This equation gives the integral of a function f(r, �) on a class of circles having a fixed

common point (CART1) and defined by the delta function integral kernel in (r, �)-space.
This equation belongs to the �-curve (�¼ 1) family [9] and so is suitable for circular

harmonic decomposition. This is why, the inverse transform can be worked out using the

Fourier angular components of f and C1f :

f ðr, �Þ ¼
X
l2Z

fl ðrÞe
il�

with

fl ðrÞ ¼
1

2�

Z 2�

0

f ðr, �Þe�il�d�

8>>>><
>>>>:

and

C
1f ð p, ’Þ ¼

X
l2Z

C
1fl ð pÞe

il’

with

C
1fl ð pÞ ¼

1

2�

Z 2�

0

C
1f ð p, ’Þe�il’d’:

8>>>><
>>>>:

ð6Þ

In terms of Fourier angular components of f and C1f, Equation (5) becomes

C
1fl ð pÞ ¼ 2

Z p

0

fl ðrÞ
cos l cos�1 r

p

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p

� �2r dr: ð7Þ

Equation (7) is precisely the integral equation for fl in the case of a (�¼ 1)-curve of

Cormack [9,10]. Thanks to a consistency condition on the data, he could derive the

regularized inverse formula for this circular RT expressed in terms of circular harmonic

components:

fl ðrÞ ¼
1

�r

Z r

0

e�jl j cosh
�1
ðr=pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrpÞ
2
� 1

q C
1fl


 �0
ð pÞdp�

1

�r

Z þ1
r

Ujl j�1ðr=pÞ C
1fl


 �0
ð pÞdp, ð8Þ

where Ul�1(cos x)¼ sin lx/sin x is the Chebyshev polynomial of second kind. (C1fl)
0 is the

derivative of C1fl with respect to p. Finally, f(r, �) is reconstructed through its Fourier

expansion with the circular harmonic components fl(r). Thus the recovery of the electron

Inverse Problems in Science and Engineering 813
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density function ne(r, �) in Norton’s CST is achieved by a change of functions given in
Equation (4). In Section 4, we will establish a numerical algorithm to compute fl(r).

3. Novel CST modality (CST2) and RT on arcs of circle with a chord of fixed length and

rotating around its middle point (CART2)

3.1. Working principle

Consider a two-dimensional object represented by a non-negative continuous function
f(M) with bounded support in R

2. An emitting point source S is placed at a distance 2p
from a point detector D. We consider only the upper part of space. This is possible because
an angle collimator is placed at D. The segment SD rotates around its middle point O and
its angular position is given by ’.

Emitted photons are scattered at site M and some of them are detected by the
detector D at an energy E!. Therefore the detector can record scattered photons according
to scattered energy which is related to the scattering angle ! by the Compton formula.
Thus, for a fixed ’, to each energy E! corresponds a set of scattering sites on a circular
arc C(!, ’).

Figure 2 shows the scanning of the studied medium in this new CST modality at
different energies E! or at different scattering angles !. The set of scattering sites for given
! is an isogonal circular arc C(!, ’) passing through the pair (S, D).

The modelling of this novel modality in CST leads us to study the integral of a function
on a class of circular arcs (different from the one in CART1). This is the new RT defined
on circular arcs called CART2 [7].

3.2. CART2 and CHD

We consider a new class of circles of radius R, which have a common chord of length 2p
making an angle ð’� �

2Þ with the Ox-axis (Figure 3). A point of the circle with polar
coordinates (r, �) satisfies the following equation:

r2 þ 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � p2

p
cosð� � ’Þ � p2 ¼ 0: ð9Þ

Figure 2. Scanning of the studied object.
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A close inspection reveals that the circular arc SD of Figure 3 is the arc that subtends

a subscribed angle (��!). Thus putting 
¼ cot!, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � p2

p
¼ p
 and we can

rewrite Equation (9) as the following polar equation r(�):

r ¼ pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2 cos2 �

p
� 
 cos �Þ, ð10Þ

where �¼ �� ’ and with ð!, ’Þ 2�0, �2� � ½0, 2��, which defines the curve C(
, ’). The RT

C
2f(’, 
) of a function f(r, �) on a curve C(
, ’) is given by:

C
2f ð’, 
Þ ¼

Z
ðr,�Þ2Cð
, ’Þ

f ðr, �Þds, ð11Þ

where C2 is the CART2 established in (’, 
)-space and ds is the elementary length of

circular arc to be computed from the circular-arc Equation (10):

ds ¼ r d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2

1þ 
2 cos2 �

s
¼ dr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2
p


 sin �
: ð12Þ

Substituting (12) into (11), we obtain an explicit form of the integral of a function f(r, �)
on a curve C(
, ’) in terms of �:

C
2f ð’, 
Þ ¼

Z �
2

��2

f ðrð�Þ, � þ ’Þrð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2 cos2 �

p d�: ð13Þ

Thus Equation (13) describes the image formation process.
Rotational invariance around the coordinate origin suggests a Fourier series angular

expansion, this is why the inverse transform can be worked out using the Fourier angular

components of f and C2f:

f ðr, �Þ ¼
X
l2Z

fl ðrÞe
il�

with

fl ðrÞ ¼
1

2�

Z 2�

0

f ðr, �Þe�il�d�

8>>>><
>>>>:

and

C
2f ð’, 
Þ ¼

X
l2Z

C
2fl ð
Þe

il’

with

C
2fl ð
Þ ¼

1

2�

Z 2�

0

C
2f ð’, 
Þe�il’d’:

8>>>><
>>>>:

ð14Þ

Figure 3. Representation of the curve C(
, ’).
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Following [7], we give an integral equation linking C2fl(
) to fl(r), the circular
components of C2f(’, 
) and f(r, �). Since �¼ ��’ and accounting for the invariance of the
integrand under � !��, Equation (13) takes the form

C
2flð
Þ ¼ 2

Z �
2

0

rð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2 cos2ð�Þ

p fl ð�Þ cosðl�Þd�: ð15Þ

Because of the equation of the circular arc (Equation (10)), we can show that

d�
rð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 
2 cos2 �
p ¼

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 1

4
p
r �

r
p

� �2r :

Now using this relationship between the differential elements, we change back to the
r-variable equation (15) to obtain


 C2flð
Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2
p ¼ 2

Z p

pð
ffiffiffiffiffiffiffiffi
1þ
2
p

�
Þ

cos l cos�1 1
2


p
r �

r
p

� �� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4
2
p
r �

r
p

� �2r flðrÞdr: ð16Þ

This new form is adapted to Cormack’s inversion procedure [9], with the following
change of variables [7]:

q ¼
1



¼ tan!, and t�1 ¼

1

2

p

r
�

r

p

� �
:

Then we apply the Cormack’s procedure [9], see also [12], to invert Equation (16) and
obtain the inverse transform of the CART2 through the circular harmonic decomposition:

fl ðrÞ ¼ ð�Þ
2pð p2 þ r2Þ

�ð p2 � r2Þ2

Z 1
t

coshðl cosh�1ðqtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � t2

p d

dq

C
2fl ð

1
qÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2
p

 !
dq

" #
t¼ 2pr

p2�r2

: ð17Þ

Finally, f(r, �) is reconstructed through its Fourier expansion with the circular
harmonic components fl(r). We have given the forward and inverse transforms in the case
of this new CST modality. In Section 5, we will develop the numerical inversion procedure
for image reconstruction.

4. Numerical inversion via CHD for CART1

4.1. Computation of inverse CART1

We will now establish a numerical approach to compute the CART1 in Equation (8). First,
we make the change of variable r¼ p cosh(�) in the first integral and r¼ p cos(�) in the
second one. The transform (8) becomes

fl ðrÞ ¼
1

�

Z cosh�1 r
pmin

� �
0

e�jl j�

cosh2 �
C
1fl


 �0 r

cosh�

� �
d�

�
1

�

Z cos�1 r
pmax


 �
0

sinðjl j�Þ

cos2 �
C
1fl


 �0 r

cos�

� �
d�: ð18Þ

816 G. Rigaud et al.
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To simplify the algebra and notation, we consider that p and r have the same sampling

Dr. So we can define the discretized forms of fl(r) and gl( p)¼C
1fl( p) as

glk ¼ gl ðkDrÞ and flj ¼ fl ð jDrÞ,

where ( j, k)2 [1,K]2 with K ¼ Dr
pmax

. Moreover, we use linear interpolation to simplify the

algorithm and the calculation of the derivative of the data gl. So in the interval

kDr< p< (kþ 1)Dr, we can write

�glk ¼
gl ðkþ1Þ � glk

Dr
:

Finally, we obtain a discretized form of Equation (18) :

flj ¼ �
1

�

Xj�1
k¼1

�glk Jl ð�j ðkþ1ÞÞ � Jl ð�jkÞ

 �

þ
XK�1
k¼j

�glk Il ð�j ðkþ1ÞÞ � Il ð�jkÞ

 �" #

, ð19Þ

in terms of the primitive integrals :

Il ð�jkÞ ¼

Z �jk sinðjl jxÞ

cos2 x
dx and Jl ð�jkÞ ¼

Z �jk e�jl jx

cosh2 x
dx: ð20Þ

The variables �jk corresponds to the discrete radii p¼ kDr

�jk ¼

cosh�1
j

k

� �
for 1 � k � j

cos�1
j

k

� �
for j � k � K:

8>>><
>>>:

We evaluate the primitive integrals (20) using the recurrence relation:

8n4 2, InðxÞ ¼
2

n� 2
tan x sinððn� 2ÞxÞ � cosððn� 2ÞxÞð Þ �

n

n� 2
In�2ðxÞ,

with the initial conditions :

I1ðxÞ ¼
1

cos x
and I2ðxÞ ¼ �2 lnðcos xÞ:

In the same way, we make the change of variable u ¼ e�jk in the second primitive and

we let n¼ jlj � 1:

JnðuÞ ¼

Z
du

un u2 þ 1ð Þ
2
:

So we obtain the following recurrence relation:

8n4 1, Jnþ1ðuÞ ¼ �
1

nunðu2 þ 1Þ
�
nþ 2

n
Jn�1ðuÞ,

with the initial conditions:

J0ðuÞ ¼
u

2ðu2 þ 1Þ
þ
1

2
arctanðuÞ and J1ðuÞ ¼ �

1

2
lnðu2 þ 1Þ þ lnðuÞ þ

1

2ðu2 þ 1Þ
:
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We also have the special case l¼ 0. For this case, we evaluate the primitive integral
J0(�jk) as

J0ð�jkÞ ¼

Z �jk 1

cosh2 x
dx ¼

sinh�jk
cosh�jk

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

k

j

� �2
s

,

hence,

f0j ¼ �
1

�

Xj�1
k¼1

�g0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

kþ 1

j

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

k

j

� �2
s0

@
1
A:

So, we obtained all the flj, which is the discretized form of circular components fl(r).
Finally, we work out the summation fl(r) to obtain the original function f(r, �).

We have established an algorithm via CHD for the inverse CART1 (CART1�CHD).
This is an alternative to the CART1�FBP algorithm proposed by Norton for the CST1.

We therefore set up the following image reconstruction scheme and apply it to the
reconstruction of a point source (Figure 4).

4.2. Simulation results: image reconstructions by CART1�CHD and by CART1�FBP

In this section, we present the numerical simulation of the circular RT CART1 applied on
the Shepp–Logan medical phantom (Figure 5) and on a nuclear waste image (Figure 6).
The source is placed below on the left of the image and the detector moves along the
axis Sx. The scattering medium is discretized with 256� 256 of length units (pixels). We
consider the number of rotational positions N’ and the number of radii Np. These numbers
define the corresponding sampling steps d’ and dp by:

d’ ¼
2�

N’
and dp ¼

4 � 256

Np
:

We take N’¼Np¼ 4 � 256. As the system of the corresponding CST1 does not rotate
around the object, the (’, p)-space is very large in front of the studied image. So to
‘well-observe’ the object, we have to take a large maximum value of p (4 times the
image size).

To illustrate and compare the quality of the reconstructions, we define the normalized
mean square error (NMSE) and the normalized mean absolute error (NMAE ) (expressed
as a percentage):

NMSE ¼
100

N2

P
ði, j Þ2½1,N�2 I rði, j Þ � Ioði, j Þ

�� ��2
maxði, j Þ2½1,N�2fI oði, j Þg

2

and

NMAE ¼
100

N2

P
ði, j Þ2½1,N�2 I rði, j Þ � Ioði, j Þ

�� ��
maxði, j Þ2½1,N�2fI oði, j Þg

,

where I r is the reconstructed image and Io is the original image.
The image reconstructions by CART1�CHD are compared with the ones obtained by

Norton’s CART1�FBP.
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Figure 4. Inversion procedure of the CART1 and its illustration for the reconstruction of a point
object.
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Figure 5. Original of the Shepp–Logan phantom of size 128� 128.
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To erase the artefacts generated around the object by the circular harmonic
decomposition approach, we can use information given by the contours of the projections.
If projections are equal to zero, then the corresponding circular-arc does not cross the
object. Therefore assuming that the object of interest is bounded in a closed space, a null
set in the projection space corresponds to a null set in the original space.

Figures 7 and 8 show the forward CART1 of the Shepp-Logan phantom and of the
nuclear waste. The CART1�CHD approach gives a very interesting image quality in the
reconstruction of the Shepp–Logan phantom (Figure 9) and of the nuclear waste
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Figure 7. CART1 of the Shepp–Logan phantom shown in Figure 5.
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Figure 6. Original of the nuclear waste.
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(Figure 10). Indeed, contours and small structures are better recovered than with the
Norton’s inverse formula (Figures 11 and 12). Nevertheless, the form of the artefacts is
different in two cases: a circular form for the CART1�CHD and a quasi-homogeneous
form for the CART1�FBP. Moreover p2R

þ, but we have to fix a maximum value pmax

for numerical computation, such that a sharp cut-off of p and the loss of data generate
significant artefacts whereas the ramp filter in CART1�FBP is apodized. To reduce the
artefacts in our case, we have to increase pmax and therefore increase the length of the
detector in the related CST1.
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Figure 9. Reconstruction of the Shepp–Logan phantom shown in Figure 5 using CART1�CHD
and data in Figure 7 with NMAE¼ 0.83% and NMSE¼ 0.16%.

ϕ(in degree)

ρ
(i

n
pi

xe
l)

−150−120 −90 −60 −30 0 30 60 90 120 150

100

200

300

400

500

600

700

800

900

1000 0

1

2

3

µ10−4

Figure 8. CART1 of the the nuclear waste shown in Figure 6.
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The numerical error measurements obtained using the CART1�CHD are smaller as
compared to those of theNorton’s inverse formula and prove the efficiency of this algorithm.

The main aim of this work is to establish a new imaging principle by Compton
scattered radiation. This is why other factors in realistic imaging systems are not treated
here, such as medium attenuation and Poisson emission noise.
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Figure 10. Reconstruction of the nuclear waste shown in Figure 6 using CART1�CHD and data in
Figure 8 with NMAE¼ 2.09% and NMSE¼ 0.28%.
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Figure 11. Reconstruction of the Shepp–Logan phantom shown in Figure 5 using CART1�FBP
and data in Figure 7 with NMAE¼ 3.6% and NMSE¼ 0.5%.
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5. Numerical inversion via CHD for CART2

5.1. Regularization procedure and reconstruction scheme

In principle, one can use Equation (17) to perform numerical computations. However,

assuming that the original function is bounded, a close inspection of the integral kernel of

Equation (17) shows that it behaves as

lim
q!þ1

coshðl cosh�1ðqtÞÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
q
tÞ
2
� 1

q � lim
u!þ1

2 eðjl j�2Þu, ð21Þ

where u ¼ cosh�1ðqtÞ. Equation (21) presents an apparent divergence when jlj> 2, since for

q!1 the integrand grows very rapidly. This explains that when jlj> 2, this apparent

divergence makes the q-integral unstable, and as such the presence of noise in the data C2

fl(1/q) for large q is badly propagated into the calculation of fl(r) which prevents simulation

studies. It then becomes obvious that Equation (17) needs to be regularized.
Even if the circular arc doesn’t belong to the �-curves family (defined by Cormack [9]),

we will see that there is a frequential link between them. Indeed, by introducing:

Fl t ¼
2pr

p2 � r2

� �
¼
ð p2 � r2Þ2

2pð p2 þ r2Þ
� fl ðrÞ and Gl ðqÞ ¼

C
2fl ð

1
qÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2
p , ð22Þ

we obtain:

Fl ðtÞ ¼ ð�Þ
1

�

Z 1
t

dq
coshðl cosh�1ðq=tÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � t2
p dGl ðqÞ

dq

�����
t¼ 2pr

p2�r2

: ð23Þ

Equation (23) is precisely the straight-line RT inversion formula in (q, t)-space given by

Cormack’s regularization procedure. Thus with two changes of functions (Equation (22)),

we pass from the original space of the CART2 definition to a new space in which the
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Figure 12. Reconstruction of the nuclear waste shown in Figure 6 using CART1�FBP and data in
Figure 8 with NMAE¼ 10.4% and NMSE¼ 1.6%.
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CART2 becomes the ordinary RT. Cormack proposed a regularization procedure based
on consistency conditions of the circular harmonic components of the dataZ 1

0

dq
dGl ðqÞ

dq
q�l ¼ 0 for �l ¼ ðl� 1Þ, ðl� 3Þ, . . . ,4 0:

Thanks to these conditions and the identity of the Chebyshev polynomial linking the
polynomial of first kind (Tl(�)) to the second kind Chebyshev polynomial (Ul(�))

Tl ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p ¼

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p� �l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1
p þUl�1ðxÞ,

the following regularized inverse formula for the CART2 can be derived

Fl ðtÞ ¼
1

�t

Z t

0

dqG0lðqÞUjl j�1
q

t

� �
�

1

�t

Z 1
t

dqG0lðqÞ

ðq=tÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq=tÞ2 � 1

q� �jl j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq=tÞ2 � 1

q : ð24Þ

where t ¼ 2pr
p2�r2

and Ul�1(cos x)¼ sin lx/sin x. This formula will be used in our simulations.
We therefore set up the following reconstruction scheme and apply it to the

reconstruction of a point source (Figure 13).

5.2. Computation of the inverse CART2

Then we follow the Chapman and Cary computational approach [11] in the space where
the CART becomes the standard RT. In this algorithm we will consider that (q, t)2 ]0;Q]2

with the same sampling Dt and where Q¼ tan(max{!}). Now let q¼ t cos� (respectively,
q¼ t cosh�) in the first (respectively, the second) integral of Equation (24). Thus

Fl ðtÞ ¼
1

�

Z �
2

0

d�G0lðt cos�Þ sinðl�Þ �
1

�

Z cosh�1ðQ=tÞ

0

d�G0lðt cosh�Þe
�l�: ð25Þ

Now we can define the discretized forms of Fl(t) and Gl(q) as

Glk ¼ Gl ðkDtÞ and Flj ¼ Fl ð jDtÞ,

where ( j, k)2 [0,K]2 with K ¼ Q
Dt. The derivative G

0
lðqÞ can be approximated by coefficients

alk where

alk ¼
Gl ðkþ1Þ � Glk

Dt
:

Equation (25) becomes

Flj ¼
1

�

Xj�1
k¼0

alk Il ð�j ðkþ 1ÞÞ � Il ð�jkÞð Þ þ
XK�1
k¼j

alk Jl ð�j ðkþ 1ÞÞ � Jl ð�jkÞð Þ

" #
,

in terms of the primitive

Il ð�jkÞ ¼

Z �jk

sinðjl jxÞdx ¼ �
cosðjl j�jkÞ

jl j
for l 6¼ 0

and

Jl ð�jkÞ ¼

Z �jk

e�jl jxdx ¼
�e�jl j�jk=jl j if l 6¼ 0

�jk if l ¼ 0,

�
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where

�jk ¼

cos�1
k

j

� �
for 0 � k � j

cosh�1
k

j

� �
for j � k � K:

8>>><
>>>:

Figure 13. Inversion procedure of the CART2 and its illustration for the reconstruction of a point
object.
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Finally, the discretized form of the reconstruction equation appears as

Flj ¼
1

jl j�

Xj�1
k¼0

alk cos jl j�j ðkþ1Þ � cos jl j�jk

 �

þ
XK�1
k¼j

alk e�jl j�j ðkþ1Þ � e�jl j�jk

 �" #

: ð26Þ

And for l¼ 0 a separate expression exists

F0j ¼ �
1

�

XK�1
k¼j

a0k �j ðkþ1Þ � �jk

 �

:

So having obtained all the Flj, which are the discretized circular components of the
associated RT, we recover the theoretical circular components of our circular-arc problem
fl(r) using formula (22) given by

flðrÞ ¼
2pð p2 þ r2Þ

ð p2 � r2Þ2
Fl

2pr

p2 � r2

� �
:

The final step consists in working out the summation in discrete form:

f ðr, �Þ ¼
X
l

flðrÞe
il�:

We have established an alternative algorithm of image reconstruction based on circular
harmonic decomposition for the inverse CART2. This is the image reconstruction method
for the new CST modality (CST2).

5.3. Simulation results: image reconstructions by CART2�CHD and RT�FBP

In this section, we present the numerical simulations of the CART (CART2�CHD) and
compare them with the reconstruction in conventional tomography modelled by the
ordinary RT and calculated by the FBP algorithm (RT�FBP). Let us recall the classical
RT which is defined as integral of an object function on straight lines. The forward RT is:

gðu,’Þ ¼

Z
R

2
dxdyf ðx, yÞ� u� x cos ’� y sin’ð Þ,

and its inverse transform is

f ðx, yÞ ¼

Z �

0

d’

Z þ1
�1

du

Z þ1
�1

d j j � e�2i�ðu�x cos’�y sin ’Þgðu, ’Þ: ð27Þ

Equation (27) is called the FBP method. In this case, FBP is an exact inversion formula
obtained by combining the action of the ramp filter (jj) and the backprojection operation
of the RT. This is the most popular inversion method for the ordinary RT owing to its
rapid algorithmic implementation.

As an illustration of the feasibility of our new algorithm, we present numerical
simulations applied on the medical phantom (Figure 14) and on a cracked concrete image
(Figure 15). The scattering medium is discretized with N�N of length units (pixels).
N¼ 512 in the case of the phantom and 256 in the other case. We consider the number of
rotational positions N’ and the number of energy levels N!. These numbers define the
corresponding angular sampling steps d’ and d! as

d’ ¼
2 �

N’
and d! ¼

�

2N!
:
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In order to have a ‘well-conditioned’ problem, the number of projections (N’�N!)
must be larger than or equal to the number of image pixels (N2). This is why we take
N’¼N!¼N. Moreover, let p¼N and min{!}¼ d!.

Figures 16 and 17 show the forward Radon transform and CART2 of the Shepp-
Logan phantom; Figures 18 and 19 (respectively) show this with respect to the cracked
concrete. The CART2�CHD approach gives in general a reasonable image quality in the
reconstruction of the medical phantom (Figure 20) and of the cracked concrete
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Figure 15. Original of the cracked concrete.
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Figure 14. Original of a medical phantom.
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(Figure 21). Indeed, contours and small structures are well recovered. The numerical error
measurements obtained using the CART2�CHD are very close to those of the ordinary
RT (Figure 22) and are even better in the case of the medical phantom (Figure 23).
Nevertheless in the case of the cracked concrete (Figure 21), artefacts are observed in the
corners of the medium. This is due to the fact that the studied object occupies the whole
medium, the boundary parts are not well scanned and so there is less information
concerning these parts. Moreover, the CART2 works with radial parameters, an object of

ϕ (in degree)

ω
(i

n
de

gr
ee

)

60 120 180 240 300 360

0

10

20

30

40

50

60

70 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x10−7

Figure 17. CART2 of the medical phantom shown in Figure 14.
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Figure 16. RT of the medical phantom shown in Figure 14.
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circular geometry is better suited for this approach. This is the case of the medical
phantom.

In spite of this, the interest of our algorithm in the field of medical imaging and of non-
destructive testing is incontestable. In order to exhibit the essence of the new CST modality
which consists in the use of the scattered radiation as an imaging agent, other factors (such
as medium attenuation and Poisson noise) are not taken into account until now. But the
influence of these factors will be studied below.
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Figure 18. RT of the cracked concrete shown in Figure 15.

ϕ (in degree)

ω
(i

n
de

gr
ee

)

60 120 180 240 300 360

0

10

20

30

40

50

60

70 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x10−5

Figure 19. CART2 of the cracked concrete shown in Figure 15.
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6. Taking into account the physical phenomena in both CARTs

Under realistic working conditions, radiation is affected by medium attenuation and by

dispersion due to photometric propagation effects. Moreover, photon emission process

follows Poisson’s law which generates a hindering noise for data. In this section we study the

effects of these phenomena for both CARTs and we now define the following notations,

. dl is the elementary distance on the segment SM (or MD),
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Figure 21. Reconstruction of the cracked concrete shown in Figure 15 using CART2�CHD and
data in Figure 19 with NMAE¼ 2.83% and NMSE¼ 0.3%.
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Figure 20. Reconstruction of the medical phantom shown in Figure 14 using CART2�CHD and
data in Figure 17 with NMAE¼ 0.49% and NMSE¼ 0.01%.
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. SM stands for the Euclidean distance of the segment SM,

. �0 (resp. �!) is the linear attenuation map at the energy of the primary radiation
(resp. at the energy of the scattered radiation see Equation (1),

. S, M and D are the emitting, scattering and detection points.
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Figure 23. Reconstruction of the medical phantom shown in Figure 14 using RT�FBP and data in
Figure 16 with NMAE¼ 0.59% and NMSE¼ 0.01%.
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Figure 22. Reconstruction of the cracked concrete shown in Figure 15 using RT�FBP and data in
Figure 18 with NMAE¼ 2.56% and NMSE¼ 0.2%.
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6.1. Influence of the attenuation in CART1: C1/
The photometric propagation effects and the Klein–Nishina differential cross section were

already taken into account in the Norton’s model, thus we have just to add the attenuation

factor, Watt. In this case C1 takes the following form C1�

C
1
�f ð�, ’Þ ¼

Z �

0

d�

Z 1
0

dr neðr, �Þ
arsð�ÞPð!Þ

4�ð2�Þ3 sin2 �
�Wattðr, �; �, ’Þ� r� 2� cosð� � ’Þ½ �, ð28Þ

where ne(r, �) is the electron density and

Wattðr, �; �, ’Þ ¼ exp �

Z
ðx,yÞ2SM

�0ðx, yÞdl

� �
� exp �

Z
ðx,yÞ2MD

�!ðx, yÞdl

� �
: ð29Þ

The term Watt cannot be separated in a product w1(r, �) � w2(�, ’) and so C1� cannot be

inverted using the same approach. This is why, we have to propose an attenuation

correction algorithm in order to compensate for the attenuation factor.

6.2. Influence of the physical effects in CART2: C2/
Taking into account the attenuation and the dispersion of radiation

e
�
R
SM
�0ðx, yÞdl

SM
2

e
�
R
MD

�!ðx, yÞdl

MD
2

with SM
2
MD

2
¼ ð p2 � r2Þ2ð1þ 
�2Þ,

and the Klein–Nishina probability P(!), the CART2 (C
2) takes the following form C2�:

C
2
�neð’, 
Þ ¼

P tan�1 1




 �
 �
ð1þ 
�2Þ

Z �
2

��2

W0attð’, 
, �Þ
rð�Þneðrð�Þ, � þ ’Þ

ð p2 � rð�Þ2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2 cos2 �

p d�, ð30Þ

where

W0attð’, 
, �Þ ¼ exp �

Z
ðx,yÞ2SM

�0ðx, yÞdl

� �
� exp �

Z
ðx,yÞ2MD

�!ðx, yÞdl

� �
:

The inversion of Equation (30) is not known at present, therefore an attenuation

correction has to be applied.

6.3. Correction of the attenuation factor: iterative pre correction algorithm

Attenuation is a very important issue especially for CST. Numerous methods exist to

correct this factor. Among these methods the Iterative Pre Correction algorithm (IPC) [13]

proposes to correct the data before reconstruction as follows.
To simplify notation, we put t¼ (�, ’) (resp. t¼ (’, 
)) for the CART1 (resp. CART2)

and we call T the corresponding measurement space. Then we write the operator of the

corrected physical CART as

~C�: neðr, �Þ �!
C�neðtÞ

AðtÞ
,
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with A(t) the correction function and C� is either C1� or C2�. Therefore the IPC algorithm

is expressed by the following recurrence relation on (ne)n, which is the nth-order correction

of ne

ðneÞnþ1 ¼ ðneÞn þ C
�1 ~C� ne � ðneÞn


 �
with ðneÞ0 ¼ 0:

Of course, we do not know ne but C�ne. Considering that the number of circulars arcs

for both CART is limited and indexed by the integer pair (k, l), then the correction

function corresponds to the following correction matrix:

Akl ¼
1

Ni

XNi

i¼1

exp
SklMkl

i

Nj

XNj

j¼1

�0ðx
kl
ij , y

kl
ij Þ �

Mkl
i D

kl

Nj

XNj

j¼1

�!ðx
kl
ij , y

kl
ij Þ

 !
,

with Ni the number of calculated points, Mkl
i for each circular arc C(k, l), Nj the number of

calculated points for each segments (SklMkl
i and Mkl

i D
kl) and ðxklij , y

kl
ij Þ the cartesian

coordinates of the corresponding segments.
In order to illustrate the attenuation correction, we have chosen the attenuation of the

water (0.157 cm�1) and the shape of the attenuating medium as presented in Figure 24, the

original electron density (3.34� 1023 cm�3) and its shape in Figure 25. Figures 26 and 27

show the electron density reconstructed by CART1�CHD and CART2�CHD but

without attenuation correction. We notice that the degradation of the magnitude due to

the attenuation factor is more important in the CART1 case than in the CART2 case

(4� 1019 against 2.5� 1019). But the shape of the degradation is more homogenous in the

CART1 case than in the CART2 case. Figures 28 and 29 show the same reconstructed

electron densities with the attenuation correction by the IPC algorithm after 20 steps for

CART1 and 10 steps for CART2. The magnitude (around 5� 1020) is well-recovered and

quality of the reconstructed images proves the efficiency of the correction.
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Figure 24. Attenuation map of the medium with a size (30 cm� 30 cm harr; 256� 256 pixels).
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6.4. Poisson noise robustness

Since photon emission process follows Poisson’s law, this phenomenon is one of the main

cause of degradation of the quality of image reconstruction in CST (Here we study the

robustness of our algorithms by taking into account this phenomenom, but we do not look

for a way to denoise it). Thus, the projections become in both cases ~gðtÞ 	 P Cf ðtÞð Þ where

P stands for the Poisson’s law. In order to evaluate the robustness of our algorithms,
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Figure 26. Reconstruction of the electron density Figure 25 without correction using
CART1�CHD.
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Figure 25. Original electron density on an attenuating medium represented in Figure 24.
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we use the following signal-to-noise ratio (SNR):

SNR ¼ 10 log

Z
t2T

Cf ðtÞ2dt

� �
� 10 log

Z
t2T

j ~gðtÞ � Cf ðtÞj2dt

� �
:
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Figure 28. Reconstruction of the electron density Figure 25 using CART1�CHD and IPC
algorithm.
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Figure 27. Reconstruction of the electron density Figure 25 without correction using
CART2�CHD.
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We carried out the reconstruction of the Shepp–Logan phantom by CART1 and CART2

at two different SNR. When SNR¼ 10 dB, the phantom is not well recovered (Figures 30
and 31). With SNR¼ 25 dB the phantom and its small structures are well observed (Figures
32 and 33). Hence, it is interesting to apply a denoisingmethod (like curvelets [14]) before the
reconstruction.
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Figure 30. Reconstruction of the Shepp–Logan phantom using CART1�CHD with SNR¼ 10 dB.
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Figure 29. Reconstruction of the electron density Figure 25 using CART2�CHD and IPC
algorithm.
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7. Conclusion and perspectives

We have established two algorithms for the numerical inversion of two CARTs defined on

two remarkable classes of circles in the plane. These two CART arise from the modelling

of two CST modalities. Based on the circular harmonic decomposition, the advantage of

these algorithms is to produce a reconstructed image which is consistent with the data

(forward transforms) as opposed to analytical conventional methods such as the ‘FBP’
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Figure 32. Reconstruction of the Shepp–Logan phantom using CART1�CHD with SNR¼ 25 dB.
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Figure 31. Reconstruction of the Shepp–Logan phantom using CART2�CHD with SNR¼ 10 dB.
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algorithm, without further computational complexity. Moreover, the use of iterative
algorithms like IPC in order to correct the attenuation factor gives good results for both
transforms and the result of robustness to the Poisson noise is presented (a good
reconstruction without denoising is observed for a SNR equal to 25 dB).

The simulation results show the feasibility of the CST which is suited for biomedical
imaging or non-destructive testing and could represent an alternative to X-ray tomog-
raphy. Norton’s CST seems to be suited for scanning large objects and for nondestructive
testing where both the radiation source and the detector are placed on the same side of the
object and without rotation, whereas ours gives more details on small structures and
boundaries.

In CST, matter is characterized by its electron density (scattering sites) which is an
alternative to its attenuation map provided by X-ray radiology. Moreover, in this imaging
the problems caused by Compton effect (such as blurs, loss of contrast of image, false
detections whose resolution remains a major technical challenge until now in conventional
tomography) is nicely solved by the CARTs.

The CST and CART open the way to some future promising works : extension of bi-
dimensional CST to three-dimensional transmission Compton scattering imaging for
example, or combining the transmission and emission Compton imaging to form a new
bimodal imaging based on scattered radiation.
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