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Simple reflection imaging of landscape (scenery or extended objects) poses the inverse problem of reconstructing the landscape
reflectivity function from its integrals on some particular family of spheres. Such data acquisition is encoded in the framework
of a Radon transform on this family of spheres. In spite of the existence of an exact inversion formula, the numerical landscape
reflectivity function reconstitution is best obtained with an approximate but judiciously chosen reconstruction kernel. We describe
the working of this reflection imaging modality and its theoretical handling, introduce an efficient and stable image reconstruction
algorithm, and present simulation results to prove the validity of this choice as well as to demonstrate the feasibility of this imaging
process.

1. Introduction

Imaging science is a rapidly developing field in all areas of
human activity ranging from medical diagnostics to indus-
trial nondestructive evaluation. In the last several decades,
it has expanded vigorously in environmental/navigational
surveillance, national security monitoring, weather forecast,
hazard assessment, and so forth. It plays an essential role in
remote sensing by providing information about objects or
areas from a distance, typically from aircraft or satellites. By
collecting data across a wide range of the electromagnetic
spectrumat small spectral resolution (5–15 nm) and high spa-
tial resolution (1–5m), it allows detailed spectral signatures to
be identified for different imaged materials.

So the aim is to obtain rapidly accurate images of large
areas (or landscapes/sceneries) of the earth surface. Two
main technologies have been conceived to this end: aerial or
satellite photography (including television imaging) [1] and
radar imaging, in particular the so-called Synthetic Aperture
Radar Imaging (SAR) [2], which has the advantage of being
weather independent.

The aim of this paper is not to focus on neither aerial
photography nor SAR imaging and discuss their specific
functioning problems. Its object is to single out an imaging
concept based on the phenomena of wave reflection on more
or less opaque objects and the registering of reflected wave
energy by a single detector. It turns out that the appropriate
mathematical description for this imaging modality is an
integral transform, which is a generalization of the Radon
transform, popular in medicine and industrial control. The
crucial point is to show that imaging with this principle is
viable and exploitable in practice.

The paper is organized as follows. Section 2 is devoted to
defining active reflection imaging. It discusses the way infor-
mation is recorded and used to produce images. Section 3
reviews the main mathematical tool which supports this
active reflection imaging: the Radon transform on spheres
centered on a plane. The next point is the derivation of an
approximate reconstruction formula for the reflectivity func-
tion in Section 4. Numerical simulations and comparison
comments on the results obtained by the exact and approx-
imate reconstruction formulas are given in Section 5. A
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Figure 1: Flat landscape-scenery imaging.

conclusion closes the papers with perspectives on possible
future research directions.

2. Reflection Imaging

Reflection imaging is the simplest way to acquire an image
of an extended object or a landscape of macroscopic dimen-
sions. Viewing an object under the illumination of a light is
the simplest example of reflection imaging. More generally
if a signal (or wave pulse) is sent through space and gets
reflected by an opaque surface before being recorded by an
apparatus, information on the presence of this surface may
be obtained provided that the signal propagation properties
are known.A scanning of the object by a large number of such
signals and their detectionmay allow us to obtain some image
of this object. This is the principle of reflection imaging.

One important mode of reflection imaging known to
everyone is human vision. Natural light reflected on the
surface of objects passes through the eye aperture and gets
projected on the retina.Thisway of producing an image is also
used in photographic and television cameras. However there
are limitations to this modality of reflection imaging when
large objects or sceneries are to be imaged due toweather con-
ditions (precipitation, fog, and clouds), variations of radiation
intensity, and distance related blurring [3]. Therefore it may
be useful to seek an alternative reflection imaging principle.
In this paper, we discuss a simple way of acquiring reflection
data to obtain the image of an object.

Concretely, we will be concerned here in particular by
large objects such as a landscape. We will consider first the
case of flat scenery or landscape before going to the case of a
hilly or structural landscape when no aperture (with retina or
photographic film) is used.The first case is meant to facilitate
the understanding of the mechanism of reflection imaging
but is not a topic of main interest in itself.

2.1. Flat Scenery or Flat Landscape. Let us consider a source 𝑆
emitting isotropically and uniformly bursts of signals (wave-
packets).This source is at firstmotionless and ismaintained at
a constant height ℎ; see Figure 1. Below is a planar landscape

represented by a reflectivity function 𝑓(𝑥, 𝑦), which gives the
percentage of signal energy sent back by reflection at point
(𝑥, 𝑦) of the plane. Let us assume that signals travel at a
constant velocity 𝑐 along all rectilinear trajectories in air and
that 𝑆 can simultaneously register returning signal energies,
and this is advocated, for example, in [4], and also called
monostatic mode in radar technology. An emitted burst of
signals emerges from 𝑆 at time 𝑡 = 0 and will expand
spherically around 𝑆 at a distance 𝑐𝜏 from 𝑆 at time 𝑡 = 𝜏. It is
clear that at time 𝑡 = ℎ/𝑐, the signal burst hits the floor plane
at site 𝐻 and the reflected signal will be detected along the
same propagation path at 𝑆 at time 2ℎ/𝑐. At time 𝑡 > ℎ/𝑐, the
return signal at 𝑆 is made of all the reflected energies at points
𝑀 situated on a circleC(𝑡) centered at𝐻 of radius√(𝑐𝑡)

2
+ ℎ2.

If 𝐼0 is the emitted energy flux density at 𝑆, then the received
reflected signal from the two-dimensional landscape is the
integral of 𝐼0𝑓(𝑥, 𝑦) on the circleC(𝑡). To keep the discussion
simple, we have neglected signal spreading and attenuation
along the propagation direction. So such circle integral of the
reflectivity function is for the moment only a function of one
variable 𝑡. Collecting all such integrals will not be sufficient
to find 𝑓(𝑥, 𝑦), because it is a function of two variables (𝑥, 𝑦).
To overcome this problem of insufficient data, we can move
the point source along a given trajectory (or curve) whichwill
introduce a second variable: the curvilinear abscissa 𝜉 of 𝑆 on
its trajectory. Onemay take the simplest trajectory possible: a
straight line parallel to the landscape plane at height ℎ. In this
situation and with all the stated assumptions, the reflected
signal flux density is given by the integral of 𝑓(𝑥, 𝑦) on the
circle C(𝜉,𝑡), whose center is at abscissa 𝜉 on the orthogonal
projection of the line trajectory of 𝑆 on the plane and radius 𝑐𝑡

R𝐶𝑓 (𝜉, 𝑡) = 𝐼0 ∫
(𝑥,𝑦)∈C(𝜉,𝑡)

𝑑𝑠 𝑓 (𝑥, 𝑦) . (1)

Here 𝑑𝑠 is the integration measure of C(𝜉,𝑡). The totality
of R𝐶𝑓(𝜉, 𝑡) for the unknown 𝑓(𝑥, 𝑦) is what is called the
Radon transform of 𝑓(𝑥, 𝑦) on the family of circles centered
on a straight line parallel to the landscape plane.This integral
functional transform has been studied by many authors who
have worked out the inverse transform; see, for example, [5].
In the inversion of this Radon transform on circles centered
on a line, only𝑦-even part of𝑓(𝑥, 𝑦) can be reconstructed and
a special scanning mode is required to obtain the full 𝑓(𝑥, 𝑦).

We now extend these considerations to a hilly landscape
in three dimensions.

2.2. Hilly Landscape. A hilly landscape cast in three dimen-
sions consists of a smooth surface inR3, onwhich there exists
a reflectivity function 𝑓𝑠(𝑢, V), where (𝑢, V) are curvilinear
coordinates of a point on this surface (Figure 2). We have
assumed a very simple reflection mechanism in the sense
that the reflected ray is always in the same direction as the
incident ray so that detailed structure at the reflecting point
is averaged out and represented by an effective reflectivity
function 𝑓(𝑥, 𝑦, 𝑧) defined throughout space and possibly
experiencing jump discontinuities at the separating surface
with air. Following the arguments of the previous subsection,
we see that the reflected signal at 𝑆 after a time 𝑡 following
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Figure 2: Hilly landscape-scenery imaging.

the emission of the signal burst by 𝑆 is the integral of 𝑓(𝑥,

𝑦, 𝑧) on the sphere S(𝑡) of center 𝑆 and radius 𝑐𝑡. In fact the
integral is practically nonzero only on one side of the
intersection of the surface landscape and the sphere S(𝑡).
Since 𝑓(𝑥, 𝑦, 𝑧) has three variables, to generate the required
data for reconstructing 𝑓(𝑥, 𝑦, 𝑧), one let 𝑆 move on a two-
dimensional surface, which will be taken generally as a plane
for convenience. The case of spheres centered on a sphere
is discussed in [6]. In this context, the reflection data is the
integral of 𝑓(𝑥, 𝑦, 𝑧) on the sphere S(𝜉,𝜂,𝑡), where (𝜉, 𝜂) are
the Cartesian coordinates of 𝑆 on a plane above the landscape
to be imaged. This will naturally introduce the concept of a
Radon transform of𝑓(𝑥, 𝑦, 𝑧) on spheres centered on a plane.
Such Radon transforms have been studied by many authors
who have already derived an inversion formula:

R𝑆𝑓 (𝜉, 𝜂, 𝑡) = 𝐼0 ∫
(𝑥,𝑦,𝑧)∈S(𝜉,𝜂,𝑡)

𝑑𝑎𝑓 (𝑥, 𝑦, 𝑧) , (2)

where 𝑑𝑎 is the integration measure on the sphere S(𝜉,𝜂,𝑡). A
theoretical justification of these considerations may be found
in [7] and an example of experimental realization in [8].

Here ℎ is the height of 𝑆, which is so chosen so as to have
the landscape above the 𝑥𝑂𝑦 plane.Therefore, we assume the
function of reflectivity to be supported in the space 𝑧 ∈ (0, ℎ).
Later on to extend the integration range on 𝑧 ∈ R, we will use
𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦 − 𝑧).

2.3. Applications. This simplifiedmodel of reflection imaging
may be used in principle in many areas. One of the obvious
areas is the domain of earth surveillance for environmental
and meteorological purposes. In this respect it has the
ingredients of Synthetic Aperture Radar (SAR) if it uses
bursts of microwaves [9]. However SAR can be achieved
without collecting surface integral data and some of the
problems of SAR are not addressed in this approach of Radon
transform on spheres. Yet it may be used in any weakly

reflecting medium in which strongly reflecting objects are
placed assuming that signals can travel without distortion at a
constant velocity [4]. Of course this type of imaging can also
serve as first approximation to a more involved one.

The problem addressed here consists of constructing an
efficient computational algorithm based on exact inverse
formulas of the Radon transform on some classes of spheres
to obtain an image of reasonable quality.The idea put forward
here is the use of Approximate Inverses (or mollifiers) to
achieve this goal.

3. The Spherical Radon Transform R𝑆 over
Spheres Centered on a Plane

We now present the mathematical foundations for inverting
the spherical Radon transform studied here.These results are
then used in Section 4 in order to develop a reconstruction
algorithm. The constant factor 𝐼0 in (2) will be discarded to
simply the writing. The following notations and rules will be
used.

Coordinates. Are as follows:
(i) Initial or object space is R3 Euclidean space with

Cartesian coordinates (𝑥, 𝑦, 𝑧).
(ii) Image or Radon space is R3 Euclidean space with

Cartesian coordinates (𝜉, 𝜂, 𝜌).
(iii) Fourier space, dual to initial of object space, is R3

Euclidean space with Cartesian coordinates (𝑝, 𝑞, 𝑘).

Transforms. We are concerned here by integrable functions of
three variables defined on various spaces of three dimensions.
They are subjected to integral transforms, which may act
at each step either on one, two, or three variables. An
appropriate notation is introduced to clarify these actions
when they are compounded.

(i) 𝑛-dimensional Fourier transform F(𝑗), 𝑛 = {1, 2, 3},
where 𝑗 is a 𝑛-tuple in {𝑥, 𝑦, 𝑧}. Hankel transform,
H(𝑗)] , of order ] and dimension 𝑛 = {1, 2, 3} with 𝑗

a 𝑛-tuple in {𝑥, 𝑦, 𝑧}. The index 𝑗 indicates which of
the variables (𝑥, 𝑦, 𝑧) of a function onR3 is subjected
to Fourier transform and leading to which of the
dual variables (𝑝, 𝑞, 𝑘) in the Fourier transformed
function. For example,F(𝑥,𝑦)𝑓(𝑝, 𝑞, 𝑧) is the Fourier
transform of𝑓(𝑥, 𝑦, 𝑧) on the first two variables (𝑥, 𝑦)
of 𝑓(𝑥, 𝑦, 𝑧), and it is a function of (𝑝, 𝑞, 𝑧):

F(𝑥,𝑦)𝑓 (𝑝, 𝑞, 𝑧) = ∫
R2

𝑑𝑥 𝑑𝑦 𝑒
−2𝑖𝜋(𝑝𝑥+𝑞𝑦)

𝑓 (𝑥, 𝑦, 𝑧) , (3)

where the third variable 𝑧 remains unaffected.
(ii) Hankel transform of order ] H(𝑗)] , where the index 𝑗

here has the same meaning as in Fourier transform.
For example, the Hankel of order 1/2 is applied to
the third variable 𝑧 of 𝑓(𝑥, 𝑦, 𝑧), leaving the two first
variables (𝑥, 𝑦) unaffected,

H
(𝑧)

1/2𝑓 (𝑥, 𝑦, 𝛾) = ∫

∞

0
𝑑𝑧√𝑧𝛾𝐽1/2 (𝑧𝛾) 𝑓 (𝑥, 𝑦, 𝑧) . (4)
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(iii) The Radon transform on spheresR𝑆, its inverseR
−1
𝑆 ,

and its adjoint R†𝑆 will be given by their explicit
expression in Sections 3.1, 3.2, and 3.3.

Properties. Are as follows:

(i) F(𝑥,𝑦) and H(𝑧)] commute as they act in different
variables of R3.

(ii) Themultiplication by an arbitrary function of a subset
of variables disjoint of the set of variables of an inte-
gral transform (Fourier or Hankel) commutes with
this integral transform.

3.1. Definition of R𝑆. Let s = (𝜉, 𝜂, ℎ) be the Cartesian
coordinates of the center 𝑆 of a sphere located at a fixed height
ℎ and denote by 𝜌 its radius. The associated spherical Radon
transform R𝑆 which maps an integrable function 𝑓(𝑥, 𝑦, 𝑧)

in R3 into its projections along such a sphere is given by

R𝑆𝑓 (𝜉, 𝜂, 𝜌) = ∫
n∈S2

𝑓 (s+𝜌n) 𝑑n. (5)

An explicit form ofR𝑆𝑓(𝜉, 𝜂, 𝜌) in terms of spherical coordi-
nates is

R𝑆𝑓 (𝜉, 𝜂, 𝜌) = 𝜌
2
∫

2𝜋

0
𝑑𝜙∫

𝜋

0
sin 𝜃 𝑑𝜃𝑓 (𝜉 + 𝜌 sin 𝜃 cos𝜙, 𝜂 + 𝜌 sin 𝜃 sin𝜙, ℎ + 𝜌 cos 𝜃) , (6)

where n = (sin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃). This expression can
be interpreted as an integral transform with a delta function
kernel of the form

R𝑆𝑓 (𝜉, 𝜂, 𝜌)

= ∫
R3

𝑑𝑥 𝑑𝑦𝑑𝑧K𝑆 (𝜉, 𝜂𝜌 | 𝑥, 𝑦, 𝑧) 𝑓 (𝑥, 𝑦, 𝑧) ,

(7)

with

K𝑆 (𝜉, 𝜂, 𝜌 | 𝑥, 𝑦, 𝑧)

= 𝛿 (𝜌−√(𝑥 − 𝜉)
2
+ (𝑦 − 𝜂)

2
+ (𝑧 − ℎ)

2
) .

(8)

Such an integral differs from original results [5, 10, 11] since
here the sources of the spheres are located at a fixed height
ℎ whereas in former works the source was located on the
plane crossing the origin. This choice appears more intuitive
for SAR applications and makes new factors appear in the
different formulae derived below. Although these factors do
not change the inversion process, they are crucial in the
computation of different formulae.

Now we provide the important results of R𝑆 which ena-
bles us to derive our reconstruction algorithm in Section 4.

3.2. Adjoint Transform R†𝑆. The dual operator is defined by
the same kernel but the integration is carried on functions
defined on (𝜉, 𝜂, 𝜌) ∈ E = R2

× R+. Let ℎ(𝜉, 𝜂, 𝜌) be an inte-
grable function on E, and then

R
†

𝑆ℎ (𝑥, 𝑦, 𝑧) = ∫
E

𝑑𝜉 𝑑𝜂 𝑑𝜌 𝛿 (𝜌

−√(𝑥 − 𝜉)
2
+ (𝑦 − 𝜂)

2
+ (𝑧 − ℎ)

2
) ℎ (𝜉, 𝜂, 𝜌) .

(9)

Proposition 1. The three-dimensional Fourier transform of
R†𝑆ℎ (𝑥, 𝑦, 𝑧) is given by

F(𝑥,𝑦,𝑧)R
†

𝑆ℎ (𝑝, 𝑞, 𝑘) =
√2𝜋𝑒−2𝑖𝜋𝑘ℎ

√𝑝2 + 𝑞2 + 𝑘2

⋅H
(𝜌)

1/2F(𝜉,𝜂)ℎ (𝑝, 𝑞, 2𝜋√𝑝2 + 𝑞2 + 𝑘2) ,

(10)

where ℎ(𝜉, 𝜂, 𝜌) = 𝜌ℎ(𝜉, 𝜂, 𝜌).

Proof. From (9) and using Fubini’s theorem, the Fourier
transform ofR† is

F(𝑥,𝑦,𝑧)R
†

𝑆ℎ (𝑝, 𝑞, 𝑘)

= ∫
E

∫
R3

𝑑𝜉 𝑑𝜂 𝑑𝜌 𝑑𝑥 𝑑𝑦𝑑𝑧 𝑒
−2𝑖𝜋(𝑝𝑥+𝑞𝑦+𝑘𝑧)

K𝑆 (𝜉,

𝜂, 𝜌 | 𝑥, 𝑦, 𝑧) ℎ (𝜉, 𝜂, 𝜌) .

(11)

We proceed to the change of variables

𝑥 = 𝜉 + 𝜌 sin 𝜃 cos𝜙,

𝑦 = 𝜂 + 𝜌 sin 𝜃 sin𝜙,

𝑧 = ℎ + 𝜌 cos 𝜃,

(12)

with 𝑑𝑥 𝑑𝑦𝑑𝑧 = 𝜌
2 sin 𝜃 𝑑𝜌 𝑑𝜃 𝑑𝜙 in (11). Since

√(𝑥 − 𝜉)
2
+ (𝑦 − 𝜂)

2
+ (𝑧 − ℎ)

2
= 𝜌, the right hand side

becomes

∫
R2

𝑒
−2𝑖𝜋(𝑝𝜉+𝑞𝜂)

𝑑𝜉 𝑑𝜂∫
R3

𝜌
2 sin 𝜃 𝑑𝜌 𝑑𝜃 𝑑𝜙 𝑒

−2𝑖𝜋(𝑝𝑥+𝑞𝑦+𝑘𝑧)
𝑒
−2𝑖𝜋𝜌(𝑝 sin 𝜃 cos𝜙+𝑞 sin 𝜃 sin𝜙+𝑘 cos 𝜃)

ℎ (𝜉, 𝜂, 𝜌) . (13)
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This equation consists of three integration parts. Let us exam-
ine each step separately.

(i) The angular integration can be calculated in terms of
the Bessel function 𝐽1/2(𝑥) using formula 4.624 of [12]

∫
S2
sin 𝜃 𝑑𝜃 𝑑𝜙 𝑒

−2𝑖𝜋𝜌(𝑝 sin 𝜃 cos𝜙+𝑞 sin 𝜃 sin𝜙+𝑘 cos 𝜃)

=
2
𝜌

𝜋√𝜌

(𝑝2 + 𝑞2 + 𝑘2)
1/4 𝐽1/2 (2𝜋𝜌√𝑝2 + 𝑞2 + 𝑘2) .

(14)

(ii) The 𝜌-integral becomes then

∫

∞

0
𝑑𝜌√𝜌𝐽1/2 (2𝜋𝜌√𝑝2 + 𝑞2 + 𝑘2) 𝜌ℎ (𝜉, 𝜂, 𝜌) (15)

and can be interpreted as a Hankel transform of order
1/2 on the function ℎ(𝜉, 𝜂, 𝜌) = 𝜌ℎ(𝜉, 𝜂, 𝜌),

1
√2𝜋

1
(𝑝2 + 𝑞2 + 𝑘2)

1/4

⋅H
(𝜌)

1/2ℎ (𝜉, 𝜂, 2𝜋√𝑝2 + 𝑞2 + 𝑘2) .

(16)

(iii) The last integration over 𝑑𝜉 𝑑𝜂 is a two-dimensional
Fourier transform on ℎ(𝜉, 𝜂, 2𝜋√𝑝2 + 𝑞2 + 𝑘2) which
completes the proof usingF(𝜉,𝜂)H

(𝜌)

1/2 = H
(𝜌)

1/2F(𝜉,𝜂).

3.3. Inverse Radon Transform R−1𝑆 . We now provide the
inversion formulae for R𝑆. The proofs correspond with [9]
except for the parametrization of the source which changes
the factors. We give then a very short version of the proofs.

Theorem 2. The three-dimensional Fourier transform
F(𝑥,𝑦,𝑧)𝑓(𝑝, 𝑞, 𝑘) of the sought function 𝑓(𝑥, 𝑦, 𝑧) can be
obtained as

F(𝑥,𝑦,𝑧)𝑓 (𝑝, 𝑞, 𝑘) = √
𝜋

2
|𝑘|

cos 2𝜋𝑘ℎ
H
(𝜌)

1/2F(𝜉,𝜂)

⋅
R𝑆𝑓

𝜌
(𝑝, 𝑞, 2𝜋√𝑝2 + 𝑞2 + 𝑘2) .

(17)

Proof. Using the same procedure compared to that for the
previous proof, (6) can be rewritten in terms of Fourier trans-
forms, assumingF(𝑥,𝑦,𝑧)𝑓(𝑝, 𝑞, 𝑘) = F(𝑥,𝑦,𝑧)𝑓(𝑝, 𝑞, −𝑘), as

F(𝜉,𝜂)R𝑆𝑓 (𝑝, 𝑞, 𝜌) = 4𝜋𝜌3/2 ∫
∞

0
𝑑𝑘 cos 2𝜋𝑘ℎ

⋅

𝐽1/2 (2𝜋𝜌√𝑝2 + 𝑞2 + 𝑘2)

(𝑝2 + 𝑞2 + 𝑘2)
1/4 F(𝑥,𝑦,𝑧)𝑓 (𝑝, 𝑞, 𝑘) .

(18)

This integral has to be understood as a Hankel transform of
order 1/2 with respect to a new variable 𝑡 = 2𝜋√𝑝2 + 𝑞2 + 𝑘2,

F(𝜉,𝜂)R𝑆𝑓 (𝜉, 𝜂, 𝜌)

𝜌
= ∫

∞

0
𝑑𝑡√𝑡𝜌𝐽1/2 (𝑡𝜌) 𝑔 (𝑝, 𝑞, 𝑡)

= H
(𝑡)

1/2𝑔 (𝑝, 𝑞, 𝜌) ,

(19)

where

𝑔 (𝑝, 𝑞, 𝑡) = 2√2𝜋𝑌(𝑡 − 2𝜋√𝑝2 + 𝑞2)

⋅F(𝑥,𝑦,𝑧)𝑓(𝑝, 𝑞, √
𝑡
2

4𝜋2 − (𝑝2 + 𝑞2))

⋅

cos ℎ√𝑡2 − 4𝜋2 (𝑝2 + 𝑞2)

√𝑡2 − 4𝜋2 (𝑝2 + 𝑞2)
,

(20)

where 𝑌(𝑘) is the unit Heaviside step function. Taking the
inverse Hankel transform, we finally get the result of the
theorem.

Corollary 3. Using Proposition 1, the three-dimensional Fou-
rier transform of 𝑓(𝑥, 𝑦, 𝑧) may be expressed in terms of R†𝑆
as

F(𝑥,𝑦,𝑧)𝑓 (𝑝, 𝑞, 𝑘) =
|𝑘|

2
(1+ 𝑖 tan 2𝜋ℎ𝑘)

⋅ √𝑝2 + 𝑞2 + 𝑘2F(𝑥,𝑦,𝑧)R
†

𝑆

⋅
R𝑆𝑓

𝜌2
(𝑝, 𝑞, 𝑘) .

(21)

Proof. Since the multiplication by 1/𝜌 commutes withF(𝜉,𝜂),
(17) can be rewritten as

F(𝑥,𝑦,𝑧)𝑓 (𝑝, 𝑞, 𝑘) = √
𝜋

2
|𝑘|

cos 2𝜋𝑘ℎ
H
(𝜌)

1/2F(𝜉,𝜂)
1
𝜌

⋅R𝑆𝑓(𝑝, 𝑞, 2𝜋√𝑝2 + 𝑞2 + 𝑘2) .

(22)

By the same way, (10) becomes

F(𝑥,𝑦,𝑧)R
†

𝑆ℎ (𝑝, 𝑞, 𝑘) =
√2𝜋𝑒−2𝑖𝜋𝑘ℎ

√𝑝2 + 𝑞2 + 𝑘2

⋅H
(𝜌)

1/2F(𝜉,𝜂)𝜌ℎ (𝑝, 𝑞, 2𝜋√𝑝2 + 𝑞2 + 𝑘2) .

(23)

The proof is completed by taking 𝜌ℎ(𝜉, 𝜂, 𝜌) = (1/𝜌)R𝑆𝑓(𝜉,

𝜂, 𝜌).

4. Reconstruction Algorithm Based
Approximate Inverse

We now address the problem of reconstruction for the pro-
posed SARmodality using the Approximate Inverse [13].The
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last section provides essentially two reconstruction formulae
given in Theorem 2 and Corollary 3. The first one involves
a division by cos(2𝜋𝑘ℎ) and a Hankel transform whereas
the second one uses the dual operator. Since we scan all
the frequency range, the division by cos produces numerical
stability; this is why we focus on the second solution for
recovering 𝑓.

We note the presence of the norm of the frequency vector,
√𝑝2 + 𝑞2 + 𝑘2, and of 𝑘which corresponds to Riesz potential
or order −1 on the vector (𝜉, 𝜂, 𝜌) and on the time/radius
coordinate, 𝜌, respectively. This step is well-known since it is
involved in the Filtered Backprojection (FBP) algorithm used
in conventional Computerized Tomography and requires an
apodization to cut off high frequencies.

However an important differencewith the FBP algorithm,
here, is the position of the dual/backprojection operator. The
backprojection operator which spreads the data on the cor-
responding manifolds (lines, spheres,. . .) is a smoothing and
so regularizing operator. SinceR†𝑆 is first applied on the data,
its smoothing effect does not affect the filter part with Riesz
potentials.

Because of the difficulty and unstability in computing
directly this inversion, we propose to apply the Approximate
Inverse as described below. This approach was proposed
in the first place by Louis and now it uses for the three-
dimensional approach for the Radon transform in many
fields (see [14–17]). It was successfully used in [11] for the
𝑛-dimensional spherical Radon transform. But the designed
reconstruction method was not suited for a 3D case essen-
tially due to the computation time. We propose here to
simplify this process to make it fit with our applications.

The Approximate Inverse method intends to reconstruct
the solution in a more regular space in order to get rid of the
singularities in the inversion process. Considering the studied
inverse problem here, we call 𝑆𝛾 a regularization method of
the linear, continuous, and injectivemappingR𝑆 : 𝐿

2
(R3

) →

𝐿
2
(E) when 𝑆𝛾 : 𝐿

2
(E) → 𝐿

2
(R3

) is continuous and satisfies

lim
𝛾→ 0

𝑆𝛾R𝑆𝑓 = 𝑓, ∀𝑓 ∈ 𝐿
2
(R

3
) . (24)

𝛾 plays so the role of a regularization parameter. We note
⟨⋅, ⋅⟩𝐿2(⋅) the inner product of the 𝐿

2
(⋅)-norm. Let the linear

mapping 𝑆𝛾R𝑆 be generated by linear functional 𝛿𝛾
(𝑥,𝑦,𝑧)

∈

𝐿
2
(R3

) as

𝑓𝛾 (𝑥, 𝑦, 𝑧) = 𝑆𝛾A𝑓 (𝑥, 𝑦, 𝑧) = ⟨𝛿
𝛾

(𝑥,𝑦,𝑧)
, 𝑓⟩
𝐿2(R3)

. (25)

In order to approximate 𝑓 with 𝑓𝛾, the linear functional
𝛿
𝛾

(𝑥,𝑦,𝑧)
will satisfy

lim
𝛾→ 0

⟨𝛿
𝛾

(𝑥,𝑦,𝑧)
, 𝑓⟩
𝐿2(R3)

= 𝑓 (𝑥, 𝑦, 𝑧) . (26)

Then the linear mapping 𝑆𝛾 is now defined by elements in
𝐿
2
(E) as

𝑆𝛾𝑔 (𝑥, 𝑦, 𝑧) = ⟨𝜓
𝛾

(𝑥,𝑦,𝑧)
, 𝑔⟩
𝐿2(E)

, (27)

where 𝜓
𝛾

(𝑥,𝑦,𝑧)
are solutions of the auxiliary problem

R
†

𝑆𝜓
𝛾

(𝑥,𝑦,𝑧)
= 𝛿
𝛾

(𝑥,𝑦,𝑧) (28)

and are called approximate reconstruction kernels by analogy
with 𝜓(𝑥,𝑦,𝑧), the reconstruction kernel associated with the
problem 𝑔 = R𝑆𝑓, defined as

𝑓 (𝑥, 𝑦, 𝑧) = ∫
E

𝜓(𝑥,𝑦,𝑧) (𝜉, 𝜂, 𝜌) 𝑔 (𝜉, 𝜂, 𝜌) 𝑑𝜉 𝑑𝜂 𝑑𝜌

= ⟨𝑔, 𝜓(𝑥,𝑦,𝑧)⟩𝐿2(E)
.

(29)

Putting for the sake of readibility p = (𝑝, 𝑞, 𝑘) and x = (𝑥,

𝑦, 𝑧) and omitting the indice in the inner product, 𝐿2(R3),
Corollary 3 provides an efficient way to derive the expression
of 𝜓𝛾
(x) in terms of 𝛿𝛾

(x),

𝑓𝛾 = ⟨𝑓, 𝛿
𝛾

(x󸀠)⟩

= ⟨𝑤 (p)F(x) (R
†

𝑆

R𝑆𝑓

𝜌2
) (p) ,F(x) (𝛿

𝛾

(x󸀠)) (p)⟩

= ⟨R
†

𝑆

R𝑆𝑓

𝜌2
(x) ,F(p) (𝑤 (p)F(x) (𝛿

𝛾

(x󸀠))) (x)⟩

= ⟨R𝑆𝑓, 𝜌
−2
R𝑆F(p) (𝑤 (p)F(x) (𝛿

𝛾

(x󸀠)))⟩𝐿2(E)

= ⟨R𝑆𝑓, 𝜓
𝛾

(x󸀠)⟩𝐿2(E)
,

(30)

where 𝑤(p) = (1/2)(1 + 𝑖 tan 2𝜋ℎ𝑘)|𝑘|√𝑝2 + 𝑞2 + 𝑘2. Finally
we get

𝜓
𝛾

(x) = 𝜌
−2
R𝑆F(p) (𝑤 (p)F(x) (𝛿

𝛾

(x))) . (31)

This expression has the following advantages:

(i) It can be precomputed.
(ii) It is independent of the data 𝑔 and hence is not

affected by noise.
(iii) The shift invariance of R𝑆 and its dual enables us to

compute the approximate reconstruction kernel for
few points in data space. Indeed, the integral kernel
ofR𝑆 in (8) satisfies

K𝑆 (𝜉, 𝜂, 𝜌 | 𝑥 − 𝑥
󸀠
, 𝑦 − 𝑦

󸀠
, 𝑧)

= K𝑆 (𝜉 + 𝑥
󸀠
, 𝜂 + 𝑦

󸀠
, 𝜌 | 𝑥, 𝑦, 𝑧) .

(32)

Therefore, 𝜓𝛾
(𝑥,𝑦,𝑧)

(𝜉, 𝜂, 𝜌) does not require a compu-
tation for all (𝑥, 𝑦, 𝑧, 𝜉, 𝜂, 𝜌) ∈ R5

× R+ but only for
(𝑧, 𝜉, 𝜂, 𝜌) ∈ R3

× R+ which reduces substantially its
computation time and size.

The second step is to choose an appropriate mollifier
𝛿
𝛾

(𝑥,𝑦,𝑧)
. The mollifier and the associated approximate recon-

struction kernel in [11] were designed according to the fre-
quential properties of the inverse problem. But the designed
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Table 1: Some approximate Dirac delta functions and their Fourier
transforms.

𝛿𝛾(r) F(r)𝛿𝛾(p)

(2𝜋)(−3/2)𝛾−3𝑒(−|r|
2
/2𝛾2)

(Gaussian function)

1
2𝜋𝛾2

𝑒
−(𝛾

2
|p|2/2)

(Gaussian function)
𝜒[0,1](|r|/𝛾)

√1 − |r|2/𝛾2
𝜒[0,1]: characteristic function

−4𝜋
𝐽1(𝛾|p|)

|p|
(𝐽1(𝑥): 1st kind of Bessel
function of order 1)

(
𝛾

𝜋
)

3 sin 𝛾|r|
𝛾|r|

(cardinal sine function)

𝛾
2

𝜋3 Π[−𝛾−1 ,𝛾−1](|p|)
Π[−𝛾−1 ,𝛾−1](𝑥): gate function
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Figure 3: Three-dimensional hilly object landscape.

process turns out to be incomputable in 3D. According
to the theory of the Approximate Inverse, the choice of
mollifier is motivated by its degree of smoothness, its
invariance properties, and its properties of computation.
Here we need a shift invariant function with a well-known
Fourier transform and approximating the delta distribution.
Table 1 presents three well-known functions satisfying these
sought properties. With the problem of finite aperture of
the source/detector system, measured data are incomplete
and so the inversion process is severely ill-posed. For this
reason, we choose the Gaussian mollifier which is the most
smoothing function among these three mollifiers. In the
next section, we present numerical simulations using the
proposed approximate reconstruction kernel built with a
Gaussian mollifier and compared to the straightforward
implementation of the exact inversion formula, Corollary 3.

5. Simulation Results

In order to attest the efficiency and relevancy to use such
a method for simple reflection imaging, we present now
numerical simulations on a simple object representing a hilly
landscape and built with exponential bumps on a grid of
64 × 64 × 64, as shown in Figure 3.
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Figure 4: Aspect of Radon data from an object with 𝜉 on vertical
axis, 𝜂 = 0 and 𝜌 on horizontal axis.

Before proceeding the reconstruction method, one needs
to produce the corresponding data. For this purpose, the
implementation is performed using the alternative forward
formula:

R𝑆 (𝜉, 𝜂, 𝜌) = ∫

𝜋

0
∫

𝜌

−𝜌

𝑓(𝜉 +√𝜌2 − 𝑧2 cos 𝜃, 𝜂

+√𝜌2 − 𝑧2 sin 𝜃, ℎ − 𝑧) 𝜌 𝑑𝑧 𝑑𝜃.

(33)

The parameters are as follows:

(i) ℎ = 𝑁 = 64,
(ii) 𝜉 = 𝜂 = {−2𝑁,−2𝑁 + 1, . . . , 2𝑁},
(iii) 𝜌 = {0, 1/2, . . . , 3𝑁},
(iv) 𝜃 = {0, 2𝜋/(5𝑁), . . . , 2𝜋},
(v) 𝑧 = {0, 1, . . . , ℎ − 1}.

Figure 4 displays the slice 𝜂 = 0 of the obtained
measurement. Linear interpolations and trapezoidal rules
were used to compute the integral along spheres.

We reconstruct this object first by using the exact recon-
struction formula and next with an approximate reconstruc-
tion kernel, obtained with a Gaussian function. Moreover the
value of the regularization parameter 𝛾 is fixed at 𝛾 ≈ 3
when the normalizedmean square error reaches itsminimum
value; see Figure 5(a). A profile of the computed approximate
reconstruction kernel is depicted in Figure 5(b). Figure 6
consists of simulation results using the exact inversion for-
mula based on Corollary 3 and using the approximate recon-
struction kernel specified above with noise-free data andwith
speckle noise.This noise was produced withMatlab using the
command imnoise (., ‘speckle’, 0.1). The term𝑤(𝑝,

𝑞, 𝑘) involved in the exact inversion formula was apodized
by a Gaussian function similarly with the mollifier chose for
the Approximate Inverse method. The initial object and the
associated reconstructions are represented in terms of height
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Figure 5: (a) Mean quadratic relative error with respect to 𝛾. (b) Profile of the computed approximate reconstruction kernel 𝜓𝛾
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with 𝛾 = 3.

Figure 6: From bottom up: column 1, level representation of landscape; column 2, its reconstruction by exact inverse formula; column 3, its
reconstruction by approximate inversion kernel with 𝛾 = 3; and column 4, its reconstruction by approximate inversion kernel with 𝛾 = 4 and
in presence of speckle noise.



Mathematical Problems in Engineering 9

10 20 30 40 50 60

10
20

30
40

50
60

0
10
20
30
40
50
60

(a) With noise-free data
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Figure 7: Reconstructed 3-dimensional hilly object landscape using the proposed method.

slice by slice. In addition, Figure 7 displays the reconstructed
3D surfaces using the proposed method. All reconstructions
were truncated by a “mask” function generated from the
null set in the studied data. As expected the straightforward
method succeeds in the recovery of the contours but to the
price of a strong regularization. By contrast, the Approximate
Inversemethod appears more suited since the accuracy of the
contours is higher even in presence of noise and the artifacts
are far more reduced.These results reinforce the feasibility of
such a technique when the Approximate Inverse method is
used as pointed out in [11].

6. Conclusion

In this paper, we have shown in the context of reflection imag-
ing using integral data that image reconstruction can be suc-
cessfully performed using the method of approximate recon-
struction integral operator. This method avoids the compli-
cated numerical setting required by the exact reconstruction
formula, which involves discontinuous operations and their
composition. The computational algorithm may also include
technical features such as finite aperture of the emitting
antenna or the shape of the lobes of the emission pattern
when signals are of electromagnetic nature. But in essence
this scheme works also for pulses of waves in elastic matter as
proposed by [4] on a smaller scale landscape.Thus we believe
that this concept has a potential for development in the future.
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