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Abstract
Radon transforms on piecewise smooth curves in R

2 are rather unfamiliar and
have not been so far widely investigated. In this paper we consider three
types of Radon transforms defined on a pair of half-lines in the shape of a V,
with a fixed axis direction. These three Radon transforms arise from recently
suggested tomographic procedures. Our main result consists in obtaining their
analytic inverse formulas, which may serve as mathematical foundation for
new imaging systems in engineering and physics.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Radon transforms in the plane have been extensively studied in the past. Besides the cases of
a straight line [1], and a circle intersecting a fixed point, Radon transforms on other classes
of curves have also been treated (see among other works e.g. [2–4]). The universality of
a Radon transform is known in imaging science ranging from medicine [5, 6], seismic [7],
astrophysics [8], non-destructive industrial testing [9], etc. It also plays a crucial role in pure
mathematics [10–13] and recently has become an increasingly powerful investigation tool in
numerous fields of physics, e.g. [14–18].

In 1997 Basko introduced a Radon transform on a pair of half-lines forming a V-shape
in an attempt to model image formation in the so-called one-dimensional Compton camera
[19]. The axis of this V-line swings around a point of the plane such that its vertex lies on a
straight line (representing a ‘scattering’ detector) and the opening angle of the two half-lines
(representing a Compton scattering angle) is an imaging data variable. No other cases of
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Figure 1. Parameters of the Radon transform.

Radon transforms on piecewise lines (or curves) seem to have been discussed in the literature
until we recently put forward the idea of V-line Radon transforms with a fixed axis direction
[20]. An concept akin to a broken ray Radon transform has recently appeared [21].

In this work we consider the class of V-line Radon transforms with a fixed symmetry
axis direction. Such Radon transforms may be of theoretical interest in integral geometry
in the sense of Gel’fand [11]. Three types of V-line Radon transforms with fixed axis
direction will be treated. The first is mathematically the most important and arises from
a coupled transmission–reflection tomographic process while the other two are its variants
corresponding respectively to a collimated one-dimensional Compton camera and to scattered
radiation emission imaging using a one-dimensional gamma camera. For all three cases an
exact inverse formula is established. These results are of theoretical nature: they support
the feasibility of three new tomographies. An illustration of these inversion formulas in two-
dimensional medical and industrial imaging can be found in [20]. The paper closes with a
short conclusion and some forthcoming topics of investigation.

2. The V-line Radon transform

2.1. Short review of the standard Radon transform

Before going into the subject, we briefly review the standard Radon transform. It maps an
L1(R2)-function f (x, y) onto Rf (p, φ) via the integral

Rf (p, φ) =
∫

R2
dx dyf (x, y)δ(p − x cos φ − y sin φ),

in which p is the distance from the coordinate system origin to the straight line and φ is the
angle of the normal unit vector to the line with the Ox-axis, see figure 1.

From the structure of the delta function kernel, it follows that

Rf (p, φ) = Rf (−p, φ + π).

There exists an explicit inverse formula [5]

f (x, y) = 1

2π2

∫ π

0
dφ

(
P.V.

∫
R

dp
R′f (p, φ)

(p − x cos φ − y sin φ)

)
, (1)

2
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Figure 2. Parameters of the V-line Radon transform.

where

R′f (p, φ) = ∂

∂p
Rf (p, φ).

In equation (1), the p-integral is a Cauchy principal value (P.V.). An alternative form in Fourier
space of this inverse formula is

f (x, y) =
∫ π

0
dφ

∫
R

dk|k| e2iπk(x cos φ+y sin φ)

∫
R

dq e−2iπqkRf (q, φ),

which expresses a summation image of the ‘ramp’-filtered Radon data [5].

2.2. Definition

Consider a pair of half-lines meeting at a point M of abscissa ζ on the Ox-axis, each of which
making an angle ω (0 < ω < π/2) with the Oy-axis, see figure 2. Let f (x, y) be an L1(R2)

non-negative continuous function with compact support in {R2|y > 0}. We call

Vf (ζ, τ ) =
∫ ∞

0
dr (f (ζ + r sin ω, r cos ω) + f (ζ − r sin ω, r cos ω)), (2)

the V-line Radon transform of f (x, y), where τ = tan ω.
Equation (2) may be put under the form of an integral transform in R

2 with a delta function
kernel concentrated on the V-line

Vf (ζ, τ ) =
∫

R2
dx dyKV(ζ, ω|x, y)f (x, y),

with

KV(ζ, ω|x, y) = (δ((x − ζ ) cos ω − y sin ω) + δ((x − ζ ) cos ω + y sin ω)).

Thus the image of a given point source at (x, y) ∈ R
2 is the sum of two Dirac delta distributions,

which have a support in the upper (τ, ζ )-plane, consisting of two half-lines, with τ > 0,
meeting at ξ = x on the ξ -axis and having a slope ± y−1, i.e.

τ =
∣∣∣∣x − ζ

y

∣∣∣∣ or ω = arctan

∣∣∣∣x − ζ

y

∣∣∣∣.
3
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In a (ω, ζ )-representation, this is just the arctan-curve, which is the support of the point-source
image. Thus the support of Vf (ζ, τ ) is not compact in this representation.

Clearly the V-Radon transform can also be written in the language of the standard Radon
transform as

Vf (ζ, τ ) =
∫

R

dx

∫ ∞

0
dyf (x, y)(δ(u − x cos ω − y sin ω) + δ(u − x cos ω + y sin ω)),

where u = ζ cos ω, the distance of the coordinate origin to the two half-lines forming the
letter V. Note also that the unit normal vectors to these half-lines make an angle ±ω with the
Ox-axis. So the result appears as the sum of two standard Radon transforms of f (x, y), except
for the y-integration range.

2.3. Physical implementation

In standard computed tomography, a calibrated x-ray pencil emitted from a point-source S
traverses a two-dimensional slice of an object along a straight line before being absorbed by
a point-like detector D. In this way, the attenuation of the radiation beam is expressed as an
integral of the linear attenuation function of the object to be imaged over a straight line. This
is Radon’s problem which is solved by equation (1).

The V-line Radon transform may be conceived as representing the measurement of an
x-ray pencil attenuation along a broken path in the shape of a V, which is physically realized
by putting a mirror at the vertex M of the V-line as shown in figure 2. Measurements requiring
various angles ω may be performed by varying the distance SD, but in practice one may set a
series of point-sources and a series of point-detectors respectively on the left and on the right
of a given axis of symmetry of the V-line. To vary the parameter ζ , one may put the object
on a conveyor belt in a scanning process. Such a device is clearly a new type of x-ray scanner
which could prove to be more efficient wherever the rotational motion of a standard x-ray
scanner cannot be used and should be replaced by a translational motion. Such a situation
would arise when tomographic images of series of objects on a conveyor belt are to be taken
successively. As possible applications, one may think of luggage control in airports as well as
continuous imaging of series of biological objects in medical research.

2.4. Inversion formula

We now establish a relation between Radon transform and Fourier transform which is used to
obtain the inverse of the V-line Radon transform. For the standard Radon transform, such a
relation shows how this transform appears in Fourier spaces. It is known in imaging science
as the central-slice theorem [5].

As V-lines of a given opening angle ω can be deduced from each other by x-translations,
we may introduce the x-Fourier transform f̃ (p, y) of f (x, y) by

f (x, y) =
∫ ∞

−∞
dp e2iπpx f̃ (p, y).

Equation (2) can now be rewritten as

Vf (ζ, τ ) =
∫ ∞

−∞
dp e2iπpζ

∫ ∞

0
dr f̃ (p, r cos ω) 2 cos (2πpr sin ω). (3)

To proceed further we set z = r cos ω. Recalling that 0 < ω < π/2, we have

z > 0 and cos ω = 1√
1 + τ 2

> 0.

4
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Then equation (3) appears as

Vf (ζ, τ ) = 2
√

1 + τ 2

∫ ∞

−∞
dp e2iπpζ

∫ ∞

0
dz f̃ (p, z) cos (2πpτz). (4)

Extracting the p-Fourier component Ṽf (p, τ) of Vf (ζ, τ ) on the left-hand side of equation (4)
gives ∫

R

dζ e−2iπζp

(
Vf (ζ, τ )√

1 + τ 2

)
= 2

∫ ∞

0
dzf̃ (p, z) cos (2πpτz).

We now multiply both sides of this equation by cos(2πτv) and integrate on τ > 0. Using the
identity ∫ ∞

0
dτ cos (2πτ v) cos(2πkz τ) = 1

4
(δ(kz + v) + δ(kz − v)) , (5)

we obtain∫ ∞

0
dτ cos(2πτv)

∫
R

dζ e−2iπζp

(
Vf (ζ, τ )√

1 + τ 2

)
= 1

2

∫ ∞

0
dzf̃ (p, z)(δ(pz + v) + δ(pz − v)),

with (p, v) ∈ R
2 and z > 0. We now perform the τ -integration:

• if v/p > 0, then only δ(v − pz) = |p|−1δ(z − v/p) contributes,∫ ∞

0
dτ cos(2πτv)

∫
R

dζ e−2iπζp

(
Vf (ζ, τ )√

1 + τ 2

)
= 1

2|p| f̃ (p, v/p);

• if v/p < 0, then only δ(v + pz) = |p|−1δ(z + v/p) contributes,∫ ∞

0
dτ cos(2πτv)

∫
R

dζ e−2iπζp

(
Vf (ζ, τ )√

1 + τ 2

)
= 1

2|p| f̃ (p,−v/p).

Hence we can regroup these two cases into a single formula as

f̃ (p, |v/p|) = 2|p|
∫ ∞

0
dτ cos(2πτv)

∫
R

dζ e−2iπζp

(
Vf (ζ, τ )√

1 + τ 2

)
.

Putting y = |v/p| > 0, we can reconstruct f (x, y) by an inverse Fourier transform in p and
f (x, y) is expressed as a triple integral on the V-line Radon data

f (x, y) =
∫ ∞

−∞
|p| dp e2iπpx

∫ ∞

0
dτ

2 cos (2πpτy)√
1 + τ 2

∫ ∞

−∞
dζ e−2iπζp Vf (ζ, τ ), (6)

where we have made use of the evenness of the cos-function.
Inspection of convergence shows that exchange of integration order is possible and

equation (6) may now be rewritten as

f (x, y) =
∫ ∞

0

dτ√
1 + τ 2

∫ ∞

−∞
|p| dp e2iπpx( e2iπpτy + e−2iπpτy)

∫ ∞

−∞
dζVf (ζ, τ ) e−2iπζp. (7)

Thus analogously to the Radon transform, we can write

f (x, y) = 1

2π2

∫ ∞

0

dτ√
1 + τ 2

(
P.V.

∫
R

dζ

(
V′f (ζ, τ )

(ζ − x − yτ)
+

V′f (ζ, τ )

(ζ − x + yτ)

))
, (8)

where V′f (ζ, τ ) is the ζ -derivative of Vf (ζ, τ ).

5
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2.5. Alternative form of the inversion formula

Reintroducing u = ζ cos ω, which is the common distance from the coordinate system origin
to the two branches of the V-line, and redefining f (ζ, τ ) as F(u, ω), equation (8) becomes

f (x, y)= 1

2π2

∫ π/2

0
dω

(
P.V.

∫
R

du

[
V′F(u, ω)

(u − x cos ω − y sin ω)
+

V′F(u, ω)

(u − x cos ω + y sin ω)

])
,

(9)

where V′F(u, ω) is the derivative of VF(u, ω) with respect to u. This expression is a sum
of two ω-integrals which, as functions of (x, y) respectively, take a constant value along the
half-line of the unit normal vector n = (cos ω, sin ω) and along the half-line of the unit normal
vector n′ = (cos ω,− sin ω). A similar feature occurs in the standard Radon transform but
with a double angular range [0, π ]. Thus we may view the V-line Radon transform as the sum
of two half-line Radon R-transforms, as suggested by the defining equation (2). In imaging
science, equation (9) is called a ‘summation image’ of back-projected Radon data [5], the
ζ -derivative of the data being back-projected on the left and on the right branches of the
V-line in the ζ -integrand of equation (9).

2.6. Extension to the range π/2 < ω < π

Until now, we have considered L1
0(R

2)-functions with compact support. By appropriate
translations, their support can be shifted into the upper half-plane. But when the support of
f (x, y) is extended over all R

2, we need to collect data pertaining to the part of its support
below the real axis. This can be achieved using the angular range π/2 < ω < π , for which
cos ω and τ are negative. The V-line is now up-side down. In this case, we set z = −z′ and
τ = −τ ′ in equation (2.4) to have∫

R

dp e−2iπpζ

(
Vf (ζ,−τ ′)√

1 + τ ′2

)
= 2

∫ ∞

0
dz′f̃ (p,−z′) cos (2πpz′τ ′),

since zτ = z′τ ′, dz = − dz′ and because of cos ω = −1/
√

1 + τ ′2. This shows that again
we have to invert a cosine-Fourier transform to reconstruct f (x, y) for y < 0. Following the
previous steps we obtain∫ ∞

0
dτ ′ cos(2πτ ′v)

∫
R

dζ e−2iπζp

(
Vf (ζ,−τ ′)√

1 + τ ′2

)

= 1

2

∫ ∞

0
dz′f̃ (p,−z′)(δ(pz′ + v) + δ(pz′ − v)),

with (p, v) ∈ R
2 and z′ > 0. We now perform the z′-integration on the right-hand side of this

last equation;

• if v/p > 0, then only δ(v − pz′) = |p|−1δ(z′ − v/p) contributes,∫ ∞

0
dτ ′ cos(2πτ ′v)

∫
R

dζ e−2iπζp

(
Vf (ζ,−τ ′)√

1 + τ ′2

)
= 1

2|p| f̃ (p,−v/p);

• if v/p < 0, then only δ(v + pz′) = |p|−1δ(z′ + v/p) contributes,∫ ∞

0
dτ ′ cos(2πτ ′v)

∫
R

dζ e−2iπζp

(
Vf (ζ,−τ ′)√

1 + τ ′2

)
= 1

2|p| f̃ (p, v/p).

6
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Analogously to the case with 0 < ω < π/2 (see equation (6)), we can write a single
formula

f̃ (p,−|v/p|) = 2|p|
∫ ∞

0
dτ ′ cos(2πτ ′v)

∫
R

dζ e−2iπζp

(
Vf (ζ,−τ ′)√

1 + τ ′2

)
.

Putting y = −|v/p| > 0, we can reconstruct f (x, y) by the inverse Fourier transform in p
for y < 0. Using again the evenness of the cos-function, f (x, y) is then expressed as a triple
integral on the V-line Radon data

f (x, y) =
∫ ∞

−∞
|p| dp e2iπpx

∫ ∞

0
dτ ′ 2 cos (2πpτ ′y)√

1 + τ ′2

∫ ∞

−∞
dζ e−2iπζpVf (ζ,−τ ′).

And hence for y < 0, we obtain

f (x, y) = −1

2π2

∫ ∞

0

dτ ′
√

1 + τ ′2 P.V.

(∫
R

dζ

(
V ′f (ζ,−τ ′)
(x + τ ′y − ζ )

+
V ′f (ζ,−τ ′)
(x − τ ′y − ζ )

))
. (10)

To sum up, formulas (8) give the reconstruction of a function f (x, y) with compact support,
which can always be, by an appropriate choice of the coordinate origin, positioned in the
upper half-plane (y > 0). But when the support of f (x, y) is infinitely extended and f (x, y)
decreases fast at infinity, the reconstruction formula (10) for (y < 0) should be used. We can
put (8) and (10) together in one single formula as

f (x, y) = −1

2π2

∫ ∞

0

dσ√
1 + σ 2

P.V.

(∫
R

dζ

(
V′f (ζ, (sgny)σ )

(x + σy − ζ )
+

V′f (ζ, (sgny)σ )

(x − σy − ζ )

))
,

where (sgny) is the sign of y. This completes the proof of the inversion of the V-line Radon
transform with fixed axis direction for all values of y ∈ R.

2.7. Adjoint transform

The kernel KV(ζ, ω|x, y) may be used to define an adjoint V-line Radon transform V+. For
an integrable function g(ζ, ω), V+g(x, y) is given by

V+g(x, y) =
∫ π/2

0
dω

∫
R

dζKV(ζ, ω|x, y)g(ζ, ω).

After performing the ζ -integration, the following form appears:

V+g(x, y) =
∫ π/2

0

dω

cos ω
(g(x − yτ, ω) + g(x + yτ, ω)) ,

where τ = tan ω as before. We observe that g(x − yτ, ω) is constant on the left half-line
of equation (y − y0)τ = (x − x0), whereas g(x + yτ, ω) is constant on the right half-line of
equation −(y − y0)τ = (x − x0).

The inverse formula of equation (8) has been viewed already as a ‘summation image’
of back-projected V-line Radon data (see equation (9)). Here it may be now viewed as the
V-line adjoint Radon transform of the data with the identifications∫ ∞

0

dτ√
1 + τ 2

=
∫ π/2

0
dω,

and

g(x − yτ, ω) = P.V.
1

2π2

∫
R

dζ
V′f (ζ, τ )

(ζ − x + yτ)
,

g(x + yτ, ω) = P.V.
1

2π2

∫
R

dζ
V′f (ζ, τ )

(ζ − x − yτ)
.

This behavior also shows up in the standard Radon transform [5].

7
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Figure 3. The V∗-line Radon transform and its parameters.

3. The V∗-line Radon transform

3.1. Definition

A variant of the V-line Radon transform arises when the integration measure on the half-lines
is performed with a non-uniform density along the branches of the V-line.

Technically this occurs in the so-called one-dimensional special Compton camera for flat
radiating objects [20], which is a special version of an imaging device investigated by [22]
in three dimensions, see figure 3. Here a radiation-emitting object is described by its radio-
activity emission density f (x, y). Emitted radiation from a point-source N will Compton scatter
electric charges, under a scattering angle ω, in the scatter detector before entering a collimated
absorbing detector. The amount of scattered gamma radiation detected is thus given by the
V∗-line Radon transform of f (x, y), over an integration measure mσ(r), which accounts for
radiation dispersion from object emission site to scattering site on the scatter detector. Upon
close analysis, the integration measure is given by the two-dimensional photometric law as

mσ(r) = 1

πσ
tan−1 σ

2r
,

where σ is the linear size of scatterers. As in the previous section, we assume that the support
of f (x, y) is strictly in the upper half-plane y > 0. To keep the discussion simple and
concentrate on the nature of this transform, we have ignored the Compton kinematic factor,
which includes the Klein–Nishina scattering probability density.

Thus this alternate V∗-line Radon transform, for f (x, y) ∈ L1
0

(
R

2
+

)
, (functions with

compact support in {R2|y > 0}) has the form

V∗f (ζ, τ ) =
∫ ∞

0
drmσ (r) (f (ζ + r sin ω, r cos ω) + f (ζ − r sin ω, r cos ω)) .

For σ �= 0, an inversion formula cannot be worked out at present. But for vanishingly small
target size σ → 0, it has a simpler form

V∗f (ζ, τ ) =
∫ ∞

0

dr

2πr
(f (ζ + r sin ω, r cos ω) + f (ζ − r sin ω, r cos ω)), (11)

which can be inverted with the procedure of section 2. Since the support of f is ‘above’ the
Ox-axis, the integral in equation (11) is well defined.

8
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The integral kernel has the form

KV∗(ζ, ω|x, y) = 1

2πy
(δ((x − ζ ) cos ω − y sin ω) + δ((x − ζ ) cos ω + y sin ω)) .

It differs from the kernel KV(ζ, ω|x, y) by a factor 1/2πy due to the presence of 1/2πr in
the r-integration. Its support is the same as the one given by equation (2.2).

3.2. Inversion formula

We follow now the steps and use the same notations as before. Equation (11) becomes∫
R

dζ e−2iπζpV∗f (ζ, τ ) = 1

π

∫ ∞

0
dz

(
1

z
f̃ (p, z)

)
cos(2πτpz).

We now apply on both sides of this equation the integral operator∫ ∞

0
dτ cos(2πτv),

and use the identity (5) to have∫ ∞

0
dτ cos(2πτv)

∫
R

dζ e−2iπζpV∗f (ζ, τ ) =
∫ ∞

0

dz

2πz
f̃ (p, z)

1

2
(δ(v + pz) + δ(v − pz)) .

As (p, v) ∈ R
2 and z > 0, there are two types of contributions:

• if p v > 0, only δ(v − pz) = |p|−1 δ(z − v/p) contributes; hence,∫ ∞

0

dz

2πz
f̃ (p, z)

1

2|p|δ
(

z − v

p

)
= 1

4πv
sgn(p)f̃

(
p,

v

p

)
=

f̃
(
p, v

p

)
4π |v| ,

since sgn p = sgn v.
• if p v < 0, only δ(v + pz) = |p|−1 δ(z + v/p) contributes; hence,∫ ∞

0

dz

2πz
f̃ (p, z)

1

2|p|δ
(

z +
v

p

)
= 1

2|p|
1

2π
( − v

p

) f̃

(
p,− v

p

)
=

f̃
(
p,− v

p

)
4π |v| ,

since

|p|
(

− v

p

)
= sgn(p)(−1)|v|sgn(v) = |v|,

because p v < 0.

We can put these two cases together with y = |v/p| to have

f̃ (p, |v/p|) = 2π |v|
∫ ∞

0
dτ 2 cos(2πτv)

∫
R

dζ e−2iπζp V∗f (ζ, τ ). (12)

The reconstruction formula is then for y = |v/p| > 0, thanks to the evenness of the cos-
function

f (x, y) = 2πy

∫
R

dp |p| e2iπx

∫ ∞

0
dτ 2 cos(2πτy p)

∫
R

dζ e−2iπζp V∗f (ζ, τ ).

It can be rewritten also as a Barrett ‘summation image’ as

f (x, y) = 2πy

∫ ∞

0
dτ

∫
R

dp|p| e2iπx( e2iπpyτ + e−2iπpyτ )

∫
R

dζV∗f (ζ, τ ) e−2iπζp.

The p-integration is the same as in equation (7) and yields

f (x, y) = y

π

∫ ∞

0
dτ

(
P.V.

∫
R

dζ

(
V′∗f (ζ, τ )

(ζ − x − yτ)
+

V ′∗f (ζ, τ )

(ζ − x + yτ)

))
,

where V′∗f (ζ, τ ) is the ζ -derivative of V∗f (ζ, τ ).

9
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This expression can also be represented as a summation image on back-projected data on
a V-line in (x, y)-space, with f (ζ, τ ) = F(u, ω)

f (x, y) = y

π

∫ π/2

0

dω

cos ω
P.V.

∫
R

du

[
V′∗F(u, ω)

(u − x cos ω − y sin ω)
+

V′∗F(u, ω)

(u − x cos ω + y sin ω)

]
.

(13)

Note that the apparent singularity in the angular integration at ω = π/2 does not exist thanks
to the assumption on the support of f (x, y).

3.3. Extension to the range π/2 < ω < π

Repeating the approach of subsection 2.5, we obtain the complement of equation (12)

f̃ (p,−|v/p|) = 2π |v|
∫ ∞

0
dτ ′2 cos(2πτ ′v)

∫
R

dζ e−2iπζpV∗f (ζ,−τ ′),

and the corresponding reconstruction formula for y = −|v/p| < 0 :

f (x, y) = 2πy

∫
R

dp |p| e2iπx

∫ ∞

0
dτ ′ 2 cos(2πτ ′y p)

∫
R

dζ e−2iπζp V∗f (ζ,−τ ′),

or

f (x, y) =
( y

π

) ∫ ∞

0
dτ ′

(
P.V.

∫
R

dζ

(
V ′∗f (ζ,−τ ′)
(ζ − x − yτ ′)

+
V ′∗f (ζ,−τ ′)
(ζ − x + yτ ′)

))
. (14)

Formula (13) gives the reconstruction of f (x, y) when its support is compact for y > 0 and
when it is not compact one must add (14). Note that these formulas differ from those of the
V-transform. We can put (3.2) and (14) together in a single formula as

f (x, y) =
( y

π

) ∫ ∞

0
dσ

(
P.V.

∫
R

dζ

(
V′∗f (ζ, (sgny)σ )

(ζ − x − yσ)
+

V′∗f (ζ, (sgny)σ )

(ζ − x + yσ)

))
,

where (sgny) is the sign of y. This completes the inversion of the V∗-line Radon transform by
a factor y/π and by the form of the τ -integration. An interpretation of equation (14) in terms
of back-projected data or in terms of its adjoint transform can also be made along the lines of
the previous section.

4. The V�-line Radon transform

A third version of the V-line Radon transform is a so-called compounded or integrated
form of the V∗-Radon transform over a given integration measure. It arises in scattered
radiation emission imaging, a concept which has been extensively investigated in recent years
[23–26]. If the Compton camera exploits the scattering of object-emitted radiation by an
external scatterer in the form of a scatter detector for imaging purpose, this time it is the object
itself (in fact its electric charges) which serves as natural scatterer. Thus the outgoing radiation
from the object itself is registered now by a motionless collimated gamma camera (as opposed
to a moving collimated linear detector as in single photon emission tomography (or SPECT)).
The data are collected at various values of the scattering energies—or equivalently at various
values of the scattering angles ω—see figure 4. Hence the detected radiation flux density
appears as the V�-line Radon transform of the object radioactivity emission density f (x, y),
i.e.

V�f (ζ, τ ) =
∫ ∞

0
dη

(
1

πσ ′ tan−1 σ ′

2η

) ∫ ∞

0
dr

(
1

πσ
tan−1 σ

2r

)
× [f (ζ + r sin ω, η + r cos ω) + f (ζ − r sin ω, η + r cos ω)], (15)

10
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Figure 4. Setup and parameters of the V�-line Radon transform.

where σ ′ has the same meaning as in subsection 3.14. A successful inversion of this V�-line
Radon transform would allow us to reconstruct the radio-activity emission density f (x, y)
with a stationary linear collimated detector collecting series of ‘images’ at different scattering
angles ω. This imaging process presents a very important advantage over the existing ones:
it avoids the motion of the detector around the object during data acquisition, hence does not
require the heavy bulky rotational mechanics to be included.

This type of V-line transform is called ‘compounded’ V-line Radon transform or V�-line
Radon transform, by analogy to the three-dimensional case [23]. Now let us define∫ ∞

0
dη

(
1

πσ ′ tan−1 σ ′

2η

)
f (ξ±, η + r cos ω) = h(ξ±, r cos ω), (16)

where ξ± = (ζ ± r sin ω). Then we see that

V�f (ζ, τ ) = V∗h(ζ, τ ).

Hence the inversion problem is that of V∗ for h, followed by the extraction of f from
equation (16).

Equation (15) may be rewritten as an integral transform with the kernel

KV� (ζ, τ |x, y)=
√

1 + τ 2(Y (x − ζ )Y (y − τ(x − ζ ))mσ ((x − ζ )
√

1 + τ 2)mσ ′(y − τ(x − ζ ))

+ Y (−x + ζ )Y (y + τ(x − ζ ))mσ (−(x − ζ )
√

1 + τ 2)mσ ′(y + τ(x − ζ ))),

where Y (x) is the Heaviside unit step function. Here the kernel is not a Dirac delta function.

4 Here also, for simplicity all technical pre-factors, e.g. the Klein–Nishina scattering probability in Compton effect,
are discarded.
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Section 3 shows how to reconstruct h(x, y) from the data V�f (ζ, τ ) for all (x, y) ∈ R
2.

Thus given h(x, y), f is the solution of the convolution equation

h(x, y) =
∫ ∞

0
dη mσ (η) f (x, η + y). (17)

Let

f (x, y) =
∫

R

dk e2iπky f (x, k) and mσ(k) =
∫ ∞

0
dη e2iπkηmσ (η).

Then equation (17) becomes

h(x, y) =
∫

R

dk e2iπky f (x, k)mσ (k).

Hence

f (x, q) = 1

mσ(q)

∫
R

dz e−2iπzqh(x, z).

The recovery of f (x, y) is achieved by the inverse Fourier transform

f (x, y) =
∫

R

dq e2iπqy 1

mσ(q)

∫
R

dz e−2iπzq h(x, z), (18)

as h(x, z) is known for all z ∈ R. As an example, in the limit σ → 0, using the Fourier table
[27], we have an exact expression for

mσ(q) = −
(

ln 2π |q| − γ + i
π

2
sgn q

)
to be substituted in equation (18) to reconstruct f (x, y). We observe that the inversion of V�

is the product of the inversion of V� times an inverse Fourier transform.

5. Conclusion and perspectives

In this paper we have presented for the first time three types of Radon transforms in R
2

which are defined on a piecewise continuous curve having the shape of a letter V with a
fixed axis direction. The main theoretical result is their analytic inverse formulas. These
transforms are instrumental in new possible tomographic processes involving scattering,
coupled transmission–reflection and emission phenomena. Numerical simulations on test
phantoms to ascertain the viability of these imaging processes will appear in a separate
publication.

We also envisage studying Radon transforms on more general piecewise continuous curves
consisting of connected pieces of arcs, e.g. arcs of a circle, as well as Radon transforms on
V-line with an axis swinging around a fixed point. Their inversion would open the way to
new advantageous imaging processes. These topics are the object of future research.
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