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In an effort to deal with many ionizing radiation imaging mechanisms involving
the Compton effect, we study a Radon transform on circular cone surfaces having
a fixed axis direction, which is called here conical Radon transform (CRT).
Concretely, we seek to recover a density function f (x, y, z) in R3 from its
integrals over such circular cone surfaces or its conical projections. Although
the existence of the inverse CRT has been established, it is the aim of this
work to use this result to extent the concept of back-projection, well known
in Computed Tomography (CT) to this type of cone surfaces. We discuss in
some details the features of back-projection in relation to the corresponding CRT
adjoint operator as well as the filters that arise naturally from the exact solution
of the inversion problem. This intuitive approach is attractive, lends itself to
efficient computational algorithms and may provide hints and guide for more
general back-projection methods on other classes of cone surfaces, for example,
occurring in Compton camera imaging. Comprehensive numerical simulations
results are presented and discussed to illustrate and validate this approach based
on the concept of back-projection.

Keywords: Radon transforms; gamma-ray imaging; Compton scattering; conical
Radon transform; filtered back-projection (FBP)

AMS Subject Classifications: 44A12; 65J22; 65R10; 92C55

1. Introduction

Emission imaging with ionizing radiation has made a quantum leap when it was proposed
about four decades ago to use coincidence detection of two gamma ray events (a Comp-
ton scattering and an absorption) to improve sensitivity realizing the so-called electronic
collimation. This concept can be implemented by removing the mechanical collimator of a
gamma camera and by adding a scattering plane detector put in front of it. The new device
is called a Compton camera,[1,2] see Figure 1.

The idea is attractive but the corresponding mathematical challenge is huge. This is
due to the fact that the detected signal, which is the amount of gamma photons of given
energy arriving along the line joining the scattering site to the detection site, contains the
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Figure 1. Compton camera.

contribution of all the emitting sites of the radiating object situated on a circular cone
sheet. One may speak of this data as a conical projection in analogy to the linear projection
known in conventional emission (SPECT: Single Photon Emission Computed Tomography,
or PET: Positron Emission Tomography) or absorption (CT) tomography.[3] Such conical
projections lead naturally to the notion of conical Radon transform (CRT) since linear
projections have led to the Classical Line Radon transform. Several attempts have been
made to find the inversion formula for this case.[4–7]

However, many classes of conical projections can be found in R3. The ones relevant to
one type of Compton cameras are conical projections that swing around a fixed point such
that the cone vertex moves on a two-dimensional surface. The related CRT has unfortunately
no inversion formula to this date. To gain insight to the inversion of such a difficult problem,
it is reasonable to consider first more tractable families of conical projections. This is why,
in this work, we consider conical projections that have fixed axis direction. This family of
conical projections has some nice symmetry properties, such as translational invariance in
a plane perpendicular to the cone axis direction, which permit to find an inversion formula.
The corresponding CRT has been studied first by Cree and Bones although they did not
succeed to get an inversion formula in [8]. It turns out that this CRT may be viewed as
the working support of a particular Compton camera, which consists of the usual gamma
camera with a hole collimator to which a scattering detector is placed ahead of it, see
Figure 2. Of course, technologically, this proposal is awkward since the presence of the
mechanical collimator dispels the very concept of electronic collimation. Nonetheless, on a
theoretical level, this camera makes use of a class of special conical projections (with cone
axis direction perpendicular to a plane), which belongs to the CRT.

In 2005, a first inversion formula for the CRT was established [9] in R3, using circular
harmonic components of functions. Very recently, in 2014, under more general conditions,
Haltmeier [10] has obtained the general analytic inverse of a large class of CRT parameter-
ized by two variables (p, d), where d is the space dimension and p may be related to some
physical effect. Thus, this work opens a wide perspective in mathematics as well as potential
applications in imaging.1 In this paper, the aim is to develop efficient computation image
reconstruction algorithms for the CRT, which positively illustrate these recent analytic
results and possibly usher research into a new direction for emission imaging based on
Radon transforms on cone surfaces.
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330 J. Cebeiro et al.

To this end, we first revisit the concept of back-projection, well-known for the classical
Radon transform in R2 and extend this notion to circular cone surfaces having fixed axis di-
rection. We believe that this step may provide useful hints for constructing back-projections
of more general conical projections occurring, for example, in Compton cameras, which is
thought to be a future potential imaging tool for astronomy, industry applications, homeland
security and medical diagnosis. Due to the inherent geometrical complexity of Comp-
ton camera data and in the absence of exact inversion formulas image reconstruction
of distributed sources may be attempted first by back-projection method and later by
adequate filtered back-projection. In new Compton cameras built on high pressure gaseous
scintillation chamber, the conical projections may depend on more than three parameters
and image reconstruction is performed mostly via back-projections.[12] We next show that
this back-projection operation is globally represented by the adjoint of the CRT. Following
the approach detailed in [13,14], for the convenience of the reader, an inversion formula,
which is a special case of the general results given in [10], is derived and shown to appear
in the form of a filtered back-projection procedure. This speaks favourably for the design
of efficient reconstruction algorithms as will be shown later.

The plan of this article is as follows. Section 2 introduces the CRT as resulting from
the working of the Cree–Bones camera. It gives the definition of the CRT, its Point Spread
Function and derives its analytic inversion formula. The next Section 3 is the main section
on the notion of back-projection and how it is formulated for the CRT via an adjoint CRT
as well as the occurrence of filters in the exact reconstruction formula (see Section 4).
Then numerical simulation results are presented and commented in the following section.
From a practical stand point, they are the necessary evidence which prove the relevance and
importance of theoretical results since practitioners rely on them to build scanner prototypes.
A conclusion closes the paper exposing some future research perspectives based on the
present work.

2. Image formation and the CRT

2.1. Definition

This section describes the working context needed for later use. Some of the results appeared
in the literature. The set-up was given in [9] for a slightly different model in which no account
of radiation spreading is made. The inversion results as well as the expression of the Point
Spread Function have been also obtained for this model although through the method of
harmonic circular components. Inversion results for more generalized models are given in
[10].

Consider the working of the Cree–Bones camera shown by Figure 2. A radiating site
V of an object emits isotropic radiation of calibrated energy E0. Some part of it hits the
scattering detector at site D and then enters the collimator along its axis direction which
is perpendicular to the scattering detector, so that the scattering angle is ω. The absorption
detector, which stands behind the scattering detector and after the collimator, is now set to
register only scattered radiation of energy E(ω).

To write down the scattered flux density received by a site of the absorption detector,
we need the total incoming flux density at site D, before scattering and the expression of
the differential cross section of the Compton effect. This incoming flux density is due to
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Figure 2. Cree–Bones camera.

the contribution of all emitting sites V on the object that are located on a circular cone of
vertex D, of axis perpendicular to the detectors and of opening angle ω.

Let f (x, y, z) be a non-negative and smooth function in R3, representing the radio-
activity density of the object, i.e. it is the density of radiation emitters in the object, which is
in upper half-space z > 0. In the coordinate system of Figure 3, [9], it can be seen that the
integral of f (x, y, z), called RC f (xD, yD, ω) (the subindex C refers to the relevant cone
and distinguish it from the classical Radon transform R), on all the emitting sites V on the
cone, is given by

RC f (xD, yD, ω) =
∫ ∞

0

∫ 2π

0
da f (xD + r sinω cosψ, yD + r sinω sinψ, r cosω)

1

r2
,

(1)
where r = DV , da = r sinω dψ dr (the integration measure on the cone) and 1/r2

accounts for the photometric spreading of radiation from V to D.
Equation (1) defines RC f (xD, yD, ω) as the CRT of f (x, y, z). It is a function on

E = R2 × [0, π/2). From physical considerations, f (x, y, z) is an integrable density on
R2 × R+ with compact support. Nevertheless, RC f (xD, yD, ω) does not have compact
support on E . Recently Haltmeier in [10] has studied a more general CRT with parameters
(p, d), where d is the space dimension and p a variable describing the radial behaviour due
to possible physical effects. Most importantly he has established its analytic inverse. The
case considered here corresponds to his CRT with (p = 2, d = 3), which corresponds to an
imaging system in real three dimensions in which radiation undergoes the usual photometric
spreading law. Some properties of the CRT with (p = 0, d = 3) are analysed in [9,15].

2.2. Image of a point source or Point Source Function (PSF)

Proposition 2.1 The image of a unit point source is the kernel

K(xD, yD, ω|x, y, z) = cosω

z2
δ(

√
(x − xD)2 + (y − yD)2 − z tanω). (2)
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332 J. Cebeiro et al.

Figure 3. Used coordinate system, see [9].

Proof Equation (1) can be rewritten in terms of an integral on z = r cosω

RC f (xD, yD, ω) = sinω
∫ ∞

0

dz

z

∫ 2π

0
dψ f (xD + z tanω cosψ, yD + z tanω sinψ, z).

(3)
We set in Equation (3), f (x, y, z) = δ(x − x0) δ(y − y0) δ(z − z0) when the object is a
unit point source at site (x0, y0, z0). Then RC f (xD, yD, ω) = K(xD, yD, ω|x0, y0, z0), the
kernel of the CRT. Integration over z yields

K(xD, yD, ω|x0, y0, z0)

= sinω

z0

∫ 2π

0
dψ δ(x0 − xD − z0 tanω cosψ) δ(y0 − yD − z0 tanω sinψ). (4)

We convert the two-dimensional cartesian delta function into two-dimensional polar delta
function according to

δ(ξ − ξ ′)δ(η − η′) = 1√
ξ ′2 + η′2 δ

(√
ξ ′2 + η′2 −

√
ξ2 + η2

)
δ(θ − θ ′),

where θ =argη/ξ and θ ′ =argη′/ξ ′.
To get the result we set

ξ = x0 − xD, ξ ′ = z0 tanω cosψ

η = y0 − yD, η′ = z0 tanω sinψ.

Then we obtain

ρ =
√
(x0 − xD)2 + (y0 − yD)2 ρ′ = z0 tanω

θ = tan−1 y0 − yD

x0 − xD
θ ′ = ψ.
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Inverse Problems in Science and Engineering 333

Equation (4) becomes

K(xD, yD, ω|x0, y0, z0) = sinω

z0

∫ 2π

0
dψ

1√
(x0 − xD)2 + (y0 − yD)2

δ

(√
(x0 − xD)2 + (y0 − yD)2 − z0 tanω

)
δ(θ − ψ).

Theψ-integration yields 1 and Equation (2) is obtained since
√
(x0 − xD)2 + (y0 − yD)2 =

z0 tanω. �

In fact, the presence of the delta function means that the two sets of coordinates
(x0, y0, z0) and (x, y, z) are related by a homogeneous equation. Thus, given the point
source (x0, y0, z0), the variables in Radon space (xD, yD, ω) are linked one another by this
homogeneous equation. For fixed ω, we see that the point D = (xD, yD, 0) is on a circle in
the x Oy plane of center (x, y, 0) and radius z0 tanω.

2.3. Inversion

Let f̂ be the Fourier transform on the first two variables of a function f , i.e.

f̂ (u, v, ·) =
∫

R

∫
R

dx dy f (x, y, ·)e−2iπ(ux+vy).

Theorem 2.2 The function f is reconstructed from the two-dimensional Fourier trans-
form of the data RC f by the following integral

f (x, y, z) = 2π z2
∫

R2
du dv e2iπ(xu+yv) (u2 + v2)

×
∫ π/2

0
dω

J0(2π tanω
√
(u2 + v2)z)

cos3 ω
R̂C f (u, v, ω), (5)

where J0(·) is the Bessel function of the first kind and order zero.

Proof To get the inverse formula of the CRT, we take the Fourier transform of Equation
(1) first and rewrite it in polar coordinates in order to convert it to a Hankel transform of
order zero, which is readily invertible.

We first apply the Fourier transform to both sides of Equation (1). The left-hand side
becomes R̂C f (u, v, ω). We get for the right-hand side

= sinω
∫ 2π

0
dψ

∫ ∞

0

dr

r∫
R

∫
R

dxD dyD f (xD + r sinω cosψ, yD + r sinω sinψ, r cosω) e−2iπ(uxD+vyD),

= sinω
∫ 2π

0
dψ

∫ ∞

0

dr

r

∫
R

∫
R

dx dy f (x, y, r cosω) e−2iπ(u(x−r sinω cosψ)+v(y−r sinω sinψ)),

= sinω
∫ 2π

0
dψ

∫ ∞

0

dr

r
f̂ (u, v, r cosω) e2iπr sinω(u cosψ+v sinψ).
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334 J. Cebeiro et al.

Now in Fourier space (u, v), we change to polar coordinates via u = q cosβ, v = q sin β2.
Equation (1) reads now

R̂C f (q, β, ω) = sinω
∫ 2π

0
dψ

∫ ∞

0

dr

r
f̂ (q, β, r cosω) e2iπr sinω(q cosβ cosψ+q sin β sinψ),

= 2π sinω
∫ ∞

0

dr

r
J0(2π qr sinω) f̂ (q, β, r cosω),

where J0(·) is the Bessel function of order zero, given by the integral representation [16]

J0(x) = 1

2π

∫ 2π

0
dθ eix sin θ .

Changing to variables z = r cosω and t = tanω, for which sinω = t√
1 + t2

, and

√
1 + t2

t
R̂C f (q, β, ω) = 2π

∫ ∞

0

dz

z
J0(2π t zq) f̂ (q, β, z). (6)

This is essentially the Hankel transform of
f̂ (q, β, z)

z2
. By applying the so-called Hankel

identity,[17] we obtain

f̂ (q, β, z) = 2πq2z2
∫ ∞

0
t dt

√
1 + t2

t
J0(2π t zq) R̂C f (q, β, t).

Finally, in order to recover f , we perform an inverse Fourier transform to this equation and
get

f (x, y, z) = 2π z2
∫ ∞

0
dt
√

1 + t2

∫ ∞

0
dq q3 J0(2π t z q)

×
∫ 2π

0
dβ e2iπq(x cosβ+y sin β) R̂C f (q, β, t).

Going back to variables u, v, ω, for which dt = dω/ cos2 ω, q = √
u2 + v2 and q dβ dq =

du dv, we obtain the inversion formula3 of Equation (5). �

3. Alternative inversion of the CRT by conical back-projection

3.1. A heuristic discussion on projections and back-projections

As announced before, we wish to discuss in some detail the notion of back-projection. In
many of the new imaging concepts, image reconstruction usually faces the non-existence
of analytic solutions. In this situation one may attempt a crude method of reconstruction,
which goes under the name of back-projection. The purpose of this section is to analyse
the very concept of back-projection in the widely known case of classical Radon transform
and see how it may be understood in the case of the CRT. It is known that such an approach
by back-projection is a very popular reconstruction method, albeit approximate, for many
imaging integral transforms, such as the one in Compton Camera imaging.
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Inverse Problems in Science and Engineering 335

3.1.1. Back-projection for the classical Radon transform R [18]

The notion of back-projection has its origin in the fact that the inverse formula of the classical
Radon transform can be put under the form of the so-called filtered back-projection of the
measured data, see for example [19]. The analytic reconstruction formula of the classical
Radon transform for a function f (x, y) may be put under the form of the integral over the
rotation angle φ of a function which depends uniquely on the expression (x cosφ+ y sin φ),
i.e.

f (x, y) = 1

2π2

∫ π

0
dφ
∫ ∞

−∞
ds

1

(x cosφ + y sin φ)− s

∂

∂s
R f (s, φ). (7)

Such a function, for given φ takes clearly a constant value on lines perpendicular to the
direction specified by the angle φ.

The word projection in CT should not be confused with the notion of geometric projec-
tion in R2 of a point (or a figure) along a direction onto a line. Here it means the registered
cumulated (or integrated) values of a physical density along a line in the plane at a point
of this line. Generally, the process of back-projecting this measured value means a kind
of ‘inversion’, which assigns this measured value to all points on the measurement line.
When this is done for all available projections in a given direction (specified by the angle
φ), a summation over all directions (which is sometimes called a ‘summation image’ in
[19]) is carried out, a ‘rough’ image of the density is obtained. In fact this image suffers
from artefacts and blurs. In some cases, these reconstruction defects can be removed by
using appropriate filters. This is why this method is favoured as a first step in many imaging
processes which do not have an analytic reconstruction formula.

Let R f (s, φ) be the projection of some object density function f (x, y) along the straight
line L(s, φ), where s is the distance of the coordinate origin O to this line and φ is the angle
of the unit normal vector of the line with the axis Ox . Assigning the value R f (s, φ) to all
points of the line L(s, φ), means to construct from R f (s, φ) a function of (x, y), which
takes this value for all (x, y) ∈ L(s, φ). To achieve this goal, we use the canonical equation
of the line L(s, φ)

x cosφ + y sin φ − s = 0, (8)

and construct the function R f (x cosφ + y sin φ, φ), by putting s = x cosφ + y sin φ in
R f (s, φ). It can be verified that this function satisfies all the wanted requirements, hence
the mapping

R f (s, φ) → R f (x cosφ + y sin φ, φ), (9)

represents the back-projection of R f (s, φ) on L(s, φ).
Conversely given a point (x, y) ∈ R2 and a specified value of φ, there is only one

projection line on which (x, y) is situated. Consequently for this point (x, y) and for given
φ, there corresponds only one projection R f (s, φ), where s is the distance of the origin to
the projection line. If we put together all back-projections by summing on φ, but keeping
(x, y) fixed, we get the ‘summation image’ (or the ‘rough’ reconstruction) of the density at
(x, y), ∫ π

0
dφR f (x cosφ + y sin φ, φ). (10)
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336 J. Cebeiro et al.

3.1.2. Back-projection for the CRT or RC
As stated in the introduction, a conical projection means the integral of a density f (x, y, z)
on the upper sheet of a circular cone with vertical axis (parallel to Oz), vertex at (xD, yD) in
the x Oy-plane and opening angleω. So the measured quantity is the data RC f (xD, yD, ω),
a function of three variables in E = R2 × [0, π/2).

Back-projecting this measured value RC f (xD, yD, ω) on the measurement cone con-
sists in constructing a function of (x, y, z) from this data RC f (xD, yD, ω), such that, when
the running point (x, y, z) sits on the cone C, or (x, y, z) ∈ C, this function takes the value
RC f (xD, yD, ω). For this construction, we use the parametric equations of the cone C

x = xD + z tanω cosψ,

y = yD + z tanω sinψ,

z = z (11)

where ψ is given by

tanψ = y − yD

x − xD
, (12)

and, similarly to Equation (9), the mapping

RC f (xD, yD, ω) → RC f (x − z tanω cosψ, y − z tanω sinψ,ω)

= RC f

(
x − z tanω cos tan−1 y − yD

x − xD
, y − z tanω sin tan−1 y − yD

x − xD
, ω

)
, (13)

defines the back-projection of RC f (xD, yD, ω) on the cone C. It can be verified that this
function satisfies the requirement that it takes the value RC f (xD, yD, ω) at any point on
the upper sheet of the cone C.

Conversely given a point (x, y, z) ∈ R3 and a fixed value of ω, this point may be
found on an infinite number of circular cones of vertical axis, of opening angle ω and
of vertex (xD, yD, 0), which is on a circle 
 of center (x, y, 0) in the x Oy-plane and of
radius ρ = √

(xD − x)2 + (yD − y)2 = z tanω, see Figure 4. The position of the vertex
(xD, yD, 0) on this circle is given by the angleψ . Therefore, the point (x, y, z) ∈ R3 belongs
to an infinite set of conical projections parameterized by (ψ, ω) ∈ [0, 2π ] × [0, π/2).

Hence in the back-projection process, with the aim to reconstruct the density f (x, y, z)
from the data RC f (xD, yD, ω), one should take into account this full infinite set of conical
projections by an integration over ψ ∈ [0, 2π ]∫ 2π

0
dψRC f (x − z tanω cosψ, y − z tanω sinψ,ω). (14)

Then a second integration over ω ∈ [0, π/2), would yield the ‘summation image’,
which constitutes a ‘rough image’ reconstruction of the density f (x, y, z), i.e.∫ π/2

0
dω
∫ 2π

0
dψRC f (x − z tanω cosψ, y − z tanω sinψ,ω). (15)

3.2. The adjoint operator

In this section, we discuss the role of the adjoint operator (for the classical Radon transform
as well as the CRT) in the back-projection operation. Broadly speaking the adjoint operator
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Figure 4. Point source and circle 
.

of a linear operator is its transpose. It is related to the dual of the same operator but a Hilbert
structure on the space on which it acts must be specified.4 In the present context, the linear
operators being given by their real delta function kernels (such as (2)), we shall see how
the adjoint operates on functions in image spaces. First we review the case of the classical
Radon transform before going to the case of the CRT.

3.2.1. The classical Radon transform adjoint

As is well known the Radon transform maps functions in R2 to functions in E = R×[0, π ],
via

R f (s, φ) =
∫

R2
dx dy δ(x cosφ + y sin φ − s) f (x, y). (16)

The adjoint R† is thus the mapping from functions in E = R × [0, π ] to functions in R2,
via

R†g(x, y) =
∫

R×[0,π]
ds dφ δ(x cosφ + y sin φ − s) g(s, φ). (17)

Integration on s yields directly the result of the back-projection described in the previous
subsection

R†g(x, y) =
∫ π

0
dφ g(x cosφ + y sin φ, φ). (18)

So the intuitive notion of back-projection has a natural mathematical realization as the
adjoint operator. More details on R† can be found in [18].

Suppose now that we take for R f (s, φ) the classical Radon data for a point source at
(x0, y0) (or PSF), i.e.

R f (s, φ) = δ(x0 cosφ + y0 sin φ − s). (19)

It will be back-projected on the line L(s, φ) as g(x cosφ+ y sin φ, φ) = δ((x − x0) cosφ+
(y − y0) sin φ). The resulting ‘summation image’, obtained by applying the adjoint Radon
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transform R†, is not a delta function, as expected, but the following function (see [19])∫ π

0
dφ δ((x − x0) cosφ + (y − y0) sin φ) = 1√

(x − x0)2 + (y − y0)2
, (20)

which is clearly a ‘rough’ image of the delta function at (x0, y0).

3.2.2. The CRT adjoint

Let R†
C be the adjoint of RC .

Proposition 3.1 The action of R†
C on a function g(xD, yD, ω) can be readily computed

using the integral kernel of RC as

R†
C g(x, y, z) = 1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψ g(x − z tanω cosψ, y − z tanω sinψ,ω).

(21)

Proof By definition using the PSF kernel (Equation (2)), we have

R†
C g(x, y, z) =

∫
R2

dxD dyD

×
∫ π/2

0
dω

cosω

z2
δ

(√
(xD − x)2 + (yD − y)2 − z tanω

)
g(xD, yD, ω). (22)

To calculate this integral we go to the variable t = tanω, which implies that dω =
dt/(1 + t2). Then denoting G(xD, yD, t) = g(xD, yD, ω), Equation (22) becomes

R†
C g(x, y, z) = 1

z3

×
∫

R2
dxD dyD

∫ ∞

0
dt

1

(1 + t2)3/2
δ

(√
(xD − x)2 + (yD − y)2

z
− t

)
G(xD, yD, t).

(23)

The t-integration can be easily carried out, the result is

R†
C g(x, y, z) = 1

z3

∫
R2

dxD dyD

G

(
xD, yD,

√
(xD−x)2+(yD−y)2

z

)
(

1 + (xD−x)2+(yD−y)2

z2

)3/2
(24)

The next step consists in setting polar coordinates in the plane with origin at (x, y), see
Figure 4, so that

x − xD = ρ cosψ

y − yD = ρ sinψ

dxD dyD = ρ dψ dρ. (25)
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Equation (24) now reads

R†
C g(x, y, z) = 1

z3

∫ ∞

0
dρ ρ

∫ 2π

0
dψ

G(x − ρ cosψ, y − ρ sinψ, ρ/z)(
1 + ρ2

z2

)3/2
. (26)

Figure 4 shows precisely that ρ/z = tanω = t . This is a geometric relation which should
not be confused with the ω used in Equation (21) as an integration variable in the definition
of R†

C . Hence replacing ρ by zt in Equation (26), we get the expected result after going
back to g(xD, yD, ω) via G(xD, yD, t) = g(xD, yD, ω). �

Remark 3.2 If L2(R2 × R+) and L2(E) are real valued function spaces equipped with
their respective inner products

〈 f, g〉 =
∫ ∞

0
dz
∫ ∞

−∞

∫ ∞

−∞
dx dy f (x, y, z) g(x, y, z),

[ f, g] =
∫ ∞

−∞

∫ ∞

−∞
dxD dyD

∫ π/2

0
dω f (xD, yD, ω) g(xD, yD, ω), (27)

R† may be defined by [RC f, g] =
〈

f,R†
Cg
〉

for all g ∈ L2(E) and all f ∈ L2(R2 × R+).

Proof

[RC f, g] =
∫

R2
dxD dyD

∫ π/2

0
dω (RC f (xD, yD, ω)) g(xD, yD, ω),

=
∫

R2
dxD dyD

∫ π/2

0
dω sinω∫ 2π

0
dψ

∫ ∞

0

dr

r
f (xD+ r sinω cosψ, yD+ r sinω sinψ, r cosω)g(xD, yD, ω)

=
∫ ∞

0

∫
R

∫
R

dx dy
dz

z
f (x, y, z)

∫ π/2

0
dω sinω∫ 2π

0
dψ g(x − z tanω cosψ, y − z tanω sinψ,ω)

=
〈

f,R†
Cg
〉
,

where we have performed the change of variables⎧⎨
⎩

x = xD + r sinω cosψ
y = yD + r sinω sinψ
z = r cosω.

(28)

So the action of the adjoint R†
C on g has the following expression

R†
Cg(x, y, z) = 1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψ g(x − z tanω cosψ, y − z tanω sinψ,ω).

(29)
�

D
ow

nl
oa

de
d 

by
 [

M
aï

 K
. N

gu
ye

n]
 a

t 0
9:

29
 2

6 
Fe

br
ua

ry
 2

01
6 



340 J. Cebeiro et al.

Remark 3.3 It can be checked that the adjoint operator of the CRT has the kernel given in
Proposition 2.1.

Proof From Equation (29), for an arbitrary function g(xD, yD, ω), we have

R†
C g(x, y, z) = 1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψ g(x − z tanω cosψ, y − z tanω sinψ,ω).

For a point source at (x0, y0) with ω0, we have g(xD, yD, ω) = δ(xD − x0) δ(yD −
y0)

1
2π δ(ω − ω0). Thus R†

C g(x, y, z) is

= 1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψ δ(x − z tanω cosψ − x0)δ(y − z tanω sinψ − y0)

× 1

2π
δ(ω − ω0),

= sinω0

2π z

∫ 2π

0
dψ δ(x − x0 − z tanω0 cosψ) δ(y − y0 − z tanω0 sinψ),

= sinω0

2π z

∫ 2π

0
dψ

∫ ∞

−∞
du e2iπu(x−x0−z tanω0 cosψ)

∫ ∞

−∞
dv e2iπv(y−y0−z tanω0 sinψ),

= sinω0

2π z

∫ 2π

0
dψ

∫ ∞

0
q dq

∫ 2π

0
dβ e2iπq cosβ(σ cos γ−z tanω0 cosψ)

× e2iπq sin β(σ sin γ−z tanω0 sinψ),

= sinω0

2π z

∫ 2π

0
dβ
∫ ∞

0
q dq e2iπ(q cosβ σ cos γ+q sin β σ sin γ ) 2π J0(2πqz tanω0),

= sinω0

2π z
2π
∫ ∞

0
q dq 2π J0(2πqσ) J0(2πqz tanω0),

= sinω0

z

δ(σ − z tanω0)

z tanω0
,

= cosω0

z2
δ

(√
(x − x0)2 + (y − y0)2 − z tanω0

)
.

The integration steps are shortened here. �

4. Filters arising from exact inversion formulas

As noticed, reconstruction by simple back-projection does not lead to ‘clean’ images. In
order to eliminate imperfections filters are used. When exact analytic inversion formulas
exist, one can show that some operations which precede the back-projection can actually
be interpreted as natural filters in the reconstruction process. We shall discuss successively
the cases of the classical Radon transform and the CRT. In general, in the absence of
exact inversion formulas, the filtering operation is of importance for numerical inversion,
in particular in practical cases, see [21]. The question is how to design the proper filters for
a given reconstruction problem.
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4.1. Case of the classical Radon transform R
As pointed out earlier, the exact inversion formula for the classical Radon transform appears
as the back-projection not on the Radon data R f (s, φ) but a particular transform of the
Radon data, i.e. ∫ ∞

0
ds

1

(x cosφ + y sin φ)− s

∂

∂s
R f (s, φ). (30)

This operation (Hilbert transform composed with s-derivative) may be viewed as a ‘filtering’
process, which removes the imperfections inherent to the back-projection procedure.

4.2. Case of the CRT RC
Remark 4.1 Comparing the Equations (15) and (21), expressing the back-projection
operation and the adjoint operation, we observe a slight difference: in the adjoint CRT
the integration on ω has a measure sinω/z. One may already say that the adjoint action is
a filtered back-projection with the filter sinω/z.

Proposition 4.2 The action of the CRT adjoint R†
C on the CRT data RC f (xD, yD, ω)

is given by

R†
CRC f (x, y, z)

= 2π

z

∫ π/2

0
dω sinω

∫
R2

du dv e2iπ(ux+vy) J0(2π z tanω
√

u2 + v2) R̂C f (u, v, ω).

(31)

Proof Equation (21) allows to write

R†
CRC f (x, y, z) = 1

z

∫ π/2

0
dω sinω

∫ 2π

0
dψRC f (x−z tanω cosψ, y−z tanω sinψ,ω).

(32)
We now insert the Fourier representation of RC f (xD, yD, ω) with respect to the two first
variables in the previous equation

RC f (xD, yD, ω) =
∫

R2
du dv e2iπ(uxD+vyD) R̂C f (u, v, ω). (33)

Performing the ψ-integration, we obtain the Bessel function J0(2π z tanω
√

u2 + v2) and
the expected result. �

We are now in a position to write the exact inversion formula (5) under the form of the
action of the CRT adjoint on modified – or ‘filtered’ – CRT data RC f (xD, yD, ω).

Proposition 4.3 The exact inversion formula (5) may be rewritten as the CRT adjoint
of a filtered CRT data in Fourier space with respect to the first two variables

z

sinω
z2 u2 + v2

cos3 ω
R̂C f (u, v, ω). (34)

The first filter is due to the structure of R†
C and the second and third filters arise from the

exact inversion procedure.
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342 J. Cebeiro et al.

Proof Just take formula (5) and rearrange it in the form of Equation (32) and collect
the remaining terms as filtered CRT data in the Fourier space of the two first variables.
As the adjoint form is related to the back-projection form, we have obtained the filtered
back-projection of the inversion formula. �

5. Numerical simulation results

In this section, we describe the numerical implementation of the forward CRT and the
inversion of the CRT using the filtered back-projection algorithm. Basically, the problem
consists in generating the data (i.e. projections of an object) and then applying the proposed
inversion algorithm in order to obtain reconstructions of the original object. A three-
dimensional version of the Shepp–Logan brain phantom intended for medical imaging study
is used as the function to be reconstructed. Voxels in the phantom range values in the interval
[0, 1]. Figure 5 illustrates representative slices of the phantom, for the sake of clarity only
planes labeled by z = 6, 9, 12, 15, 18, 20, 23, 26, 29, 32, 35, 38, 41, 44, 46, 49, 52 and 55
out of 64 planes are shown. Additionally, an error analysis is carried out in order to assess
the quality of the results.

5.1. Discretization description

A three-dimensional medium of size N × N × N is discretized as follows: N = 64 (arbitrary
length unit), �x = �y = �z = 1, −32 ≤ x ≤ 31, −32 ≤ y ≤ 31 and 0 ≤ z ≤ 63. The
original object function is f (x, y, z). The detector array of size Nd × Nd was discretized
using Nd = 160, �xD = �yD = 1, −80 ≤ xD ≤ 79, −80 ≤ yD ≤ 79. In this scheme the
central point in the detector plane (xD, yD) = (0, 0) coincides with the origin of coordinates
of the medium (x, y, z) = (0, 0, 0).

Both, the direct and inverse problems involve integrals (Equations (1) and (21)) that must
be computed numerically. Summations corresponding to numerical integration are carried
out using the following steps: �r = 1.2 and �ψ = 0.01 rad (∼= 0.57◦, Nψ = 628). When
points in the summation grid do not fit those of the discrete medium, a linear interpolation
method is used to calculate the values of the function at the new positions. Considering
that the quality of reconstructions relies heavily on the data, care must be taken in order to
provide an adequate basis for the inverse operation. The dimensions of the plane detector
are important parameters. The support of the CRT defined by Equation (1) is not bounded,
but this property is obviously lost when discretizing. In the discrete version of the CRT, the
far most point with non-zero value depends on both the discretization of the projection angle
and the size of the object under study. In the scheme used, given that upper central points
project to the external areas of the projection plane, a truncation at the borders of the plane
would reduce dramatically the quality of the upper planes of the reconstructions. In practice,
this problem is addressed by using a square detector plane whose side is approximately three
times larger than the support of the medium (Nd ∼= 3N ).

In order to reconstruct successfully a function of N 3 values, there is one requirement
that must be fulfilled by the data. If there are N 3 voxels for which the value has to be
determined, and since projections for a determined angle provide N 2

d samples (detector

array of Nd × Nd ), at least N 3

N 2
d

angles will be needed to acquire enough data to solve for

the N 3 unknowns. In numerical inversions of the classical Radon transform, the reduced
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Inverse Problems in Science and Engineering 343

Figure 5. Original three-dimensional Shepp–Logan phantom used for simulations. From top to
bottom and from left to right planes with z = 6, 9, 12, 15, 18, 20, 23, 26, 29, 32, 35, 38, 41, 44, 46,
49, 52 and 55.
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344 J. Cebeiro et al.

sampling density at the peripheral area of the plane is balanced by, at least, doubling this
number.[22] Sixty-four angles (Nω = 64) were considered in the range [0, π2 ) leading to
an angular resolution of �ω = 0.0242 rad (∼= 2.21◦).

5.2. Projections

Projections are calculated using Equation (1) that describes the signal measured in a planar
detector when it is exposed to scattered radiation under the hypothesis stated in Section
2.1. The discrete implementation of the direct CRT is straightforward and discretization
parameters are discussed in Section 5.1. Figure 6 shows some images of the conical
projections of the Shepp–Logan phantom labeled by its corresponding scattering angle.
It can be seen that, for large angles, photons arrive at the borders of the projection plane
leaving the central area deserted.

5.3. Reconstruction algorithm by filtered back-projection

In the proposed method, filtering is performed in the Fourier domain according to the
formulas developed in Section 4.2. However, this process is not as straightforward as the
direct problem is. Even though R†

C applied to the inverse Fourier transform of (34) gives rise

Figure 6. Conical projections of Shepp–Logan phantom at four different scattering angles ω.
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Inverse Problems in Science and Engineering 345

Figure 7. Scheme of reconstruction.

Table 1. NMSE and NASE [%] for different reconstructions from noiseless data.

SNR Shepp–Logan Hamming Cosine

NMSE 1.23 1.29 1.33
NASE 5.05 5.09 5.11

to an exact inversion formula of the CRT, its discrete implementation produces an artefactual
result as a consequence of the divergence by the numerator of the third filter u2+v2

cos3 ω
. This

behaviour, also known in the case of the ramp filter of the classical Radon transform, can
be compensated by a convolution with a smoothing window using a technique known as
apodization. This extra smoothing filter, intended exclusively for discrete reconstruction,
is represented by W (u, v) in the Fourier domain and operates together with the ones in
Equation (34). The global action of the four filters on the data is described by:

z

sinω
z2 u2 + v2

cos3 ω
W (u, v)R̂C f (u, v, ω) (35)

Figure 7 shows this implementation. The two-dimensional Fourier transform is applied to
every slice of the projection RC f (xD, yD, ω) labelled by the scattering angleω. The result-
ing planes, R̂C f (u, v, ω), are multiplied by the corresponding four filters in Equation (35).
Finally, the inverse Fourier transform is computed. The result is numerically integrated
twice in order to obtain the reconstruction of f (x, y, z): first in ψ (back-projection) and
then in ω (summation of back-projections). The integration step �ψ = 0.01 rad is chosen
as small as possible in order to reduce the artefacts produced by the discrete summation
when the algorithm of back-projection is applied.
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346 J. Cebeiro et al.

Figure 8. The filter u2+v2

cos3 ω
(ω = 0) and its different smoothings.

5.4. Smoothing windows

There are several one-dimensional windows widely used for filtering in the context of the
classical Radon transform: Shepp–Logan, Hamming, von Hann, cosine filters, etc. Here, we
define three windows to act as two-dimensional filters in a three-dimensional reconstruction
according to formula (35). These windows are defined as follows:

WH (u, v) =
{

0.54 + 0.46 cos(2π
√

u2 + v2),
√

u2 + v2 ≤ 0.5
0.54,

√
u2 + v2 > 0.5

(36)

WSL(u, v) =
⎧⎨
⎩

sin(2π
√

u2+v2)

2π
√

u2+v2
,
√

u2 + v2 ≤ 0.5

0,
√

u2 + v2 > 0.5
(37)

Wcos(u, v) =
{

0.5
(

cos(2π
√

u2 + v2)+ 1
)
,
√

u2 + v2 ≤ 0.5

0,
√

u2 + v2 > 0.5
(38)

where u andv are the variables of the two-dimensional Fourier domain, (u, v) ∈ [−0.5, 0.5]×
[−0.5, 0.5]. Figure 8 shows the product between the filter u2+v2

cos3 ω
, with ω fixed to 0, and

each of the smoothing windows. Given that they can be rewritten as functions of the radial

D
ow

nl
oa

de
d 

by
 [

M
aï

 K
. N

gu
ye

n]
 a

t 0
9:

29
 2

6 
Fe

br
ua

ry
 2

01
6 



Inverse Problems in Science and Engineering 347

Figure 9. Reconstruction with cosine smoothing window (NMSE = 1.33% and NASE = 5.11%).
The same layout as in Figure 5.
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348 J. Cebeiro et al.

Figure 10. Reconstruction with cosine smoothing window and white Gaussian noise SNR = 40 dB
(NMSE = 1.34% and NASE = 5.36%). The same layout as in Figure 5.
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Figure 11. Reconstruction with cosine smoothing window and white Gaussian noise SNR = 30 dB
(NMSE = 1.46% and NASE = 6.39%). The same layout as in Figure 5.
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350 J. Cebeiro et al.

variable ρ = √
u2 + v2, all of them exhibit circular symmetry. While Shepp–Logan and

cosine windows reach zero values at high frequencies, Hamming window is never zero and,
as a consequence, the harmonic content of the functions filtered using it is expected to be
higher than the others.

5.5. Image reconstruction quality

In order to evaluate the quality of simulations, we define two measures of the error,
Normalized Mean Square Error (NMSE) and Normalized Mean Absolute Error (NASE)
[23]:

NMSE = 100

N 3

∑N 3

i=0

(
fi − f̃i

)2

maxi {fi} (39)

NASE = 100

N 3

∑N 3

i=0 |fi − f̃i|
maxi {fi} (40)

where f̃ and f are the reconstructed and reference functions respectively.

5.6. Image reconstruction results

Figure 9 shows the result of reconstructions using a cosine smoothing window. As in the
case of the original phantom, only planes z = 6, 9, 12, 15, 18, 20, 23, 26, 29, 32, 35, 38,
41, 44, 46, 49, 52 and 55 are exhibited. Table 1 shows NMSE and NASE for the smoothing
windows proposed in Section 5.4. Even though the errors are slightly bigger in the case of
the cosine window, visually the reconstructions are similar with the three windows. Thus,
we only show the results of the worst case which look already acceptable.

5.7. Reconstructions from noisy projections

The same procedure was applied to projections corrupted with additive Gaussian noise with
Signal to Noise Ratios SNR = 30.4 dB and SNR = 40.3 dB. Measures of reconstruction
errors were NMSE = 1.36% and NASE = 6.39% for SNR = 30.4 dB and NMSE = 1.34%
and NASE = 5.36% for SNR = 40.3 dB. Figures 10 and 11 illustrate the results.

6. Discussion

The inversion of the CRT transform by the filtered back-projection algorithm involves the
action of the filter u2+v2

cos3 ω
. For fixedω, this filter boosts high frequencies in the reconstruction,

so a convolution with different smoothing windows (cosine, Shepp–Logan or Hamming) is
performed. Reconstructions from noiseless projections with apodization exhibit a general
good quality. The bounds of the object are well defined, the small structures inside are
properly recovered and the contrast between different zones is conserved. In what concerns
figures of merit, Table 1 suggests that there is no significant difference among the smoothing
windows. Figure 10 indicates that the results are acceptable for very low levels of noise.
Nevertheless, for higher levels of noise (Figure 11), a denoising technique should be
applied beforehand in order to obtain appropriate data for reconstruction. Regarding the
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reconstruction of the different slices of the phantom, the error in upper planes tends to be
larger. This effect is explained by the fact that, for a given angle, photons emitted in the upper
part of the medium arrive at the external parts of the detector that were not considered in
the discretization (see the explanation of the truncation in Section 5.1). This problem could
be addressed by expanding the planar detector.

7. Conclusion and perspectives

In this work, we have shown that the concept of back-projection which has emerged from
the study of the classical Radon transform can be applied to Radon transforms on a special
class of circular cone surfaces. By means of appropriate filtering, this procedure leads to an
inversion formula which is identical to the one derived analytically. We have illustrated this
fact by constructing efficient reconstruction algorithms dictated by this approach and have
shown its image quality on numerical simulations. This result suggests to test this procedure
on other emission imaging such as [23], for which both exact and numerical results are
known and propose further extensions in more complicated imaging CRTs which do not
have exact analytic inverses.
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Notes

1. In two dimensions applications to emission imaging have been considered in [11].
2. For the sake of readability, we keep the same name of the functions even after making a change

of variables.
3. The inversion formula of [9] looks different because it is obtained through the use of circular

components of involved functions.
4. The difference between adjoint and dual is discussed in [20].
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