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Abstract
A new circular-arc Radon transform arising from the mathematical modeling
of image formation in a new modality of Compton scattering tomography is
introduced. We describe some of its properties and establish its analytic inverse
formula. This result demonstrates the feasibility of image reconstruction from
Compton scattered radiation in Compton scattering tomography. We also show
that it belongs to a larger class of Radon transforms on algebraic curves, which
remain invariant under a specific geometric inversion.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the seminal work of Radon [1], which finds numerous applications (computed
tomography, single-photon emission computed tomography (SPECT), positron emission
tomography (PET), etc), many extensions of this integral transform have been widely
discussed, in particular in the literature of imaging science. This is the case when results
of measurements appear in the form of integrals of a physical quantity over lower dimensional
manifolds. The relevant problem to solve is the recovery of the physical quantity of interest
as a function in R2. The field of such problems is known in mathematics as integral geometry
in the sense of Gel’fand [2] and in image processing as image reconstruction.

As the circle is the simplest non-trivial curve in the plane next to the straight line, it
becomes the natural object on which a new Radon transform can be defined. However, a
circle has three parameters (two for its center and one for its radius). Therefore to reduce
data redundancy, a constraint is usually imposed. A few examples of circular-arc Radon
(CAR) transforms are known so far. Quinto [3] has considered the case of all translations of a
circle of fixed radius as well as circles centered on a circle and shown that they are invertible.
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This case is of interest for thermo-acoustic (and opto-acoustic) tomography [4, 5]. Synthetic
Aperture Radar—SAR (or SOund NAvigation and Ranging—SONAR) imaging makes use of
circles of varying radius but centered on a straight line [6–8]. CAR transforms along paths
that are not on the zero sets of harmonic polynomials were proved to be invertible in [9].
Finally Compton scattering tomography (CST), a two-dimensional imaging process based on
scattered radiation, has one modality for which image formation is built on Radon transforms
defined on a set of circles passing through a fixed point of the plane [10].

In this work we describe a recently proposed modality of Compton scattering tomography
[11], which is at the origin of a new Radon transform. It is defined on circular arcs having
a chord of fixed length rotating around its middle point. Obviously such a condition is far
more complicated than the two conditions previously met in imaging systems. Yet, it will be
shown that its inversion can be achieved through analytic techniques established long ago by
Cormack [12].

Generally the choice of a family of circles is dictated by the physical mechanism of image
formation. But there also exist other mechanisms which lead to Radon transforms on other
types of curves such as ellipses [13], parabolas [14], hyperbolas [15, 16] or V-line (or a pair
of half-lines from a vertex in the plane) [17]. It is not known whether higher order algebraic
curves could support more sophisticated image formation mechanisms.

It was Cormack [12] who first succeeded to invert a large class of Radon transforms on
what he called α-curves, of which are straight lines, parabolas and one branch right-angle
hyperbolas. He also showed that geometrically inverted α-curves, which he called β-curves
also support invertible Radon transforms. The β-curves contain, as special cases, circles
passing through a fixed point, cardioids and one-branch Bernoulli lemniscates. Palamodov
has given the reconstruction of functions from the data of its integrals over half-circles with
centers at the diameter of a half-disc H [18]. But, as far as we are aware, our CAR transform
seems to be a new member of invertible Radon transforms in the plane.

Relations between these algebraic curve Radon transforms with the classical Radon have
been routinely studied. In particular, the connection between parabolic and straight-line Radon
transforms has been found by Denecker et al [19], whereas the relation between standard Radon
transforms and SAR/SONAR transforms is discussed in [6].

In this paper, we will be concerned essentially with the new Radon transform on arcs
of circles and the derivation of its inverse. In section 2, we recall the principle of CST
as suggested more than 30 years back. We then review the modality proposed by Norton,
who has shown that a possible implementation of CST can be made with a CAR transform
based on circles which pass through the radiation point source. We then introduce the new
CAR transform after showing how it occurs in a new modality of CST. The merits of this
CAR transform cannot be claimed until the existence of its inverse transform is established.
Section 3 is precisely devoted to the derivation of the inverse transform. This implies that
image reconstruction is feasible with Compton scattered radiation in this modality of CST.
Finally section 4 discusses some possible extensions of this Radon transform on families of
algebraic curves globally invariant under geometric inversion. Conclusion and perspectives
are contained in the last section.

2. Compton scattering tomography and circular-arc Radon transforms

2.1. Compton scattering tomography

For more than 40 years, transmitted penetrating radiation such as x- or gamma-rays have been
routinely used to probe the hidden parts of matter and/or tissues [20–22]. The measurement of
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Figure 1. Norton’s Compton scatter tomography.

their attenuation along all possible linear paths in the plane form a set of Radon data, which,
once fed into a chosen inversion formula, provides the reconstruction of the probed medium.
In this imaging modality radiation scatter acts as a nuisance by blurring images and it should
be removed or at least be compensated.

However it was realized, in the early 1970s, that the Compton effect, which is the
scattering of x- or gamma-photons with electric charges in matter, may give rise to new
challenging imaging modalities [23]. The idea is to register the outgoing scattered photons
according to their energies in order to image the hidden part of objects of interest. CST was
then born. Several modalities have been proposed and tested [24]. But so far none of them
has emerged as sufficiently efficient to be of widespread use.

Extension of this concept to three-dimensional imaging exists in two modalities: Compton
camera imaging [25] and Compton scattered radiation imaging [26–29]. The first one is based
on Radon transform on conical surfaces with the swinging axis, whereas the second one is
modeled by Radon transform on cone surfaces with the fixed axis direction. Both of them are
illustrations of an astute use of Compton scattering for imaging hidden parts of objects.

2.2. Norton’s CST

In 1984, Norton [10, 30] worked out a CST modality which is based on a Radon transform on
circles having a fixed common point. The functioning principle is given by figure 1. A point
source S emits primary radiation toward an object, of which M is a running point. A point
detector D moves along an Ox-axis and collects, at the given energy E, scattered radiation
from the object. The physics of Compton scattering demand that the registered radiation flux
energy f̂ at site D is due to the contribution of all scattering sites M lying on an arc of circle
from S to D subtending an angle (π −ω), where ω is the scattering angle corresponding to the
outgoing energy E, as given by the Compton formula, see for example [31]. Mathematically,
f̂ is essentially the Radon transform of the object electron density f (M) on such an arc
of circles, when radiation attenuation and photometric effects on radiation propagation are
neglected. Image reconstruction is then feasible if an exact inversion formula for this type
of CAR transform is available. This was done first by Cormack with a new technique of
inversion, which turned out to work also for α- and β-curves, see [12]. Much later on, Norton
came up with an alternative inversion formula [10].

3
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2.3. Review of the Cormack circular Radon transform inverse

To facilitate the reading of the following sections, we briefly recall the inversion approach to
the Cormack CAR transform, introduced above.

Consider a circle of diameter p, which goes through S the origin of coordinates, see
figure 1. Let its center � be defined by

−→
S� = (p/2)n, such that n makes an angle φ

with respect to a reference direction Sx. A running point M on the circle is defined by−→
SM = r(γ ) k, where cos γ = (k · n). The polar equation of the circle is clearly cos γ = r/p,
with −π/2 < γ < π/2. The circle arc element can easily be evaluated as

ds =
√

(dr)2 + (r dγ )2 = r dγ
1

cos γ
= p dγ. (1)

An integrable function f (M) is represented, in this polar coordinate system, by f (r, θ), where
θ = γ + φ. Its CAR transform is given by the integral

f̂ (p, φ) =
∫

Arc
ds f (r, γ + φ)|r=p cos γ = p

∫ π/2

−π/2
dγ f (r, γ + φ)|r=p cos γ . (2)

This defining equation can be reformulated in terms of Fourier angular components of f and
f̂ :

f (r, θ) =
∑

l

fl(r) eilθ , with fl(r) = 1

2π

∫ 2π

0
dθ e−ilθ f (r, θ)

f̂ (p, φ) =
∑

l

f̂l(p) eilφ, with f̂l(p) = 1

2π

∫ 2π

0
dφ e−ilφ f̂ (p, φ)

as

f̂l(p) = p

∫ π/2

−π/2
dγ fl(r)|r=p cos γ eilγ . (4)

From the polar equation of the circle we have

r dγ
1

cos γ
= p dγ = − dr

sin γ
, (5)

and taking into account the symmetry in γ , a final form, after going back to the variable r,
change of integration bounds and expressing all quantities in terms of r, arises as

f̂l(p) = 2
∫ p

0
dr

cos l(cos−1(r/p))√
1 − (r/p)2

fl(r). (6)

This is in fact one of the forms of the Tchebycheff transform [32], called the Cormack
transform, by Barrett in [33]. The recovery of the circular component fl(r) is done by
integrating both sides of this equation on an appropriately chosen function of p. Thanks to the
formula discovered by Cormack [12] (which is in fact a special case of a general property of
Gauss hypergeometric functions [34]), the right-hand side of the equation turns out to be the
primitive of the product of fl(r) with a known function of r. Thus, fl(r) can be extracted by
a simple derivation. We shall meet the same inversion procedure for the CAR transform.

2.4. A new modality in CST

Recently we have suggested a new modality for CST and presented some preliminary results
on its performance [11]. Figure 2 shows how this novel modality of CST works. An emitting
radiation point source S is placed at a distance 2p from a point detector D. The segment SD
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Figure 2. Principle of the CAR transform.

joining them rotates around its middle point O. At site D the single-scattered radiation flux
density is collected from the scanned object for a given angular position of the line SD and
at a given scattering energy E, (or equivalently at scattering angle ω). Thus, thanks to the
physics of the Compton effect, the detected radiation flux density f̂ (τ, ϕ) is the integral of
the electron density f (M) on this class of circular arc, where τ = cot ω and ϕ is the rotation
angle made by the mediator line of the segment SD with a fixed reference axis, see figure 2.
Consequently this image formation leads to a novel class of Radon transform on a particular
class of circular arcs, provided that radiation attenuation and photometric effects on radiation
propagation are not taken into account.

2.5. Circular-arc Radon transform

The family of circular arcs, on which this new Radon transform is defined, subtend an angle
(π − ω). Their radius is p/sin ω. A running point M on the circular arc is localized by its
polar angle θ and its distance from the origin OM = r . The direction of OM makes an angle
γ with the mediator line of SD, which itself makes an angle ϕ with a fixed polar direction, as
shown in figure 2.

From the cosine identity for the triangle �OM,

�M2 = OM2 + O�2 − 2 OM O� cos �̂OM, (7)

and one can obtain the circle equation after making the substitutions �M = p/ sin ω, OM = r

and �̂OM = (π − γ ) in the previous equation:

p2 = r2 + 2prτ cos γ. (8)

The r-positive root of equation (8) describes the physically relevant circular arc

r = r(cos γ ) = p(
√

1 + τ 2 cos2 γ − τ cos γ ). (9)
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The second r-root describes the complementary arc below the SD line, which corresponds
to a subtended angle ω, hence physically not relevant. As the product of the r-roots of
equation (8) is p2, these two arcs are inverse to each other in a geometric inversion transform
of center O and module p. Consequently the whole circle is globally invariant with respect to
this inversion and the locus of invariant points in this inversion is the circle (�) of radius p and
center O. Thus, the physical range of γ is −π/2 < γ < π/2, and p(

√
1 + τ 2 − τ) < r < p.

Outside this interval r = 0.
Alternatively, the circular-arc equation may also be written as

cos γ = 1

2τ

(
p

r
− r

p

)
(10)

displaying a reflection symmetry with respect to γ . In fact the symmetry is even greater, as
the equation remains invariant under the simultaneous transformations

ω −→ (π − ω) and (r, p) −→ (1/r, 1/p). (11)

Actually we do not need backscattering because by rotating the scanning equipment beyond
ϕ > π , we can find ourselves in the same situation as exploring with an angle larger than π/2.
This fact can also be seen in the inversion equation. Replacing ω by (π − ω) amounts to flip
the sign of τ . This is also equivalent to take the equation

cos γ = 1

2τ

(
p

r
+

r

p

)
,

instead of equation (10). The circular-arc line element ds can readily be given as

ds = r dγ

√
1 + τ 2

1 + τ 2 cos2 γ
= dr

√
1 + τ 2

τ sin γ
. (12)

With this line element, the CAR transform of a function f (r, θ) is

f̂ (τ, ϕ) =
∫

ŜD

ds f (r, θ), (13)

where f is an integrable function having a compact support, which is assumed to be strictly
inside the inversion circle (�).

We now derive a new integral equation linking f̂l(τ ) to fl(r), the circular components of
f̂ (τ, ϕ) and f (r, θ). Since θ = (ϕ − γ ) from figure 2 and accounting for the invariance of the
integrand under γ ←→ −γ , equation (13) takes the form

f̂l(τ ) = 2
∫ π/2

0
dγ r(cos γ )

√
1 + τ 2

1 + τ 2 cos2 γ
fl(r(cos γ )) cos lγ . (14)

Now using

dγ
r(cos γ )√

1 + τ 2 cos2 γ
= dr

τ sin γ
= dr√

τ 2 − 1
4

(
p

r
− r

p

)2
, (15)

we change back to the r-variable in equation (14) and compute the new r-integration bounds

for γ = 0, r = p(
√

1 + τ 2 − τ), (16)

for γ = π/2, r = p. (17)

Equation (14) finally becomes

τ f̂l(τ )√
1 + τ 2

= 2
∫ p

p(
√

1+τ 2−τ)

dr√
1 − 1

4τ 2

(
p

r
− r

p

)2
fl(r) cos

[
l cos−1

(
1

2τ

(
p

r
− r

p

))]
. (18)

Compare equation (18) to equation (6).

6
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3. Inversion of the circular-arc-Radon transform

3.1. Derivation

We are now in a position to put equation (18) in the form of a Cormack’s integral [12], which
lends itself to inversion using an integral identity [34]. Let

q = 1

τ
= tan ω, and s−1 = 1

2

(
p

r
− r

p

)
. (19)

Since r > 0, we have r = p(
√

1 + s−2 − s−1) and
dr

r
= ds

s
√

1 + s2
. (20)

For simplicity, let hl(r) = r fl(r). The new integration boundary values on s are

for r = p(
√

1 + τ 2 − τ), s = q (21)

for r = p, s = ∞. (22)

Moreover with
τ√

1 + τ 2
= 1√

1 + q2
, (23)

equation (18) becomes

f̂l(1/q)√
1 + q2

= 2
∫ ∞

q

ds

s
√

1 + s2
hl(p(

√
1 + s−2 − s−1))

cos l(cos−1(q/s))√
1 − (q/s)2

. (24)

Equation (24) has now exactly the same structure as of equation (12a) of [12] and
becomes appropriate for Cormack’s inversion technique. We follow Cormack’s procedure
by multiplying both sides of equation (24) by

cosh(l cosh−1(q/t))

q
√

(q/t)2 − 1
, (25)

and integrate over q from t to ∞. This yields∫ ∞

t

dq
cosh(l cosh−1(q/t))

q
√

(q/t)2 − 1

f̂l(1/q)√
1 + q2

= 2
∫ ∞

t

dq
cosh(l cosh−1(q/t))

q
√

(q/t)2 − 1

×
∫ ∞

q

ds

s
√

1 + s2
hl(p(

√
1 + s−2 − s−1))

cos l(cos−1(q/s))√
1 − (q/s)2

. (26)

Since fl(r) is of compact support, we can rearrange the two-dimensional integration on the
right-hand side of equation (26) into

2
∫ ∞

t

ds

s
√

1 + s2
hl(p(

√
1 + s−2 − s−1))

∫ s

t

dq
cosh(l cosh−1(q/t))

q
√

(q/t)2 − 1

cos l(cos−1(q/s))√
1 − (q/s)2

. (27)

But in [12, 34], it is shown that∫ s

t

dq
cosh

(
l cosh−1

(
q

t

))
q

√(
q

t

)2 − 1

cos l(cos−1(q/s))√
1 − (q/s)2

= π

2
. (28)

This result leads to the following form of the integral relation between circular components:∫ ∞

t

ds

s
√

1 + s2
hl(p(

√
1 + s−2 − s−1)) = 1

π

∫ ∞

t

dq
cosh(l cosh−1(q/t))

q
√

(q/t)2 − 1

f̂l(1/q)√
1 + q2

. (29)

7
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Extraction of fl is achieved by differentiation with respect to t on both sides of equation (29):

−π

t
√

1 + t2
p(

√
1 + t−2 − t−1)fl(p(

√
1 + t−2 − t−1))

=
[

d

dt

∫ ∞

t

dq
cosh(l cosh−1(q/t))

q
√

(q/t)2 − 1

f̂l(1/q)√
1 + q2

]
t= 2pr

(p2−r2 )

. (30)

It remains now to re-insert the original variable r in equation (30). By putting r =
p(

√
1 + t−2 − t−1), we can work out

t = 2pr

(p2 − r2)
, and

1

t
√

1 + t2
= 2pr

(p2 + r2)
. (31)

Equation (30) yields the circular component fl(r) of f (r, θ):

fl(r) = (−)
(p2 + r2)

2πpr2

[
d

dt

∫ ∞

t

dq
cosh(l cosh−1(q/t))

q
√

(q/t)2 − 1

f̂l(1/q)√
1 + q2

]
t= 2pr

(p2−r2 )

. (32)

A simple change of variables in the integration shows that equation (32) may be recast as

fl(r) = (−)
(p2 + r2)

2πpr2

[∫ ∞

t

dq
cosh(l cosh−1(q/t))√

q2 − t2

d

dq

(
f̂l(1/q)√

1 + q2

)]
t= 2pr

(p2−r2 )

. (33)

Finally f (r, θ) is reconstructed through its Fourier expansion with the circular components
fl(r), as given by equation (32). Note that the integration on q means that one has to collect
data with the scattering angle from π/2 to a certain value corresponding to t. This is the hole
theorem as quoted in [12]. Finally this inversion structure suffers from data noise propagation
for which a cure is proposed in [35].

3.2. Advantages of the new CST modality

The analytical inverse formula (32) (or (33)) is the mathematical basis for a new image
reconstruction method via the object electron density in this CST modality. This may be
viewed as an alternative to image reconstruction via the object attenuation map by standard
computed tomography (CT), because the attenuation property of matter may change in time
as opposed to its electron density. It opens a new way for probing the inside of matter under
working conditions which complement those of the existing CST modality. In fact in Norton’s
1995 CST modality, the nature of the CAR transform dictates a scanning process on one side
of the line source–detector. This is appropriate for large objects such as concrete walls, metal
structures in ship building and the like. However there also exists a need for imaging smaller
objects in non-destructive industrial testing as well as in medical imaging. For these objects,
scanning should be rapid and restricted to an adjustable reduced volume in which residual stray
radiation can easily be shielded. This is why the proposed CST modality, based on the CAR
transform, is more appropriate, in particular when a large number of objects need to be imaged
in a row. Moreover, such a CST scanner can be built with the existing detector/detection
technology, which has been shown to work with primary (or non-scattered radiation) as well
as with scattered radiation. This would make it suitable for widespread use.

8
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4. A generalization of the circular-arc Radon transform

4.1. Definition

In this section we examine the question of whether or not one can extend the idea of Cormack
for finding more general curves on which a Radon transform can be defined so that it can be
inverted by the same procedure. The essence of the idea is to come up with a similar functional
form by assuming at first that relevant curves should be of the general type

τ cos(aγ ) = g(xa), where x = p

r
,

(34)
− π

2a
< γ <

π

2a
and a ∈ R+.

Here g is an arbitrary function, p is a characteristic length of the system and τ ∈ R+ is a
parameter. By differentiation one can show that

r dγ

xag′(xa)
= dr

τ sin (aγ )
= dr√

τ 2 − g2(xa)
. (35)

Hence the arc element is

ds =
√

dr2 + (r dγ )2 = dr

√
τ 2 − g2(xa) + (xa g′(xa))2

τ 2 − g2(xa)
. (36)

This allows us to define the Radon transform of a function f (r, θ) as

f̂ (τ, ϕ) =
∫

ŜD

ds f (r(γ ),−γ + ϕ) =
∫ r2

r1

dr

√
τ 2 − g2(xa) + (xa g′(xa))2

τ 2 − g2(xa)
f (r,−γ + ϕ),

(37)

where γ = a−1 cos−1(g/τ). The integration limits are determined by g((p/r1)
a) = τ and

by g((p/r2)
a) = 0. Now going to the circular components as before, the integral equation

linking them is

f̂l(τ ) = 2
∫ r2

r1

dr

√
τ 2 − g2(xa) + (xa g′(xa))2

τ 2 − g2(xa)
fl(r) cos(lγ )|γ=a−1 cos−1(g/τ). (38)

Since g does not depend on τ , if we demand that

−g2(xa) + (xa g′(xa))2 = C constant, (39)

then equation (38) becomes
τ√

τ 2 + C
f̂l(τ ) = 2

∫ r2

r1

dr
cos(l/a cos−1(g/τ))√

1 − (g(xa)/τ)2
fl(r). (40)

This equation has the required form for inversion with Cormack’s method.
So we must solve the differential equation (39). Putting z = (xa) with x = p/r , it is easy

to verify that the general solution takes the form of a linear fractional relation

g(z) =
(

p′z +
q ′

z

)
with C = −4p′q ′. (41)

Conversely we can work out z (resp. r) as a function of g:

z = g

2p′ ±
√(

g

2p′

)2

− q ′

p′ and r = p

⎛⎝ g

2p′ ±
√(

g

2p′

)2

− q ′

p′

⎞⎠−1/a

, (42)

and compute dr in terms of g, and replace r by its expression in g.

Remark 1. A different type of generalization has been studied by Kurusa [36]. It is defined
on closed curves of R2 having strictly convex distance functions.

9
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4.2. Special cases

We observe that equation (41) contains the two cases solved by Cormack when either p′ or q′

is zero, i.e.

cos aγ =
(p

r

)a

for q ′ = 0, and cos aγ =
(

r

q

)a

for p′ = 0 (43)

We now examine a non-trivial example of the previous generalization, for which the curve
equation is simply

cos aγ = 1

2τ

[(p

r

)a

−
(

r

p

)a]
, (44)

where a ∈ R+ and −π/2a < γ < π/2a. Alternatively, we can solve for r(
r

p

)a

= (
√

1 + τ 2 cos2 aγ − τ cos aγ ). (45)

The corresponding differential dr is

dr = τ sin aγ√
1 + τ 2 cos2 aγ

r(cos γ ) dγ ; (46)

hence, the curve element ds is

ds = r dγ

√
1 + τ 2

1 + τ 2 cos2 aγ
= dr

1

τ sin aγ
. (47)

The curvilinear-arc Radon transform is now given by the integral

f̂ (τ, ϕ) =
∫

Arc
ds f (r(cos γ ), θ) =

∫ π/2a

−π/2a

r dγ

√
1 + τ 2

1 + τ 2 cos2 aγ
f (r(cos γ ), γ + ϕ). (48)

Going over circular components we find

f̂l(τ ) = 2
∫ π/2a

−π/2a

r(cos γ ) dγ

√
1 + τ 2

1 + τ 2 cos2 aγ
fl(r(cos γ )) cos(lγ ). (49)

Now after going back to the r-variable, this integral equation becomes

τ f̂l(τ )√
1 + τ 2

= 2
∫ p

p(
√

1+τ 2−τ)1/a

dr√
1 − (

1
2τ

[(
p

r

)a − (
r
p

)a])2
fl(r) cos(lγ ). (50)

with

γ = 1

a
cos−1 1

2τ

[(p

r

)a

−
(

r

p

)a]
. (51)

Setting as before

q = 1

τ
and

1

s
= 1

2

[(p

r

)a

−
(

r

p

)a]
⇒ dr = r

a

ds

s
√

1 + s2
, (52)

we end up with the final equation

τ f̂l(τ )√
1 + τ 2

= 2
∫ ∞

q

1

a

ds

s
√

1 + s2

1√
1 − (q/s)2

×hl(p(
√

1 + s−2 − (1/s))1/a) cos

(
l

a
cos−1(q/s)

)
, (53)

where hl(r) = r fl(r) as before. This last equation has again the precise structure of Cormack’s
equation [12], thus invertible with the same technique.

10
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In particular, for a = 1/2, 2, we have the equivalent inversion invariant α- and β-curves
of [12].

• For a = 1/2, √
r

p
= (√

1 + τ 2 cos2(γ /2) − τ cos(γ /2)
)
. (54)

This curve is closed since −π < γ < π . It has the form of a one branch lemniscate.

• For a = 2, (
r

p

)2

= (√
1 + τ 2 cos2 2γ − τ cos 2γ

)
. (55)

This is an arc located in a π/2-quadrant of the plane since −π/4 < γ < π/4.

4.3. Inclusion of attenuation and photometric effects in realistic working conditions

For a = 1, under realistic working conditions, traveling radiation is affected by medium
attenuation and by dispersion due to photometric propagation effects. A standard way to take
into account for these effects is to put the following factor:

e−μ MS

MS2
× e−μ MD

MD2
(56)

(where μ is the average linear attenuation coefficient, here assumed to be constant) in the
integrand of the CAR transform of equation (13). The value of this additional factor can be
evaluated by using triangular identities

MS2 = p2 + r2 − 2pr sin γ and MD2 = p2 + r2 + 2pr sin γ. (57)

Hence

e−μMS

MS2
× e−μMD

MD2
= exp −μ

(√
p2 + r2 − 2pr sin γ +

√
p2 + r2 + 2pr sin γ

)
(p2 − r2)2 + 4p2r2 cos2 γ

= exp −μ
(√

p2 + r2 − 2pr sin γ +
√

p2 + r2 + 2pr sin γ
)

(p2 − r2)2(1 + τ−2)
,

where

sin γ =
√

1 −
(

1

2τ

(
p

r
− r

p

))2

> 0. (58)

We observe that attenuation brings up a term in sin γ , which has a non-separable dependence
on τ . Thus inversion cannot be achieved in this case with the present method. However the
inclusion of photometric effects, which yields terms of the form of a product of a function of
r and a function of τ , will not spoil the present mechanism of inversion. These terms have
apparent divergences at r = p, which are in fact avoided since the class of functions of interest
have their support strictly inside the inversion circle (�).
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5. Conclusion and perspectives

A new CAR transform arising in the mathematical modeling of image formation of a new
modality of CST is introduced and shown to be invertible via the technique of Cormack.
It is also proved that it is a member of a larger class of inversion-invariant algebraic curve
Radon transforms. Interesting mathematical problems can be raised in this context, such as
questions on range and injectivity in general, which have been studied in depth for previous
classes of CAR transforms [9, 37, 38]. Another aspect is the development of numerical
reconstruction algorithms based on an adapted filtered back-projection process, which remains
to be constructed and exploited. These topics could be the subjects for future work which can
include the study of an extension to higher dimensional spaces as fascinating new invertible
spherical Radon transforms of potential use for imaging science.
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Corrigendum

This is a Corrigendum for the article Inversion of a new circular-arc Radon transform for
Compton scattering tomography by M K Nguyen and T T Truong 2010 Inverse Problems
26(6)065005, doi: 10.1088/0266-5611/26/6/065005.

The right side of equation (31), which should be evaluated from the value of t given in the
first part of equation (31), contains a calculational error and should be corrected as

1

t
p

1+ t 2
=

(
p2 − r 2

)2

2 p r
(
p2 + r 2

) . (1)

As a consequence, in equations (32,33), the common pre-factor after the = sign and before
the square brackets on the right-hand-side should be changed as follows:

- equation (32) should read

fl (r ) = (−)
2p

(
p2 + r 2

)
π

(
p2 − r 2

)2

 d

d t

∫ ∞

t
d q

cosh
(
l cosh−1 (

q/t
))

q
√(

q/t
)2 −1

f̂l (1/q)√
1+q2


t= 2pr

(p2−r 2 )

. (2)

- equation (33) should read

fl (r ) = (−)
2p

(
p2 + r 2

)
π

(
p2 − r 2

)2

[∫ ∞

t
d q

cosh
(
l cosh−1 (

q/t
))√

q2 − t 2

d

d q

(
f̂l (1/q)√

1+q2

)]
t= 2pr

(p2−r 2 )

. (3)
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