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Radon transforms defined on smooth curves are well known and extensively studied in the literature. In this paper, we consider
a Radon transform defined on a discontinuous curve formed by a pair of half-lines forming the vertical letter V. If the classical
two-dimensional Radon transform has served as a work horse for tomographic transmission and/or emission imaging, we show
that this V-line Radon transform is the backbone of scattered radiation imaging in two dimensions. We establish its analytic
inverse formula as well as a corresponding filtered back projection reconstruction procedure. These theoretical results allow the
reconstruction of two-dimensional images from Compton scattered radiation collected on a one-dimensional collimated camera.
We illustrate the working principles of this imaging modality by presenting numerical simulation results.

1. Introduction

Collecting first-order Compton scattered radiation by a two-
dimensional gamma camera detection system from an object
for three-dimensional imaging purposes has turned out to
be an attractive alternative to conventional tomographic
emission imaging, which operates only with primary (or
unscattered) radiation [1, 2]. This new imaging principle
is mathematically modeled by the so-called Conical Radon
Transform (CRT) and has been supported by numerical
simulations [2]. Later on, extensions of this idea have been
advocated in various directions [3].

In this paper, we describe the implementation of this
idea in two dimensions. Image formation is now modeled
by a two-dimensional version of the CRT, which shall be
called the V-line Radon transform. This imaging process
may be applied, for example, to two-dimensional structures
in material nondestructive testing as well as in biomedical
imaging. Ideally, one can think of a flat object (or a material
slice), which has been turned into an extended gamma ray-
emitting object. This can be realized by injecting in its
bulk medium a radiotracer which, after spreading unevenly

throughout the body, emits gamma photons of primary
energy E0.

However to an external gamma ray detector, such a
uniform flat object does not appear “monochromatically”
colored. The reason is that the emitted primary gamma pho-
tons will encounter electrically charged particles (electrons)
within this object and will undergo Compton scattering. This
scattering effect will render the object “polychromatically”
colored or “white” because numerous scattered photons will
be produced as secondary radiation over a wide range of
energies below E0. In general, scattered radiation appears
as noise or disturbances which degrades image quality in
imaging units working with primary radiation. Thus removal
(or at least drastic reduction) of the noise resulting from such
physical degrading factors is an absolute requirement that
remains an open research question.

In 2002, by reversing such traditionally admitted view,
we have proposed a radically new standpoint [1]. It consists
of collecting emanating scattered radiation over a whole
range of scattered energies to build a new imaging principle.
Data is collected by a nonmoving collimated linear gamma
camera set to register an image at given scattered energy
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E < E0 (or equivalently at given scattering angle ω). Using
an optical language, one may say that the gamma camera
would record an image through a colored filter. The point
is that the recorded images, labeled by the scattering angle ω,
can be shown to constitute a complete set of data for image
reconstruction. This is precisely what this V-line Radon
transform is about.

Section 2 describes the image formation process by
emission Compton scattered radiation and shows how the
collected data by a linear collimated detector leads to a Radon
transform of the object activity density on a pair of half-lines
forming a standing letter V. This new integral transform,
along with the conical Radon transform (CRT) [1–4],
introduced a few years ago, becomes a new member of the
rich family of Radon transforms [5], known so far in integral
geometry as well as in tomographic imaging. Originally this
V-line Radon transform has been proposed about a decade
ago by Basko et al. [6] to model image formation in a two-
dimensional Compton camera. However the Basko-Radon
transform is defined in fact on a V-line with a swinging
axis around a fixed site whereas the one considered here
has a fixed axis direction. We study its properties and work
out its kernel and its adjoint transform. In particular, we
establish its analytic inverse and the corresponding filtered
backprojection form. This last form has the advantage of
reconstructing the image using fast algorithms. In Section 3,
we present numerical simulations of image reconstruction
including a thyroid phantom to support the feasibility of this
imaging process and present related comments. The paper
ends with a short conclusion on the obtained results and
opens some future research perspectives.

2. The V-Line Radon Transformation

2.1. Image Formation and the V-Line Radon Transform.
Consider a 2D object in which a nonuniform radioactivity
source distribution exists and is represented by a nonnegative
integrable function f (x, y) with bounded support. Figure 1
shows how a collimated linear detector is set parallel to
the plane of the object and how it collects only outgoing
radiation from the object which is parallel to the direction
of the collimator holes.

When the detector is set to absorb gamma photons at
energies below E0, the energy of primary photons emitted
by the object, the photons have undergone at least one
Compton scattering at a site M in the bulk of the object
under a scattering angle ω. As the aim of the paper is to
present a new imaging principle in 2D, we shall concentrate
on the essence of the physical process and avoid, for the
time being, addressing perturbing effects such as attenuation,
higher-order scattering (of much lower actual occurrence
probability), or any other interaction which may mask the
proposed process.

The photon flux density measured at a detecting site D is
due to the sum of scattered radiation flux densities outgoing
from the set of scattering sites M lying along the axis of the
collimator at D. As scattered photons have energy E, they
have been deflected from an incident direction by a scattering
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Figure 1: Experimental setup and definition of variables.

angle ω, related to E by the Compton formula. Thus the
totality of the detected flux density, for each scattering site
M, is due to the sum of all point sources lying on the V-line
with M as vertex. The analysis of this image formation can be
formulated as follows.

Let g(ξ,ω) be the measured photon flux density at D
under a scattering angle ω, using the cartesian coordinates of
Figure 1. For ease of notation, we shall include all physical
factors resulting from Compton scattering into one term
K(ω). (This term contains the square of the classical electron
radius, the average electron density, and the Klein-Nishina
scattering probability function.) By computing the photon
flux density with the two-dimensional photometric law, we
can write g(ξ,ω) as a sum over all sites M = (ξ,η) of the
V-line Radon transform:

g(ξ,ω) = K(ω)
∫∞

0

dη

η
TV f

(
ξ,η,ω

)
, (1)

where

TV f
(
ξ,η,ω

) =
∫∞

0

dr

r

[
f
(
ξ + r sinω,η + r cosω

)

+ f
(
ξ − r sinω,η + r cosω

)]
,
(2)

the last integral is what we call the V-line Radon transform
of f (x, y), because f (x, y) is integrated on a discontinuous
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vertically standing V-line. Thus we observe that image
formation by first-order Compton scattered radiation in two
dimensions leads to the new concept of a Radon transform
on a V-line.

2.2. The TV Transform. We examine a simplified case of
the V-line Radon transform, for which the V-line vertex is
on the Ox-axis. This transform in fact models the imaging
process of a collimated one-dimensional Compton camera,
a special case of the Compton camera considered by Cree
and Bones [7]. Primary radiation emitted from the object
bulk is scattered by a linear scattering detector, which lies
along the Ox-axis of a cartesian coordinate system and is
absorbed just on a next layer along the vertical direction
by a second absorbing detector. This is of course a ideal
hypothetical research camera, for which the V-line Radon
transform models the image formation process.

The TV transform of an activity density function f (x, y),
defined as the integral of this function along a V-line,
each branch of which making an angle ω with the vertical
direction, gives the detected photon flux density:

TV f (ξ,ω) = g(ξ,ω)

=
∫∞

0

dr

r

[
f (ξ + r sinω, r cosω)

+ f (ξ − r sinω, r cosω)
]
,

(3)

for ξ ∈ R and 0 ≤ ω < π/2.
ξ fixes the position of the vertex on the Ox-axis. The

factor 1/r in the integrand accounts for the photometric law
of photon propagation in two dimensions (it would have
been 1/r2, in three dimensions). Here we have simplified the
notations by absorbing the factor describing the Compton
kinematics into the definition of f (x, y).

Equation (3) may be given another form with the
following choice of variables t = tanω and z = r cosω.
Hence

g(ξ, t) =
∫∞

0

dz

z

[
f (ξ + tz, z) + f (ξ − tz, z)

]
. (4)

It can be also put under the form of an integral transform,
that is,

g(ξ,ω) =
∫
R×R+

dx dyk
(
x, y; ξ,ω

)
f
(
x, y

)
. (5)

To obtain the kernel k(x, y; ξ,ω), we rewrite (3) as

g(ξ,ω) =
∫
R×R+

dx dy f
(
x, y

)
,

∫∞
0

dr

r
[δ(ξ + r sinω − x)Y(x − ξ)

+ δ(ξ − r sinω− x)Y(−x + ξ)]δ
(
y − r cosω

)
,

(6)

where Y(x) is the Heaviside unit step distribution. Since y >
0, 0 < ω < π/2, and tanω > 0, the r-integration can be done
with the variable u = r sinω, that is,∫∞

0

du

u
δ
(
y − ucotω

)
[δ(ξ − x − u)Y(x − ξ)

+ δ(ξ − r sinω − x)Y(−x + ξ)]

= 1
(x − ξ)

δ
(
y − (x − ξ)cotω

)
Y(x − ξ)

+
1

(−x + ξ)
δ
(
y − (−x + ξ)cotω

)
Y(−x + ξ).

(7)

The kernel k(x, y; ξ,ω) can now be written under a compact
form as

k
(
x, y; ξ,ω

) = cosω
y

δ
(
cosω

∣∣x − ξ
∣∣− y sinω

)

= sinω∣∣x − ξ
∣∣ δ

(
y sinω− ∣∣x − ξ

∣∣ cosω
)
.

(8)

2.3. The Inverse Transform TV−1. The inverse transform

TV−1 can be worked out using Fourier transforms f̃ (q, y)
(resp., g̃(q,ω)) with respect to the variable x (resp., ξ) in
f (x, y) (resp., g(ξ,ω)), that is,

g(ξ,ω) =
∫∞
−∞

dq g̃
(
q,ω

)
exp
(
2iπqξ

)
,

f
(
x, y

) =
∫∞
−∞

dq f̃
(
q, y

)
exp
(
2iπqx

)
.

(9)

Then (3) becomes

g̃
(
q,ω

) =
∫∞

0

dr

r
f̃
(
q, r cosω

)
2 cos

(
2πqr sinω

)
. (10)

After changing to variables z and t and defining G̃(q, t) =
g̃(q,ω) with F̃(q, z) = f̃ (q, z)/z, one finds that, after going
to Fourier space, the V-line Radon transform appears as a
Fourier-cosine transform

G̃
(
q, t
) =

∫∞
0
dz F̃

(
q, z
)
2 cos

(
2πqzt

)
. (11)

Let us point out that, for the conical Radon transform (CRT),
passage to partial Fourier transform has led to a Hankel
transform (or Fourier-Bessel transform) in which the kernel
is a Bessel function J0 [8]. Here the role of the Bessel function
J0 is played by a cosine function. Both transforms (Hankel
and Fourier-cosine) are invertible transforms. Thus we can
write down the inverse formula, thanks to the invertibility of
the cosine transform:

F̃
(
q, z
) = 2

∣∣q∣∣
∫∞

0
dt cos

(
2πqtz

)
G̃
(
q, t
)
. (12)

f (x, y) can be then reconstructed from its partial Fourier

transform f̃ (q, y) = yF̃(q, y). A formula for the kernel of
the inverse transform can now be derived as

k−1(x, z | ξ, t) = − z

2π2

[
1

(x − ξ + zt)2 +
1

(x − ξ − zt)2

]
.

(13)
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This kernel is to be understood as a generalized function,
or distribution and the corresponding integral as Cauchy
principal value. Such a form is already known for the classical
Radon transform [9].

2.4. The Adjoint Transform TV†. There is another formu-
lation of the inversion procedure which lends itself more
advantageously to algorithmic implementation. We call it
filtered backprojection, due to its similarity to the standard
Radon transform. In this section, we seek to construct the
adjoint transform TV† [10]. For all admissible pairs of
functions ( f (x, y), g(ξ,ω)) defined respectively in object
space (x, y) ∈ R2 and in image space (ξ,ω) ∈ R × [0,π/2],
we require that

〈
g | TV f

〉 = 〈TV†g | f 〉. (14)

Thus, the adjoint operator TV† maps functions of variables
(ξ,ω) onto functions of variable (x, y)

TV† : H ′
(
R×

[
0,
π

2

))
−→H(R×R+)

g(ξ,ω) �−→ f
(
x, y

) (15)

and takes the form

TV†g
(
x, y

) = f
(
x, y

)

= 1
y

∫ π/2

0
dω
[
g
(
x + y tanω,ω

)

+ g
(
x − y tanω,ω

)]
.

(16)

It can be checked that TV† has the same kernel as TV,
see (8),

k
(
ξ,ω; x, y

) = sinω∣∣x − ξ
∣∣δ
(
y sinω − ∣∣x − ξ

∣∣ cosω
)
. (17)

2.5. Filtered Backprojection Inversion Method. Let us recall
that the most popular inversion method of the Radon trans-
form is the so-called filtered backprojection method (FBP).
This is an exact inversion formula obtained by combining the
action of the ramp filter and the backprojection operation of
the Radon Transform. In this section, we will demonstrate
that the TV transform may be inverted essentially in the
same way, with the ramp filter and the backprojection
operator associated to the TV operator playing an analogous
fundamental role.

Technically the backprojection principle consists in
assigning the value g(ξ,ω) to every point on the “projection”
V-line, which has given rise to this value, and then to sum
over all contributions for every V-line “projection.” More
precisely, we can say that the backprojection at angle ω in
(x, y) is the sum of projections at angle ω at the points
ξ1 = x+y tanω and ξ2 = x−y tanω, where (x, y) is projected:

Rω
(
x, y

) = g(ξ1,ω) + g(ξ2,ω)

= g
(
x + y tanω,ω

)
+ g
(
x − y tanω,ω

)
.

(18)

The backprojection of every projection defines the
backprojection operator TV# which is obtained summing
over every angle the expressions given in (18), and these
are exactly the operations performed by the adjoint operator
(16). The y factor appears because of the integration measure
dr/r used in the definition of the projections (3).

Thus the backprojection operator is identical to the
adjoint operator, that is,

TV#g
(
x, y

) = TV†g
(
x, y

)
. (19)

Now the action of the ramp filter operator Λ over a
function f (x, y) in the first variable is defined in the Fourier
domain by

Λ̃ f
(
q, y

) = ∣∣q∣∣ f̃ (q, y
)
, (20)

where the Fourier transform is taken on the first variable x.
From identity (12) we have

f
(
x, y

) = 2y
∫∞

0
dt
∫
R
dq
∣∣q∣∣g̃(q, t

)
cos
(
2πqty

)
e2iπqx

= y
∫∞

0
dt
∫
R
dq
∣∣q∣∣g̃(q, t

)
e2iπqtye2iπqx

+ y
∫∞

0
dt
∫
R
dq
∣∣q∣∣g̃(q, t

)
e−2iπqtye2iπqx

= y
∫∞

0
dt
(
Λg
)(
x + ty, t

)
+ y

∫∞
0
dt
(
Λg
)(
x − ty, t

)

= y
∫∞

0
dt
[(
Λg
)(
x + ty, t

)
+
(
Λg
)(
x − ty, t

)]
.

(21)

In terms of the angle ω, the inversion formula reads

f
(
x, y

)
y

=
∫ π/2

0

dω

cos2ω

[(
Λg
)(
x + y tanω,ω

)

+
(
Λg
)(
x − y tanω,ω

)]
.

(22)

Defining the operator Mω as Mωg(ξ,ω) = g(ξ,ω)/cos2ω
and having that

TV#g
(
x, y

) = 1
y

∫ π/2

0
dω
[
g
(
x + y tanω,ω

)

+ g
(
x − y tanω,ω

)]
,

(23)

we may write (22) as

f
(
x, y

)
y2

= (TV#MωΛ TV f
)(
x, y

)
. (24)

Finally, we recover the original density f (x, y) by a filtered-
backprojection

f
(
x, y

) = y2(TV#MωΛ TV f
)(
x, y

)
. (25)

This filtered backprojection inversion on V-lines is obtained
for the first time. It generalizes the one known in the standard
Radon transform on straight lines. The reconstruction for-
mula (25) is mathematically equivalent to the reconstruction
by TV−1 of the previous subsection. But the advantage of
the filtered backprojection inversion formula is that it can be
implemented by fast algorithms.
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Figure 2: Original thyroid phantom.

Transform V , measure dr/r

−250 −200 −150 −100 −50 0 50 100 150 200 250
0

1

0.5

1.5

ω

ξ

Figure 3: The TV transform of the thyroid image shown in Figure 2
with dω = 0.005 rad.

3. Numerical Simulations

We present now the results of numerical simulations. The
original image (Figure 2) of size 512 × 512 of length
units is a thyroid phantom presenting with small nodules.
Figure 3 shows the TV transform of a thyroid phantom with
angular sampling rate dω = 0.005 rad and 314 projections
(π/2/0.005 = 314) which are the images of Compton
scattered radiation on the camera in terms of the distance
ξ and the scattering angle ω. The reconstruction using FBP
is given in Figure 4. The artifacts are due to the limited
number of projections. Moreover, backprojection on V-lines
generates more artifacts than backprojection on straight
lines, because of more spurious line intersections. As our
numerical results are based on the discretization of the
inverse formula (22), a choice of a smaller discretization
step dω would improve image quality. This is indeed a
well-established fact and in agreement with the improved
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Figure 4: FBP-IM reconstruction of the thyroid phantom with
dω = 0.005 rad.
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Figure 5: Original defect.

sampling resulting from the increase of data collected at more
values of the scattering angle ω. Despite these limitations,
the small structures in the object are clearly reconstructed.
This result illustrates undoubtedly the feasibility of the new
imaging modality, for which the main advantage resides in
the use of a one-dimensional nonmoving Compton camera
for two-dimensional image processing.

We also present in Figures 5, 6, and 7 simulation results
for a material defect under the same conditions to illustrate a
possible application in industrial nondestructive control.

4. Conclusion

In this paper, a new class of Radon transform defined on
a discontinuous line, having the shape of the letter V, is
presented. We construct its analytic inverse transform as
well as the corresponding filtered backprojection inversion
method. The concept allows the two-dimensional image
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Transform V , measure dr/r

−250−200−150−100 −50 0 50 100 150 200 250
0

1

0.5

1.5

Figure 6: The TV transform of the defect shown in Figure 5 with
dω = 0.005 rad.
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Figure 7: FBP-IM reconstruction of the defect with dω = 0.005 rad.

reconstruction from scattered radiation collected by a one-
dimensional collimated camera. We have also performed
numerical simulations to prove its practical viability. The
obtained results provide stimuli for tackling the case of the
swinging V-line Radon transform, for a two-dimensional
Compton camera imaging, as proposed by [6]. Furthermore,
the extension of this transform to a family of cones
with swinging axis around a site in R3, for a concrete
gamma camera without mechanical collimator, poses a real
mathematical challenge to overcome in the future.
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