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Abstract
Compton scatter tomography (CST) is an imaging process which reconstructs 
the electric charge density in a two-dimensional slice of an object. We describe 
a recent CST modality, introduced in 2010, designed to image an object 
from the data formed by the integrals of its electric charge density on a two 
parameter set of circular arcs in the plane, subtended by a rotating diameter of 
a fixed circle. Through a new approach based on a change of radial variables, 
introduced recently by Webber and Holman (2019 Inverse Problems Imaging 
13 231–61) in a three-dimensional function reconstruction problem, the CST 
Radon problems (interior and exterior to the fixed circle) can be mapped to 
the classical Radon transform. This relation provides not only an elegant 
solution to the CST reconstruction problems but also provides a link from 
the CST Radon problems on annular domains (interior and exterior to the 
fixed circle) to the well-known exterior classical Radon problem, for which 
results on function reconstruction have been fully worked out by Quinto. 
Such CST Radon problems on annular domains may arise, in practice, from 
restrictions near grazing or near grazing back scattering Compton scattering, 
as missing data tomographic problems, for which the proposed connection 
offers a concrete solution.

Keywords: generalized Radon transforms, Compton scatter tomography, 
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1.  Introduction

One way to image the inner parts of an object is to use penetrating (or ionizing) radiation to 
illuminate it and analyze the emerging radiation in view of reconstructing its internal struc-
ture. If non scattered radiation is recorded along the same incident radiation direction, this is 
known as computed tomography (CT), which reconstructs the object attenuation coefficient 
density via the inversion of the classical Radon transform (CRT). On the other hand, if scat-
tered radiation is recorded at fixed scattered radiation energy, in a variety of directions, dif-
ferent from the incident direction—the great majority of this scattered radiation being from 
first order Compton scattering—, one speaks of Compton scatter tomography (or CST). In 
this case, it is the electric charge density which is reconstructed on the basis of its integrals 
on a dense family of two parameter circular arcs, connecting the radiation point source to the 
radiation detection site. The related mathematical problem will be called CST Radon problem 
and to each family of two parameter circular arcs corresponds a well defined CST modality.

So far there exits several CST modalities, for which the inversion formula of their corre
sponding CST Radon transforms can be established explicitly. The aim of this paper is to 
discuss a specific CST modality, which is proposed and solved in 2010 [2], under a new pres-
entation and tackle one of its possible missing data problems, namely when scanning areas are 
limited to annular domains in the plane. Such a situation arises also recently for the Radon 
transform on circles centered on a fixed circle, which supports photo-acoustic tomography 
(PAT) and thermo-acoustic tomography (TAT), and for which the scanning areas are also lim-
ited to annular domains by Ambartsoumian et al in [3]. Missing (or limited) data problems are 
known in conventional tomography when the ranges of the two variables labeling the data are 
restricted, leading to indeterminacy in image reconstruction.

The paper is organized as follows. Section 2 reviews briefly the basic concept of Compton 
scatter tomography (CST) and its first modality suggested by Norton in 1994 [4]. Then the 
second CST modality is introduced in section 3. Then the two sub-modalities of CST-2 (inter
ior and exterior, in sections 4 and 5) are presented under a new formulation, which is more 
transparent for the purpose of missing data problem. This is achieved by a change of radial 
variable, which is just the one introduced by Webber and Holman in the treatment of the so-
called spindle transform [1] in three dimensions. This change of variable leads naturally and 
elegantly to a connection with the interior and the exterior classical Radon transforms, for 
which explicit standard inversion formulas are available. In section 6, we report new geomet-
ric properties of the interior and exterior CST-2 Radon transforms, which shall be relevant 
later for treating the missing data problem. Lastly, we come to the main section 7, in which 
the CST-2 Radon problem in annular domains is solved thanks to established results (mainly 
by Quinto) on the exterior classical Radon problem. A conclusion follows with opened per-
spectives for other CST modalities and objectives in studying and setting up computational 
algorithms for this CST-2 modality.

2.  Compton scatter tomography and first Compton scatter tomography  
modality (CST-1)

CST has been known for decades, since Kondic suggested collecting Compton scattered data 
on isogonal circular arcs in 1978 for imaging purposes [5], a process based on the Compton 
formula expressing the scattered radiation energy E(ω) in terms of the scattering angle ω , for 
a review see e.g. [6]. However, it is only in 1994 that Norton came up with the first design of 
a CST scanner [4]. In this scanner, the object under study is ‘scanned’ by circular arcs having 
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one fixed end point S and another end point D moving on a line ∆ passing through S and 
situated above ∆ (see figure 1). This setup can be achieved by placing in the neighborhoods 
of S and D plate collimators parallel to the line ∆ to confine all radiation to one side of ∆. 
At S is an isotropic monoenergetic point source of calibrated radiation emission flux density 
whereas at D is an energy sensitive point detector, registering scattered radiation from the 
object of energy E(ω). Inspection shows that the received scattered radiation flux density 
ΦD(ω) (assuming overwhelming dominance of first order scattering and no attenuation nor 
photometric effects) is of the form of an integral on f (M), a function representing the object 
electric charge density at scattering site M:

ΦD(ω) = K(ω)×
∫

M∈ÙSD
dlM f (M),� (1)

where K(ω) is a factor containing the differential cross section of the Compton effect and 
some kinematic terms. The circular arc ıSD is the locus of scattering sites M, subtending an 
inscribed angle (π − ω), which is constant when E(ω) is fixed. Thus in this context, the prob-
lem is to reconstruct f (M) using the data ΦD(ω)/K(ω), i.e. its integrals on this family of two 
parameter circular arcs. The solution to this problem has been discussed at length in many 
published works, see e.g. [4, 6].

The Norton CST scanner places the object to be imaged on one side of a line ∆ (horizontal 
line in figure 1). This is convenient for large objects. However it does not lend itself to the 
setting of a compact radiation shielding protecting human operating personnel because of its 
‘open space’ concept. We shall denote this modality by CST-1-Line4.

In 2010, we have introduced a new CST-2 modality [2, 6], which is conceived for efficient 
use in scanning large objects (outer scanning) as well as small objects (inner scanning), with 
adequate compact radiation shielding for the protection of operating personnel.

3.  Second Compton scatter tomography modality (CST-2)

Historically, interior (resp. exterior) CST-2 Radon transform was introduced in [2]. We have 
then followed Cormack’s procedure, which consists in inverting a Chebyshev integral equa-
tion  linking angular Fourier components of the unknown function (called ‘circular comp
onents’) to those of the measured CST-2 Radon data. Soon after Palamodov, recognizing that 
the Cormack’s type of reconstruction formula is not stable, has managed, using his equivalence 
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Figure 1.  CST-1-Line. Scanning circular arcs ıSD in lower half plane (left) and in upper 
half-plane (right).

4 Recently, a CST-1-Circle modality has been introduced and discussed in [8, 9].
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of CST-2 Radon transform with the Minkowski–Funk transform [7], to derive an alternative 
reconstruction formula which is stable for function circular components. In this section, we 
give a change of radial variable which directly converts the CST-2 Radon transform into the 
classical Radon transform. Then using the stable form of the inversion formula of the classical 
Radon transform, which is widely known, we derive a stable inversion formula for our CST-2 
Radon transform. In the meantime, Cormack had also realized that his inversion approach did 
lead to instabilities and has proposed a way out by taking into account the so-called ‘consis-
tency conditions’ on the Radon data [15]. In this way, stable inverse formulas for Radon trans-
forms on his α (resp. β) curves, (see [16]) have been established. This is how he recovered a 
stable inversion formula for the classical Radon transform, which is in fact a Radon transform 
on α = 1 curves (or straight lines). Hence a direct short-cut to stable inversion formulas for 
CST-2 Radon transform can be deduced easily.

Furthermore, it will be shown that the proposed change of variable also converts the CST-2 
Radon transforms in annular scanning domains into the exterior classical Radon transform 
for which well established inversion results due to Quinto exist. Consequently, the CST-2 
Radon problems in annular domains are automatically and elegantly solved thanks to these 
mappings. Had we attempted to formulate these CST-2 Radon problems in annular domains 
by conventional integral Chebyshev transform, we would be facing with modified integration 
limits (see for example (equation (7)) of [3]), which render the usual inversion impossible. In 
this situation, perhaps the technique of converting this problem into a Volterra’s problem [3] 
may work, but at this point this has not been done.

Our change of variable is just the one of Webber–Holman in [1], which is designed to map 
their spindle Radon transform (a three-dimensional version of our CST-2 Radon transform [2])  
to Radon transform on circular cylinders in R3.

Let f (M) be a non negative real function representing the electric charge density of an 
object with compact support inside (resp. outside) a disk D(O, p), of center O (taken as the 
coordinate system origin) and of radius p . Its boundary is a circle Γ(O, p) = ∂D(O, p). The 
concept of CST-2 is presented as follows. An isotropic mono-energetic point source S is 
located at some position on Γ(O, p), whereas an energy sensitive point detector D is dia-
metrically positioned on Γ(O, p), as shown in figure 2. At both S and D are plate collimators 
to confine radiation to a half space delimited by the line SD. Again (under the assumption of 
overwhelming dominance of first order scattering) original radiation coming from S is scat-
tered by the object electric charge at some site M and the scattered flux density registered 
at D is also given by equation (1). If site D records only scattered radiation of energy E(ω), 
the locus of scattering sites M is a circular arc ıSD with end points on a rotating diameter of 
Γ(O, p), subtending an inscribed angle (π − ω). So such a scanning arc is characterized by 
ω  and φ, the polar angle of the scanning arc axis of symmetry perpendicular to SD. It can be 
seen that there are two classes of such scanning arcs: those which are inside D(O, p) (when 
0 < ω < π/2) and those which are outside D(O, p) (when π/2 < ω < π). This distinguishes 
an interior CST-2 Radon problem from its exterior CST-2 counterpart. The problem posed by 
these two CCT-2 modalities is the reconstruction of f (M) (inside and outside D(O, p)) from 
its integrals on corresponding families of such scanning arcs.

4.  Interior CST-2 Radon problem

We consider first the interior problem for which the support of f (M) is contained inside 
D(O, p). The corresponding Radon problem is formulated in the following proposition:
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Proposition 4.1.  Let f (ri, θi) be an integrable function of compact support in D(O, p) in 

polar coordinates (ri, θi). The interior CST-2 Radon transform maps f (ri, θi) to f̂i(τ ,φ) ac-
cording to

f̂i(τ ,φ) =

√
τ 2 + 1
τ

∫ p

p(
√

τ 2+1−τ)

dri√
1 − 1

4τ 2

(
p
ri
− ri

p

)2
{ f (ri, γi + φ) + f (ri,−γi + φ)},

� (2)

where 0 < τ < ∞, 0 < φ < 2π  and

γi = cos−1 1
2τ

(
p
ri
− ri

p

)
.� (3)

The parameter τ  is related to the physical Compton scattering angle ω  by τ = cotω with 
0 < ω < π/2.

Proof.  Consider figure 2 with polar coordinates centered at O. An interior scanning circle 
for 0 < ω < π/2 has a center at Ω on the mediator line of the source-detector line SD below 
it. Then OΩ = p cotω. Its radius is ΩD = p/ sinω. Now a running point M on this circle is 
given by its polar coordinates (ri, θi), with OM  =  ri and θi = γi + φ, where γ = γi  and φ are 
given in figure 2. In triangle OMΩ, we have the cosine identity

MΩ2 = OΩ2 + OM2 − 2 OΩOM cos Ω̂OM.

Since MΩ = ΩD = p/ sinω and Ω̂OM = (π − γi), we get the interior scanning circle equa-
tion

Ω

S

D

x

M

φ
O

γ

O

S

D

φ
x

γ

ω

ω

ω

M

Ω
ω

Figure 2.  CST-2. Interior problem with 0 < ω < π/2 (left) and exterior problem with 
π/2 < ω < π (right).
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cos γi =
1

2τ

(
p
ri
− ri

p

)
,� (4)

which is equivalent to equation (3), see [2].� □ 

Then by solving ri in terms of γi , one gets the equation of a CST-2 interior scanning circular 
arc (parameterized by (τ ,φ))

ri(γi) = p
(√

τ 2 cos2 γi + 1 − τ cos γi

)
,� (5)

where γi = (θi − φ) with (−π/2 < γi < π/2). As pointed out, τ  is related to the scattering 
angle by τ = cotω with (0 < ω < π/2). We observe that ri(γi) is an increasing function of γi , 
and p(

√
τ 2 + 1 − τ) < ri(γi) < p. Then straightforwardly one has

dri = ri dγi
τ sin γi√

τ 2 cos2 γi + 1
.� (6)

The scanning arc integration element dli =
√

dr2
i + r2

i dγ2
i  can be obtained from equation (5), 

via the computation of dri using equation (5), (see equation (8) of [2]) as

dli =
√
τ 2 + 1

ri(γi) dγi√
τ 2 cos2 γi + 1

.� (7)

The integral of f (ri, θi) on this interior CST-2 scanning arc is

f̂i(τ ,φ) =
√
τ 2 + 1

∫ π/2

−π/2

ri(γi) dγi√
τ 2 cos2 γi + 1

f (ri(γi), γi + φ) .� (8)

Since we have a γi → −γi symmetry in dli, equation (8) can be rewritten as

f̂i(τ ,φ) =
√
τ 2 + 1

∫ π/2

0

ri(γi) dγi√
τ 2 cos2 γi + 1

{ f (ri(γi), γi + φ) + f (ri(γi),−γi + φ)}.� (9)

Now by using equation (6), we can get an alternative expression of dli in terms of dri:

dli =

√
τ 2 + 1
τ

dri√
1 − 1

4τ 2
(

p
ri
− ri

p

)2

.
� (10)

Then equation (9) becomes equation (2).

4.1.  Connection to the full plane classical Radon transform

We now show that, under a radial change of variable, f̂i(τ ,φ) can be expressed as a line int
egral for a transformed input function. Such a conversion is analogous to geometric inversion 
which connects the classical Radon transform (on lines)5 to the Radon transform on circles 
passing through a fixed point [10–12]. The change of variable considered here is the one 
proposed by Webber–Holman to treat the so-called spindle transform in three dimensions [1].

5 Following [10], we use the denomination of classical Radon transform to speak of the original integral transform 
introduced by Radon in 1917.
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Proposition 4.2.  Under the assumptions of proposition 4.1 and the change of variable 
ri → ρi, given by

ri = p

(√
p2

ρ2
i
+ 1 − p

ρi

)
,� (11)

the integral of f (r, θ) on an interior CST-2 scanning arc becomes an integral on a line with 
parameters (s,φ) (or of equation s = ρi cos(θi − φ))

f̂i(τ ,φ) =

√
τ 2 + 1
τ

∫ ∞

s

dρi√
1 − s2

ρ2
i

{h(ρi, γi + φ) + h(ρi,−γi + φ)},� (12)

for the function

h(ρi, θi) =
p2

ρ2
i

(√
p2

ρ2
i
+ 1 − p

ρi

)
√

p2

ρ2
i
+ 1

f

(
p

(√
p2

ρ2
i
+ 1 − p

ρi

)
, θi

)
,� (13)

where s = p/τ  with 0 < s < ∞ (since 0 < τ < ∞) and 0 < φ < 2π  and

γi = cos−1
(

s
ρi

)
.

Equation (12) has the standard form of the classical Radon transform of h(ρi, θi) expressed 
in radial variable ρi , see e.g. [13], page 4, equation (1.9).

Remark 4.3.  The mapping (11) may look peculiar but it has a simple geometric interpreta-
tion. Since OΩ = pτ  and s = p/τ , s being the distance from the origin to the straight line, 
with unit normal vector n = (cosφ, sinφ) and transform of the interior scanning circular arc, 
we conclude that OΩ · s = p2 . As s  >  0, we may consider a point Ω∗ symmetric of Ω with 
respect to O such that OΩ∗ = pτ  also. Then one may view the line as the geometric polar line 
of Ω∗ with respect to the fixed circle Γ(O, p). Generalized change of variables of this type have 
been found for other CST modalities in [32]. Their geometric aspects and consequences have 
been discussed in [17].

Remark 4.4.  The proof of injectivity has been already given in [2]. The problem may be 
reformulated as a Volterra type inversion problem as in [3]. But this has not been done yet. 
On the other hand, we choose to consider CST-2 stability properties as deduced from well 
established stability properties of the associated classical Radon transform obtained by the 
previous change of variable.

Proof.  To prove this statement, we proceed to rewrite f̂i(τ ,φ) in terms of the new variable 
ρi . From equation (11), we get

dri =
p2

ρ2
i

(√
p2

ρ2
i
+ 1 − p

ρ

)
dρi√
p2

ρ2
i
+ 1

,� (14)

and using the fact that

T T Truong and M K Nguyen﻿Inverse Problems 35 (2019) 054005
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1
2τ

(
p
ri
− ri

p

)
=

s
ρi

,� (15)

we end up with equations (12) and (13).� □ 

4.2.  Inversion of the interior CST-2 Radon transform

As the interior CST-2 Radon problem is now connected to the full plane classical Radon prob-
lem, the classical Radon transform has a reconstruction formula, given e.g. by equation (21) 
of [14, 15]. Hence we have

Proposition 4.5.  Under the assumptions of proposition 4.1, the reconstruction of f (ri, θi) 
inside the disk D(O, p) with complete data is given by

f (ri, θi) = − 1
2π2

2p2( p2 + r2
i )

( p2 − r2
i )

2

∫ 2π

0
dφ

∫ ∞

0
dτ

1
p
τ − 2p2

p2−r2
i
ri cos(θi − φ)

∂

∂τ

(
τ f̂i(τ ,φ)√
τ 2 + 1

)
,

� (16)

where (ri, θi) ∈ D(O, p).

Proof.  To obtain the result of equation (16), we start from the reconstruction formula of the 
classical Radon transform for the intermediate function h(ρi, θ), given e.g. in [14, 15], which 
is

h(ρi, θi) = − 1
2π2

∫ 2π

0
dφ

∫ ∞

0
ds

1
s − ρi cos(θi − φ)

∂

∂s

(
τ√

τ 2 + 1
f̂i(τ ,φ)

)
.

� (17)

Then we use the definition of h(ρi, θ) given by equation (13) and replace ρi  by its expression 
in terms of ri

ρi = ri
2p2

p2 − r2
i

.� (18)

Finally using s = p/τ , by reexpressing s-differentiation in terms of τ -differentiation and re-
placing ds by dτ , we obtain the desired result of equation (16).� □ 

5.  Exterior CST-2 Radon problem

The exterior CST-2 Radon problem bears many similarities with the interior CST-2 Radon 
problem. However we choose to present the derivation of its inversion along the line of the 
previous section for clarity and to emphasize its complementarity to the previous one. The 
exterior CST-2 Radon problem is formulated in the following proposition

Proposition 5.1.  Let f (ri, θi) be an integrable function of compact support outside the disk 

D(O, p) in R2. The exterior CST-2 Radon transform maps f (re, θe) to f̂e(τ ,φ) according to

T T Truong and M K Nguyen﻿Inverse Problems 35 (2019) 054005
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f̂e(τ ,φ) =

√
τ 2 + 1
τ

∫ p(
√

τ 2+1−τ)

p

dre√
1 − 1

4τ 2

(
re
p − p

re

)2
{ f (re, γe + φ) + f (re,−γe + φ)},

� (19)

where 0 < τ < ∞, 0 < φ < 2π  and

γe = cos−1 1
2τ

(
re

p
− p

re

)
.� (20)

Proof.  In polar coordinates centered at O (see figure 2), where M = (re, θe), the equation of 
a CST-2 exterior scanning circular arc is obtained in a similar way as in the case of CST-2 
interior scanning circular arc

re(γe) = p
(√

τ 2 cos2 γe + 1 + τ cos γe

)
,� (21)

where γe = (θe − φ) with (−π/2 < γe < π/2). The parameter τ  is now connected to the scat-
tering angle (π/2 < ω < π) by τ = − cotω. We observe that re(γe) is a decreasing function 
of γe, and p < re(γe) < p(

√
τ 2 + 1 + τ). The scanning arc integration element dle can be ob-

tained from equation (21) (analogously to the interior problem via the computation of dre) as

dle =
√
τ 2 + 1

re(γe) dγe√
τ 2 cos2 γi + 1

.� (22)

The integral of f (re, θe) on this exterior CST-2 scanning arc is

f̂e(τ ,φ) =
√
τ 2 + 1

∫ π/2

−π/2

re(γe) dγe√
τ 2 cos2 γe + 1

f (re(γe), γe + φ) .� (23)

Since we have a γe → −γe symmetry in dle, equation (23) can be rewritten as

f̂e(τ ,φ) =
√
τ 2 + 1

∫ π/2

0

re(γe) dγe√
τ 2 cos2 γe + 1

{ f (re(γe), γe + φ) + f (re(γe),−γe + φ)}.� (24)

Now switch to re variable,

dle =

√
τ 2 + 1
τ

dre√
1 − 1

4τ 2( re
p − p

re )
2

,
� (25)

then equation (24) becomes equation (19).� □ 

5.1.  Connection to the full plane classical Radon transform

We now show that, under an analogous radial change of variable, f̂e(τ ,φ) can be expressed as 
a line integral for a transformed input function. By definition,

Proposition 5.2.  Under the assumptions of proposition 5.1 and the change of variable 
re → ρe, given by

T T Truong and M K Nguyen﻿Inverse Problems 35 (2019) 054005
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re = p

(√
p2

ρ2
e
+ 1 +

p
ρe

)
,� (26)

the integral of f (re, θe) on an exterior CST-2 scanning arc becomes an integral on a line with 
parameters (s,φ):

f̂e(τ ,φ) =

√
τ 2 + 1
τ

∫ ∞

s

dρe√
1 − s2

ρ2
e

{h(ρe, γe + φ) + h(ρe,−γe + φ)},

� (27)

for the function

h(ρe, θe) =
p2

ρ2
e

(√
p2

ρ2
e
+ 1 + p

ρe

)
√

p2

ρ2
e
+ 1

f

(
p

(√
p2

ρ2
e
+ 1 +

p
ρe

)
, θe

)
,� (28)

where s = p/τ  with 0 < s < ∞ (since 0 < τ < ∞)and 0 < φ < 2π , and

γe = (θe − φ) = cos−1
(

s
ρe

)
.

Equation (27) has the standard form of the classical Radon transform of h(ρe, θe) expressed 
in radial variable ρe, see e.g. [13], page 4, equation  (1.9). This change of variable has not 
appear before as it has emerged from earlier work on this subject [17] and now sheds new 
light on this problem.

Proof.  To prove this statement, we proceed to rewrite f̂e(τ ,φ) in terms of the new variable 
ρe. From equation (11), we get

dre =
p2

ρ2
e

(√
p2

ρ2
e
+ 1 − p

ρe

)
dρe√
p2

ρ2
e
+ 1

,� (29)

and using the fact that

1
2τ

(
re

p
− p

re

)
=

s
ρe

,� (30)

we end up with equations (27) and (28).� □ 

5.2.  Inversion of the exterior CST-2 Radon transform

As the interior CST-2 Radon problem is now connected to the full plane classical Radon prob-
lem, the classical Radon transform has a reconstruction formula, given e.g. by equation (21) 
of [15]. Hence we have

Proposition 5.3.  Under the assumptions of proposition 5.1, the reconstruction of f (re, θe) 
outside the disk D(O, p) with complete data is given by
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f (re, θe) = − 1
2π2

2p2(r2
e + p2)

(r2
e − p2)2

∫ 2π

0
dφ

∫ ∞

0
dτ

1
p
τ − 2p2

r2
e−p2 re cos(θe − φ)

∂

∂τ

(
τ f̂i(τ ,φ)√
τ 2 + 1

)
,

� (31)

where re  >  p  and 0 < θ < 2π .

Proof.  To obtain the result of equation (31), we start from the reconstruction formula of 
the classical Radon transform for the intermediate function h(ρe, θe), given in [15], which is

h(ρe, θe) = − 1
2π2

∫ 2π

0
dφ

∫ ∞

0
ds

1
s − ρe cos(θe − φ)

∂

∂s

(
τ√

τ 2 + 1
f̂e(τ ,φ)

)
.

� (32)

Then we use the definition of h(ρe, θe) given e.g. by equation (28) and replace ρe by its expres-
sion in terms of re:

ρe = re
2p2

r2
e − p2 .� (33)

Finally using s = p/τ , by reexpressing s-differentiation in terms of τ -differentiation and re-
placing ds by dτ , we obtain the desired result of equation (31).� □ 

Remark 5.4.  We may view the change of variable r → ρ as a map from type-2 Compton 
scatter tomography (CST-2) to an apparent computed tomography (CT), whereby the real 
electric charge density f (r, θ) is mapped to an apparent attenuation coefficient density h(ρ, θ).

6.  Geometric connection between interior and exterior CST-2 Radon 
transforms

In this section, we point out a remarkable connection between interior and exterior CST-2 
Radon transforms, discussed in sections 4 and 5 above: they are linked by geometric inversion 
in the circle Γ(O, p)6. This is described by the following statements.

Proposition 6.1.  For the same angle γi = γe = γ , we have ri(γ) · re(γ) = p2 and ρi = 
ρe = ρ .

Proof.  Use equations (5) and (21) to show that ri(γ) · re(γ) = p2. Next use equations (18) 
and (33) to show that ρi = ρe = ρ. This explains why both interior and exterior arcs are 
mapped to the same line s = ρi,e cos(θi,e − φ), which is just the polar line of the center of the 
exterior arc with respect to circle Γ(O, p) [17].� □ 

Remark 6.2.  One may think of the mapping of the exterior (resp. interior) CST-2 Radon 
transform to the classical Radon transform as the product of geometric inversion in the circle 
Γ(O, p) and of the mapping of the interior (resp. exterior) CST-2 Radon transform to the clas-
sical Radon transform.

6 We use the denomination of geometric inversion to avoid confusion with inversion of an integral operator, as in 
[12].
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Proposition 6.3.  Let f (ri, θi) be a non-negative integrable function in the disk D(O, p) 
and f̂i(τ ,φ) its interior CST-2 Radon transform. Then f̂i(τ ,φ) can be expressed as the exterior 
CST-2 Radon transform of g(re, θe), given by

g(re, θe) =
p2

r2
e

f
(

p2

re
θe

)
,� (34)

where re  >  p  and (0 < θe = θi < 2π). The converse, in which the indices (i) and (e) are ex-
changed, is also true, provided that one replaces ‘inside D(O, p)’ by ‘outside D(O, p)’.

Proof.  We start from the expression of f̂i(τ ,φ) as an integral over ri, given by equation (2). 
Then insert the geometric inverse relation ri = p2/re and calculate dri in terms of dre to re-
express this equation in terms of re

f̂i(τ ,φ) =

√
τ 2 + 1
τ

∫ p(
√

τ 2+1+τ)

p

dre√
1 − 1

4τ 2

(
re
p − p

re

)2

p2

r2
e

{
f (

p2

re
, γe + φ) + f (

p2

re
,−γe + φ)

}
,

� (35)

where 0 < τ < ∞, 0 < φ < 2π  and γe = γi . Thus this is the exterior CST-2 Radon transform 
of g(re, θe) as defined above.� □ 

Had we started out with f̂e(τ ,φ), the proof can be repeated by exchanging the indices 
(i) � (e) and changing the integration bounds to ( p(

√
1 + τ 2 − τ) → p).

Remark 6.4.  Lastly, for imaging the full plane, it is necessary to use both (albeit separately) 
interior and exterior CST-2 scanning. It is amusing to compare this double CST-2 scanning 
(at supplementary scattering angles) to the double scanning (also at supplementary scattering 
angles) advocated for CST-1-line Radon transform in [18], which was shown to be equivalent 
to the scanning by the so-called V-line by application of geometric inversion.

7. The CST-2 Radon problem in an annular domain and its inversion

Theoretical reconstruction of electric charge density in CST requires complete data, as in 
conventional CT. In practice restrictions on measurements have led to the problem of missing 
(or limited data). Since the CST-2 data is labeled by two parameters (τ ,φ), there will be two 
possible classes of missing data related either to restricted τ  or to restricted φ. Here, assuming 
that SD can move freely around its center O, we shall be concerned only with restrictions on τ .

7.1.  Origin of the problem—mapping to the exterior classical Radon problem

As known, CST relies on the measurement of scattered radiation flux at given scattered energy. 
This is done by radiation detector crystals, which have bounded energy detection ranges. 
More specifically,

	 •	�for interior CST-2, one may not be able to pick up data for grazing scattering angle 
ω ∼ 0(ω > 0), so that the effective range of Compton scattering angle is restricted to 
(0 < ωmin < ω < π/2). Consequently the τ -range is now 0 < τ < τmin since τ = cotω, 
or smin < s < ∞, since s = p/τ . The scanning arcs are located inside an circular annulus 

T T Truong and M K Nguyen﻿Inverse Problems 35 (2019) 054005



13

A ( p(
√

1 + τ 2 − τ), p), between interior radius p(
√

1 + τ 2 − τ) and exterior radius p , 
see left image of figure 3. Following the radial mapping ri → ρi, as no restriction is 
imposed on φ, one gets, instead of the full plane classical Radon problem, now the so-
called exterior classical Radon problem, since the new scanning lines in (ρi, θi) space do 
not intersect the disk D(O, smin),

	 •	�for exterior CST-2, one may not be able to pick up data for grazing scattering angle 
ω ∼ π, (ω < π), so that the effective range of Compton scattering angle is restricted to 
π/2 < ω < ωmax. Consequently the τ -range is now 0 < τ < τmax since τ = − cotω, or 
smax < s < ∞, since s = p/τ . The scanning arcs are located inside an circular annulus 
A ( p, p(

√
1 + τ 2 + τ)), between interior radius p  and exterior radius p(

√
1 + τ 2 + τ), 

see right image of figure 3. Following the radial mapping re → ρe, as no restriction 
is imposed on φ, one gets, instead of the full plane classical Radon problem, now the 
so-called exterior classical Radon problem, since the new scanning lines in (ρi, θi) space 
do not intersect the disk D(O, smax).

Note that the two annular domains A ( p(
√

1 + τ 2 − τ), p) and A ( p, p(
√

1 + τ 2 + τ)) are 
morphologically identical. Function reconstruction problem for the interior annular domain 
can be transferred to that of the exterior domain or vice versa by relabeling the variables from 
one to the other case. Moreover if one chooses smin · smax = p2, then geometric inversion in 
the circle Γ(O, p) connects the interior annulus A ( p(

√
1 + τ 2 − τ), p) to the exterior annulus 

A ( p, p(
√

1 + τ 2 + τ)), see right image of figure 4. So one would need to consider only one 
CST-2 Radon problem on annular domain.

The question is now how to use the results on the exterior Radon problem to build up a 
function reconstruction procedure for CST-2 Radon transform on annular domains.

However, if the compact support of f (r, θ) is strictly inside A ( p(
√

1 + τ 2 − τ), p) (or 
inside A ( p, p(

√
1 + τ 2 + τ))), then the inversion is given by formula (16) (or by formula 

S

D

M

φ
O

γ

O

S

D

φ

γ

M
ω

ω

Figure 3.  Annular interior (left) and exterior (right) CST-2.
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(31)), as in the case of available full data. But in general this is not the case and we have to 
resort to using the reconstruction in exterior classical Radon problem, which is most compre-
hensively worked out by Quinto in [11, 25–27]. We shall follow the exposition of his method 
in describing the reconstruction algorithm.

7.2. The exterior classical Radon problem associated to interior/exterior CST-2 Radon  
problems

In this subsection, we review the status of the exterior Radon problem, now associated to both 
interior and exterior CST-2 Radon problems. We shall denote (ρi,e, θi,e) by (ρ, θ) and (smin,max) 
by q, see right image of figure 4. In principle, the exterior classical Radon problem is soluble 
for integrable functions with compact support, which is the case of all physical densities of 
interest, as asserted by general theorems [19, 20] and the so-called ‘hole theorem’ of Cormack 
[21, 22]. However the reconstruction via the ‘hole theorem’ is unstable. A stable version of it 
was obtained later [15, 22], which agrees with the one found by Perry [23]. The first invest
igation on the exterior classical Radon transform is due to Perry [24], who established the 
singular value decomposition (SVD) of the classical Radon integral operator including its 
null space. Perry concluded that no complete function reconstruction can be achieved. But 
later on, Quinto, in a series of papers, produces, for smooth functions with compact support, 
a reconstruction algorithm which effectively inverts the exterior classical Radon transform in 
[11, 25, 26, 28]. We shall follow Quinto’s approach for our purposes.

	 (a)	�The exterior Radon transform concerns intermediate functions h(ρ, θ), defined on 
E = {(ρ, θ) : (q < ρ < ∞) ∪ (0 < θ < 2π)}, the exterior of a disk D(O, q) in R2, 
which are assumed to be square integrable, i.e. h(ρ, θ) ∈ L 2(E ) with respect to the inte-
gration measure

ρ

q

√
1 − q2

ρ2 ρ dθ dρ.� (36)

		 This classical exterior Radon transform maps h(ρ, θ) to ĥ(s,φ), which is defined on 
E ′ = {(s,φ) : (q < s < ∞) ∪ (0 < φ < 2π)}, the exterior of a disk D ′(O, q) in R2. It 
is also assumed that ĥ(s,φ) ∈ L 2(E ′), with respect to the integration measure

q
s

dφ ds.� (37)

ω ωπππ π/2 /2

τ τ

s s

s=p/ s=p/τ τ

=cotan = − cotan =cotan = − cotan ω ω ω ω

ω ω ωω
min max min max

q

s min

maxs

O O

Figure 4.  CST-2-Parameters values s (red curve) and ω  (blue curve).
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		 Note that the physical dimension of ĥ(s,φ) is equal to the physical dimension of h(ρ, θ) 
times a length, since h(ρ, θ) is integrated over a straight line.

	(b)	�There exists, in L 2(E ), the following orthonormal basis, for m = N and l ∈ Z:

hlm(ρ, θ) =
q2

ρ2 Qm

(
−1

2
,

1
2

,
q2

ρ2

)
eilθ, for l even,

hlm(ρ, θ) =
q3

ρ3 Qm

(
1
2

,
1
2

,
q2

ρ2

)
eilθ, for l odd,

�

(38)

		 where Qm(α,β, t) = (21+α+β/h(β,α)
m ) P(α,β)

m (2t − 1), P(α,β)
m (2t − 1) is the standard 

(α,β) Jacobi polynomial [29] and h(β,α)
m  is a numerical factor given by equation (4.3.3) 

of [30].
		 On the other hand, in L 2(E ′),

ĥlm(s,φ) =
ql+2

sl+1 Qm

(
l, 0,

q2

s2

)
eilφ,� (39)

		 form a basis in L 2(E ′), for m = N and l ∈ Z.

	 (c)	�The exterior classical Radon transform maps hlm(ρ, θ) to ĥlm(s,φ) according to

hlm(ρ, θ) → 0, for m <

[
|l|
2

]
,

→

√
2π

|l|+ 2m′ + 1
ĥlm(s,φ) for m >

[
|l|
2

]
,

�

(40)

		 where m′ = (m − [|l|/2]) and [t] is the largest integer at most equal to t.
	(d)	�In [25], Quinto has designed a numerical inversion algorithm to uniquely recover h(ρ, θ), 

of compact support and made up of two components h(ρ, θ) = hR(ρ, θ) + hN(ρ, θ), where 
hN(ρ, θ) is the so-called null component since its classical Radon transform is zero and 
hR(ρ, θ) is the ‘regular’ component. His procedure consists of the following steps:

	 •	�Decompose the data ĥ(s,φ) on the basis formed by the ĥlm(s,φ) as

ĥ(s,φ) =
∑
l,m

cl,m ĥlm(s,φ).� (41)

	 •	�Recover the ‘regular’ part hR(ρ, θ) of the unknown function h(ρ, θ), as

hR(ρ, θ) =
∑
l,m

cl,m√
2π

|l|+2m′+1

hlm(ρ, θ).
� (42)

	 •	�The next step is to determine hN(ρ, θ), by determining its circular component hN,l(ρ), 
which is the angular Fourier component of hN(ρ, θ) in

hN(ρ, θ) =
∑
l∈Z

hN,l(ρ) eilθ.� (43)

Quinto, in [25–27] has shown that hN,l(ρ) is a polynomial in 1/ρ of the same parity as l, of 
degree at most |l| and with lowest order term in 1/ρ of degree at least equal to two. Therefore 
the first three circular components hN,0(ρ) and hN,±1(ρ) are zero. As h(ρ, θ) is of compact  
support, we know that there exist K  >  q such that for all ρ > K  we have hN,l(ρ) = −hR,l(ρ). 
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This condition fixes uniquely hN,l(ρ) for ρ > q, because it is a polynomial in 1/ρ. This com-
pletes the determination of h(ρ, θ).

7.3.  Application to the inversion of the CST-2 Radon transform in annular domain  
from an interior (resp. exterior) CST-2 Radon problem

We are now in a position to reconstruct fully the interior CST-2 Radon transform in an annu-
lar domain. Once h(ρi, θi) (resp. h(ρe, θe)) is obtained from the previous algorithm, we invert 
equation (13) (resp. equation (28)) using also the expression of ρi  (resp. of ρe) in equation (18) 
(resp. equation (33)) to get the sought functions

f (ri, θi) =
2p2( p2 + r2

i )

( p2 − ri)2 h
(

ri
2p2

( p2 − r2
i )

)
,� (44)

f (re, θe) =
2p2( p2 + r2

e)

(r2
e − p2)2 h

(
re

2p2

(r2
e − p2)

)
,� (45)

which is the set objective of this work.

8.  Conclusion and perspectives

In this paper, we have presented a particular modality of Compton scatter tomography, called 
CST-2 and introduced in 2010, under a new approach and studied one of its missing data prob-
lem, which amounts to restrict the scanning area to an annular domain instead of the interior 
(or exterior) of a disk. We have shown that this problem, through an appropriate change of 
radial variable is reduced to the exterior classical Radon transform. The function reconstruc-
tive procedure in the case of the exterior classical Radon transform, worked out by Quinto, 
has been applied to reconstruct the unknown function of compact support in the two CST-2 
sub-modalities.

Interior CST-2 has potentially more imaging applications (nuclear medicine, non-destruc-
tive testing and evaluation, etc) as exterior CST-2, which by, its structure is meant for imaging 

x

M

φ
O

γ

O

S

D

φ
x

γ

M
ω

ω Radiation Shield
S

D

Figure 5.  Interior (left) and exterior (right) CST-2 shielding.
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large two-dimensional areas, e.g. two-dimensional search for land mines using Compton 
effect. In both operating modes, there is a need to protect operating personnel from strayed 
radiation. As already mentioned, CST-2 lends itself nicely to the installation of a circular 
shield as pictured in figure 5. For interior CST-2 scanning, the operator is positioned outside 
the circular shield, while the object under study lies inside the circle Γ(O, p). For exterior 
CST-2 scanning, the operator is placed inside the circular shield since the exterior of the shield 
is subjected to scanning radiation from the moving source S. In this case, strong radiation 
sources are expected to be used in order to have sensible measurement results. Note that this 
modality is more practical for scanning large areas than Norton’s CST-1-line modality.

We have not touched upon the problem of numerical inversion algorithm, which is quite 
formidable and reserve it for a future publication with a serious theoretical study of finite 
discretization of the data as well as of the inversion algorithm, along the lines of Marr’s  
work [31].

An extension of this work to what we may call CST-3 [32], in which scanning arcs have 
end points on the boundary circle Γ(O, p) but remain orthogonal to Γ(O, p). In this case, there 
exists also radial mappings which converts the interior and exterior problems into the same 
interior classical Radon problem, allowing elegant inversion formulas to be derived. Then the 
problem of missing data, due to limited energy range of radiation detectors, will be reduced 
to the CST-3 problem in annular domains. We hope to be able to deal with more new CST 
modalities through generalizations of the radial change of variables in order to be able to map 
these problems to the well-known classical Radon transform, for which a rich host of proper-
ties and techniques are readily available.
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