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Abstract—In this paper, we consider a coded transmission over a
frequency-selective channel. We propose to study analytically the
convergence of the turbo-detector using a maximum a posteriori
(MAP) equalizer and a MAP decoder. We show that the densities
of the extrinsic log likelihood ratios (LLRs) exchanged during
the iterations are e-symmetric and output-symmetric. Under
the Gaussian approximation, this property allows to perform a
one-dimensional (1-D) analysis of the turbo-detector. By deriving
the analytical expressions of the extrinsic LLR distributions under
the Gaussian approximation, we prove that the bit error rate
(BER) performance of the turbo-detector converges to the BER
performance of the coded additive white Gaussian noise (AWGN)
channel at high signal to noise ratio (SNR), for any frequency-
selective channel.

Index Terms—Convergence analysis, density evolution,
Gaussian densities, MAP detection, symmetric densities, turbo-
detection.

I. INTRODUCTION

N important source of degradation in high data rate

communication systems is the presence of intersymbol
interference (ISI) between consecutive data symbols which
is due to the frequency selectivity of mobile radio channels.
To combat the effects of ISI, an equalizer has to be used. The
optimal equalizer, in the sense of minimum sequence error rate
(SER) or bit error rate (BER) is based on maximum a posteriori
(MAP) detection. We distinguish two criteria, MAP sequence
detection and MAP symbol detection. When no a priori in-
formation on the transmitted data is available, MAP detection
turns into maximum likelihood (ML) detection. Efficient algo-
rithms exist for MAP sequence detection, for example the SER
optimizing Viterbi algorithm [8], and MAP symbol detection,
for example the BER optimizing Bahl-Cocke—Jelinek—Raviv
(BCJR) algorithm [1]. These algorithms are interesting since
their complexity grows linearly rather than exponentially with
the sequence size. The performance of both algorithms is almost
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the same [2] and it is limited by the frequency selectivity of the
channel. At high signal-to-noise ratio (SNR), a gap between the
additive white Gaussian noise (AWGN) channel performance
and the equalizer performance is observed and depends on
the minimum distance of the frequency-selective channel (the
minimum Euclidean distance between two noise-free channel
output sequences).

In order to improve the quality of the transmission, an error
correction code is generally used, together with an equalizer.
At the receiver, a solution achieving a good complexity/perfor-
mance trade-off is to use an iterative receiver consisting of a
soft-input soft-output (SISO) equalizer and a SISO decoder [6],
following the idea of turbo-codes [3]. The basic idea behind it-
erative processing is to exchange extrinsic information among
the equalizer and the decoder in order to achieve successively
refined performance. In this paper, we consider a turbo-detector
composed of an equalizer and a decoder using the symbol MAP
criterion [1]. A natural question concerns the achievable per-
formance of such a turbo-detector. It is believed (due to simu-
lations) that the scheme converges to the performance without
ISI. The aim of this work is to show that the BER performance
of the turbo-detector converges to the BER performance of the
coded AWGN channel at high SNR.

To address this question, one needs to characterize ana-
Iytically the convergence point of an iterative receiver as the
number of iterations goes to infinity and specify the probability
of error achieved at this convergence point. Iterative schemes
have been extensively studied. Exact analyses for finite se-
quence length exist [23], [24] and show the convergence to
a constrained form of sequence MAP receiver. However, the
convergence point cannot be specified analytically. Iterative
receivers have also been studied by noticing that they are a
special instance of the message-passing algorithm. The iterative
receiver can therefore be analyzed by computing the evolu-
tion of the densities (DE) of the messages exchanged by the
message-passing receiver. This is performed in [16] under the
assumption of infinite sequence length. The DE technique is
therefore an infinite-dimensional dynamical system, for which
the closed form expression of the recursion exists when the size
of all variables is two, such that the messages are real numbers
[often the log likelihood ratio (LLR) is taken]. However, to
determine the asymptotic (in terms of the number of iterations)
density, one needs to resort to simulations.

In order to reduce the computational burden of the DE, faster
techniques have been proposed that approximate the DE by a
one-dimensional (1-D) dynamical system. The approximate
techniques differ in the scalar to be tracked and in the way
to project the density on this scalar. The parameter can be
the SNR of the extrinsic LLRs [5], [7]. It can also be mutual
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information between the transmitted symbol and the associated
LLR [21], [22] which leads to the extrinsic information transfer
(EXIT) charts. All these methods therefore require two more
assumptions.

1) The messages are assumed to be independent and identi-
cally distributed (i.i.d.) Gaussian random variables (condi-
tioned on the transmitted symbols). Wiberg shows in [25]
that the Gaussian approximation is efficient for the ex-
trinsic LLRs. In [10], it was proved that it is a good ap-
proximation for turbo-decoding with infinite block length.
This approximation, with output-symmetry, reduces the di-
mension of the dynamical system to two.

2) The messages are further assumed to be e-symmetric.
A density p is e-symmetric if for v € {+1,—1} and
y € R.pyix(yle) = exp(ay)py|x(-y|z). The
e-symmetry in our paper is referred to as symmetry by
Richardson and Urbanke [17]. This reduces the dimension
of the dynamical system to one.

The major disadvantage of these methods is that they use
Monte Carlo simulations and provide only numerical results.
When the trellis has only two states, closed form expressions
of the EXIT functions have been derived [18]. However, in the
case of turbo-decoders or turbo-detectors using the MAP cri-
terion, it is difficult to study analytically the performance of a
MAP equalizer or a MAP decoder having a priori information
and a large number of states.

In our work, we seek a closed form expression of the recur-
sion, analyzing the turbo-detector for large trellis sizes (more
than two states). Note that such expression exists for two con-
catenated codes under one more assumption (high SNR) [13].
In the case of linear turbo equalization, analytical studies of the
equalizer performance were performed in [12], [15]. To the best
of our knowledge, no closed form expression of the 1-D recur-
sion of the turbo-detector using the MAP equalizer exists.

Main Contribution of the Paper: We prove the convergence
of the turbo-detector BER performance to the coded AWGN
channel BER performance for any frequency-selective channel.
To do this, we derive analytical expressions of the distributions
of the extrinsic LLRs at the output of the equalizer and the de-
coder. Our closed form analysis holds under some commonly
used assumptions in the 1-D analyses of iterative schemes, i.e.,
Gaussianity, e-symmetry and output-symmetry of the extrinsic
LLRs, independence of the noise modeling the extrinsic LLRs
(true for infinite block length) and high SNR (to insure the tight-
ness of the bounds on the error probability). We prove in this
paper that the densities of the extrinsic LLRs are e-symmetric
and output-symmetric and that they approach a Gaussian den-
sity at high SNR and for infinite block length.

This paper is organized as follows. In Section II, we describe
the system model and the iterative receiver. In Section III, we
give a proof of the preservation of e-symmetry and output-sym-
metry under MAP equalization. In Section IV, we derive ana-
lytically asymptotic approximations of the BER achieved by the
equalizer and give the distribution of the extrinsic LLRs at its
output. In Section V, we derive analytical expressions of the dis-
tribution of the extrinsic LLRs at the output of the MAP decoder
with a priori information. In Section VI, we perform the conver-
gence analysis of the turbo-detector and give the proof of con-
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Fig. 1. Transmitter structure.

vergence to the AWGN case. Throughout this paper, determin-
istic quantities and random variables are lower and upper case,
respectively. Vectors and matrices are underlined and double
underlined, respectively. The operator (.)7 denotes the trans-
position and 1  is the N x N identity matrix.

II. GENERAL FRAMEWORK

We consider a coded data transmission system over a fre-
quency-selective channel as depicted in Fig. 1. The input infor-
mation bit sequence is first encoded with a nonrecursive non-
systematic convolutional encoder with rate .. The output of
the encoder is interleaved and mapped to symbol alphabet A.
For simplicity, we will consider only BPSK modulation (A =
{+1,—1}). We assume that transmissions are organized into
bursts of 7' symbols. The channel is assumed to be invariant
during the transmission. The received baseband signal sampled
at the symbol rate at time k is

L-1

Tp = Z hisg_1 + ny, (D

=0

where L > 1 is the channel constraint length and s, for 1 —
L < k < T — 1, are the transmitted symbols. The channel
memory is L — 1 with 20~ possible states. In this expression,
ny, are modeled as independent samples from a random variable
with normal probability density function (pdf) A'(0, o%) where
02 = Ny/2 and N («, 02) denotes a Gaussian distribution with
mean o and variance o2. The term h; is the [th tap gain of the
channel and is assumed to be real valued with ZlL:_O hi = 1.

The optimal receiver for this coded system performs joint
equalization and decoding treating the concatenation of the en-
coder and the ISI channel as one code. However, the complexity
of this receiver is in general prohibitive, especially when an in-
terleaver is used. A solution achieving a good complexity/per-
formance trade-off is to use an iterative receiver consisting of a
SISO equalizer and a SISO decoder [6]. As shown in Fig. 2,
we consider the iterative receiver consisting of SISO proces-
sors, the equalizer and the decoder. We consider only the MAP
approach for both equalization and decoding, using the BCJR
algorithm [1]. We assume that the channel is perfectly known
at the receiver. The MAP equalizer computes the a posteriori
probabilities (APPs) on the coded bits, Ps, | x(s]z), s € A,
1-L<k<T-1,2z = (vp_1,...,70)", and outputs the
extrinsic LLRs [22]:

lzq = log Psu |K(+1 |z) Ps, (+1)
PSkIX(_HQ) Ps, (—1)

which are the a posteriori LLRs minus the a priori LLRs pro-
vided by the decoder. At the first receiver iteration, the a priori
LLRs, log(Ps, (+1))/(Ps, (—1)), are equal to zero since no a
priori information is available. The extrinsic LLRs /; are then
deinterleaved and provided to the decoder as input a priori in-
formation in order to refine its calculations. The MAP decoder

— log ()
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computes the APPs Ps, |g(s]e), e = (I71,...,11%,)", and

outputs the extrinsic LLRs

ldec N PSk ‘E(+1 |§)

Ps, (+1)
¢ =1lo y 2k
BT Py m(—1e)

—lo .
® Ps,(—1)

These LLRs are then interleaved and provided to the equalizer
as a priori LLRs at the next iteration. After some iterations, hard
decisions are taken on the information bits by the decoder.

In the rest of the paper, we want to prove the convergence of
the MAP turbo-detector BER performance to the coded AWGN
channel BER performance.

III. PROPERTIES OF THE EXTRINSIC LLRS

We assume that the extrinsic LLRs are independent. This as-
sumption holds for large block length with good and randomly
chosen interleavers. Wiberg shows in [25] that the distribution
of the extrinsic LLRs in iterative decoding approaches Gaussian
like distribution as the number of iterations increases. In [10], it
was proved that this is a good approximation for turbo-decoding
with infinite block length. We will prove in Section IV that this
approximation holds for MAP equalization. This approxima-
tion reduces the dimension of the dynamical system (DE tech-
nique) to four (the means and variances of the distributions of
the extrinsic LLRs for symbols equal to +1 and to —1). In [17],
Richardson et al. show that output-symmetry and e-symmetry
are preserved under MAP decoding. In this section, we propose
to generalize this result to MAP equalization. The output-sym-
metry reduces the dimension of the dynamical system to two
(the distributions of the extrinsic LLRs for symbols equal to 41
and to —1 have the same variance and opposite means). The
e-symmetry reduces the dimension of the dynamical system to
one (the variance is twice the absolute value of the mean).

A. Symmetry

We first recall some definitions of the symmetry.

Definition 1: A density p is e-symmetric if py | x(y |2) =
exp(zy)py | x(—y|x) forallz € {+1,-1}andy € R.

Definition 2: A density p is said to be output-symmetric if
py|x(y|z) = py|x(=y| — z). A channel with input = and
output y is said output-symmetric if its transition probability is
output-symmetric.

Proposition 3: Suppose that the information sequence s
of BPSK symbols is transmitted over an output-symmetric
channel, Channel 1. The received sequence is denoted z.
Assume that a sequence of a priori LLRs is available at the
output of an output-symmetric channel with input s, Channel
2, and also provided to the MAP equalizer (see Fig. 3). Then,
the density of the a posteriori LLRs at the output of the MAP
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equalizer, having at its input x and the a priori LLRs, is both
e-symmetric and output-symmetric.

We give the proof of Proposition 3 in Appendix 1.

Remark: Since Channel 2 is output-symmetric, the a priori
LLRs have an e-symmetric and output-symmetric density [17]
(see Fig. 3).

Corollary 4: Assuming that Channel 1 and Channel 2 are
independent and Channel 2 is memoryless, the density of the
extrinsic LLRs at the output of the MAP equalizer, having at
its input z and the a priori LLRs, is e-symmetric and output-
symmetric.

We give the proof of Corollary 4 in Appendix II.

Remark: Proposition 3 holds for any output-symmetric chan-
nels. There is no need to further assume that the channels are in-
dependent and memoryless. However, the assumptions in Corol-
lary 4 are needed for the e-symmetry of the extrinsic LLRs to
hold.

Corollary 5: Assuming that the equivalent channel at the
output of the decoder (Channel 2) is an AWGN channel and
that the interleaver has infinite length, the densities of the ex-
trinsic LLRs exchanged between the MAP equalizer and the
MAP decoder in the turbo-detector of Fig. 2 are e-symmetric
and output-symmetric.

Proof of Corollary 5: We use in the following notations
of Proposition 3. As shown in Fig. 1, the information sequence
is transmitted over a frequency-selective channel with AWGN
(Channel 1) which is an output-symmetric channel. At the first
iteration of the receiver, no a priori information is available at
the input of the equalizer. It is a particular case where we can
apply Proposition 3. Hence, the densities of the extrinsic LLRs
at the output of the equalizer are e-symmetric and output-sym-
metric. Since e-symmetry and output-symmetry are preserved
under MAP decoding [17], the densities of the extrinsic LLRs
at the output of the decoder are e-symmetric and output-sym-
metric at the first iteration. Moreover, since the interleaver has
infinite length, Channel 1 and Channel 2 are independent. Since
Channel 2 is an AWGN channel, it is also memoryless. Then, the
equalizer in the turbo-detector is equivalent to the MAP equal-
izer of Corollary 4. Notice that the MAP equalizer and the MAP
decoder in the turbo-detector use the independence assumption
which is not verified for short length interleavers.

Given the property of e-symmetry and output-symmetry
preservation under MAP decoding [17] and MAP equalization
(Corollary 4), we can prove by induction that the densities
of the extrinsic LLRs exchanged during the next iterations
between the equalizer and the decoder are also e-symmetric
and output-symmetric.
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B. Gaussian Approximation

In [10], it was shown that for a convolutional code (in a turbo-
code) with an infinite block size, if the received signal is sub-
ject to AWGN and the a priori LLRs at the input of the decoder
have a Gaussian density, then the density of the extrinsic LLRs
at its output can be well approximated by a Gaussian density.
The proof given in [10] cannot be generalized to the case of
MAP equalization since the received signal is not only subject
to AWGN but also to ISI. In Section IV, we will prove the con-
vergence of the distribution of the extrinsic LLRs at the output
of the equalizer to a Gaussian distribution at high SNR and for
infinite block size.

The LLRs /;* and [{°° are samples of random variables L;"
and L‘,:ec, respectively. In the following, we want to derive the
distributions of the extrinsic LLRs L;" and L{°° at the output of
the equalizer and the decoder. We have shown that the densities
of the extrinsic LLRs are e-symmetric and output-symmetric.
Since they are well approximated by a Gaussian density, the
variance is the double of the absolute value of the mean [5], [7].
This allows us to perform a 1-D analysis of the turbo-detector.

IV. ANALYSIS OF THE EQUALIZER

The performance of the Viterbi equalizer in the presence of
AWGN was studied by Forney in [8]. This study assumed that
no a priori information is provided to the equalizer. In the fol-
lowing, we propose to study analytically the impact of the a
prioriinformation on the MAP equalizer. The study will be done
here for the equalizer using the MAP sequence criterion. We as-
sume that this study holds for the MAP symbol equalizer using
the BCJR algorithm [1] since the two equalizers have almost the
same performance at high SNR as observed in ([2], page 814).
We first derive analytically asymptotic approximations of P,
the BER based on the a posteriori LLRs at the output of the
equalizer fed with a priori information. Then, we derive analyt-
ical expressions of the distribution of the extrinsic LLRs L}®.

A. Upper Bound and Asymptotic Approximations of the BER

In [8], [2], an upper bound was derived on the symbol error
probability achieved by the Viterbi equalizer for an ISI channel
when no a priori information is available. Here, we propose to
follow the reasoning of [2], [8] to derive an upper bound on P,
when the MAP sequence equalizer is fed with a priori LLRs.
Based on this upper bound, we derive asymptotic approxima-
tions of P..

We assume that the a priori observations at the input
of the MAP equalizer are modeled as the outputs of an
AWGN channel with zero mean and variance afq,in. The a
priori LLRs are then modeled as independent and identi-
cally distributed (i.i.d.) samples from a random variable with
the conditional pdf N((2sku2yi0)/(07), (412 ia)/(07)),
where feq in £ (0)/(0eqin). We consider an error event
as it is defined in [8], [2]. We define a state at time k as
or = (Sk—1,..-,8k—L+1)- An error event is said to extend
from time k; to k- if the estimated states and the correct states
are equal at times k1 and ko and are different for k1 < k < ko.
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Let s, be the vector of transmitted symbols and 5, be the esti-
mated vector corresponding to the error event. Lete = 5, — s,
be the vector of symbol errors. Let E be the set of all nonzero
error events, m(e) the number of decision errors in ¢ and P(¢)
the probability of e to occur. The overall probability of error is
given by

P.=Y m(e)P(e).

e€E

Let A(e) be the event that the transmitted sequence s, of data
symbols is compatible with the occurrence of e(5, = s, + e is
an allowable input sequence). Then, e occurs if A(e) occurs and
S, = s, + e has a MAP sequence metric better than any other
possible sequence of symbols, including s,.. Thus, the proba-
bility of e can be upper bounded as follows:

P(e) < Py, 5 P(A(e))
where Py ; is the probability that $.=s, + ¢ has a MAP se-
quence metric better than s,.

We showed in [19] that the pairwise error probability that the
MAP sequence equalizer with a priori information chooses §,
instead of s, is given by

0 VI@I? + 4m(e)iiz,

Sei8e 20

where Q) = (1)/(v2m) 7 exp(—(y*)/(2))dy, d(e) is the
convolution of e with the channel and fieq in N (0)/(0eq,in)-
Then,

V@I + dm(e)i2, i,
20

3

We define o, as

. — mi 2 2
Qmin = gélg \/HQZ(Q)H + 4m(g)lu’e(1,in'

Let Enin be the set of all ¢ achieving this minimum value auyip, -
When the SNR is high, because of the exponential decrease of
the Gaussian distribution function, P, can be approximated by
the term involving the minimum value oy, as

Pe = rll)minQ (azmm)
o
where Ymin = > e m(e) P(A(e)).

Proposition 6: Suppose we are given a frequency-se-
lective channel with L taps and AWGN with variance o2.
Assume that the a priori observations at the input of the
MAP equalizer are modeled as the outputs of an AWGN
channel with zero mean and variance azq_in. Then, at high
SNR, the overall probability of error P, at the output of
the equalizer is approximated as (4), shown at the bottom
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of the page, where Heq,in é (U)/(Jeq,in): (mmin:(imin) -
V@I + dm(e)pl, i, and Ynin =

(e)P(A(e)). When d2,, < 4,

min

Arg Milly (e)>2,[|d(e)||

ZEE Epin Y

peaim =\ (4 = &5,/ (4(min — 1).

Proof of Proposition 6: In order to derive the asymptotic
approximate expressions of the BER, we have to give a precise
expression of ap,j,, depending on the channel and on the a priori
information characteristics. We distinguish two cases: the case
of unreliable a priori information (feq,in is low) and the case of
reliable a priori information (fteq,in is high).

We first consider the case of unreliable a priori information.
Generally, in the MAP equalizer, errors occur in bursts. This is
still true here since the a priori information is not very reliable.
Thus, we do not consider isolated errors since they occur rarely
and we assume that m(e) > 2. Let

Mmin; dmin) = arg ~ min d(e)||2 + 4m(e)pZ, in-
| )= a8 oo Vol ()t1eq,

Thus

Omin = \/drznin + 4mmin/w’f(23q’in- &)
When fieq,in is high, most of the a priori observations are
very reliable and have more influence on the detection than
the channel observations. Since the a priori information are
independent, errors will not occur in bursts. Actually, in this
case, isolated errors corresponding to the few non reliable a
priori observations will occur and will dominate the overall
probability of error. Thus, aumiy is achieved for m(e) = 1 and

ld(e)lI” = 4,
Umin = 2\/ 1+ H’Z,q,in'

We first assume that dfnin < 4. Let fleq,1im be the value of jieq in

giving equality between (5) and (6):

(6)

4 — 2

min

A(Mpmin — 1) ™

Heq,lim =

We can easily show that when peqin < fleqlim (UD-
reliable a priori information), the minimum value of

\/||d(g)||2 + 4m(e)pd, i, is achieved for m(e) = mpin and
lld(e)||? = d2,., and when [eq,in > Heqlim (reliable a priori

information), it is achieved for m(e) = 1 and ||d(e)||* = 4.
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When fteqin < [leq,lim, the overall probability of error is
approximated at high SNR by

\/sznin + 4mmin/1'gq,in
P, ~ 'I/JminQ 2 (8)
ag
where Ymin = > cp . m(e)P(A(e)).

When fieq,in > [leq,lim (reliable a priori information), since
the modulation used is BPSK, Ep;, = (£2). Wehave A(+2) =
—1 and A(—2) = +1, and then ¢;, = (1/2) + (1/2) = 1.
Hence, the overall probability of error is approximated at high

SNR by
V I+ ugq,in
Po~Q | —7— 9
a
If d2, > 4,0, is always achieved for m(e) = 1 and

lld(e)||> = 4. Thus, P. is approximated as in (9) for all fieq,in-

1) Simulation Results: We propose to verify by simula-
tions the tightness of the asymptotic expressions given in (4).
In the simulations, we do not use channel coding and the
turbo-detector yet. We consider Channel 5 and Channel 7
with impulse responses (0.289;0.499;0.579;0.499;0.289) and
(0.179;0.318;0.477;0.527;0.477,0.318;0.179), respectively.
In the case of unreliable a priori information, for Channel
5, Qimin is achieved for muyiy = 2 and dpi, = 1.035 [20],
giving fleqim = 0.855. Notice that in this case, Jmin is
equal to the channel minimum distance [20]. Therefore, the
same sequences will achieve the minimum value «,;, and
the channel minimum distance. By contrast, for Channel 7,
Omin and the channel minimum distance are achieved by
different sequences. More precisely, i, is achieved for
Mumin = 2 and dpin = 0.796 giving fleqiim = 0.917,
whereas the channel minimum distance is 0.724, obtained
by error sequences of length 6 [20]. For both channels, when
Heq,in < Meq,lim» the set of error sequences achieving oy is
Enin = {(2,-2),(—2,2)}. Since A(+2,-2) = (—1,+1)
and A(=2,+2) = (+1,—1), Ymin = 2.(1/4) + 2.(1/4) = 1.
We provide the equalizer with Gaussian a priori LLRs with
the conditional pdf N'((2sxp2, i)/ (0%), (4p2qin)/(0?)), for
a given fleqin = (0)/(0eq,in)- In Figs. 4 and 5, we plot the
BER curves with respect to the SNR, for different values of the
ratio fteq,in, respectively, for Channel 5 and Channel 7. Here,
SNR = FE;/Ny where E is the energy per transmitted symbol
and Ny = 202. Each curve is obtained while the ratio Heq,in
is kept constant. The solid lines indicate the BER performance
based on the a posteriori LLRs obtained by simulations. The

Pe l"wminc\?<

4pZ
e o),

72 -
dirin T4Mmin Heq,in
20 ?

itd

itd

2

min

< 4 and fleq,in < feq,lim
N 4)
> 4or (d2

min < 4 and Heq,in Z Meq,lim)

min
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Fig. 4. BER versus SNR: comparison of the equalizer BER performance (solid
curves) and the asymptotic approximation (dotted curves), when the detection
is based on the a posteriori LLRs, for Channel 5.
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Fig.5. BER versus SNR: comparison of the equalizer BER performance (solid
curves) and the asymptotic approximation (dotted curves), when the detection
is based on the a posteriori LLRs, for Channel 7.

dotted lines are obtained by considering the analytical ex-
pressions given in Proposition 6. We notice that the analytical
curves approximate well the curves obtained by simulations
when the BER is less than 10~2. The approximation is less
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accurate when fieq,in 1S close to fieq,1im. Indeed, in this case,
isolated errors and double errors occur and have almost equal
probabilities. The error probability then becomes a combina-
tion of the probabilities of these two types of error events and
the approximate expressions become less accurate. However,
as will be shown in the following, the approximation is still
satisfactory to predict the distribution of the extrinsic LLRs at
the output of the equalizer.

B. Gaussian Approximation at the Output of the Equalizer

In [9], [2], a lower bound was derived on the symbol error
probability achieved by the Viterbi equalizer for an ISI channel
when no a priori information is available. By following the
reasoning of [9], [2], we can derive expressions of tight lower
bounds on the BER of the a posteriori LLRs at the output of the
MAP sequence equalizer when it is fed with a priori LLRs. We
can show that [see (10), shown at the bottom of the page], where
¥min = deEmm P(A(Q))'

The error probability is upper bounded by (3) and lower
bounded by (10). The upper bound is dominated by the term
involving the minimum value «p,;,, at high SNR. Thus,
at high SNR, there exists constants A, B and C such that
AQ((amin)/(20)) < P. < BQ((amin)/(20)) + C where
A and B are defined in (10) and (4) and C' is the term of the
upper bound negligible at high SNR. Notice that the influence
of A and B becomes negligible at high SNR. Since the error
probability achieved for LLRs with a Gaussian density is given
by the function Q(-), we conclude that at high SNR and for
infinite block length, the density of the a posteriori LLRs at
the output of the MAP equalizer with a priori information
converges to a Gaussian density. Notice that when d2,, > 4 or
teq,in = Meq,lim, A = B = 1 and P, is well approximated by
Q((@min)/(20)). Then, the Gaussian approximation becomes
more accurate in this case.

C. Extrinsic LLR Modeling

Proposition 7: Suppose we are given a frequency-selective
channel with L taps and AWGN with variance o%. Assume that
the a priori observations at the input of the MAP equalizer are
modeled as the outputs of an AWGN channel with zero mean
and variance 00 in- Then, at high SNR, the extrinsic LLRs
L7* on the transmitted symbols s, at the output of the MAP
equalizer are modeled as random variables with the conditional
pdf N((2skﬂgq,out)/(02)7 (4/1‘<23q,0ut)/(02)) where [See (11)’
shown at the bottom of the page], where fieq,in = (0)/(Teq,in)

mm+4mmm#eq )
Ps Z ‘pminQ ) if dmin < 4 and Heq,in < Heq,lim

(10)
vV HHeq in 5
Ps Z Q < o q > if d12nm Z 4 or (dr211in <4 and Heq,in Z Noq,lim) 9
2 _ 2 8 diinHA(mmin—Dpl, s tdre® o 5
/j’eq,out - feq (lj’eq,in) - 4 ) if dmin <4 and Heq,in < Heq,lim (11)
/l’gq,out = feq(lu’tzeq,in) é 17 if d?nln Z 4 or (dr2‘mn < 4and Heq,in Z /Leq,lim) ’
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preqtim = /(4 = )/ (A —
and Ymin = D g, m(g)P(A(g)).
Remark: Notice that when pieqin > fleq,lim (g00d a priori
information) or d2,, > 4, the extrinsic LLRs at the equalizer
output are modeled as random variables with the conditional pdf
N((2sx)/(0?),(4)/(0?)) and are then equivalent to the LLRs
corresponding to the AWGN channel with zero mean and vari-
ance o2, as though the effects of the ISI were eliminated. In a
turbo-detector, the equalizer provides the decoder with the ex-
trinsic LLRs /;* at each iteration. Hence, if the a priori infor-
mation becomes reliable or d2 . > 4, the BER of the decoder
on the information bits (which is also the BER of the turbo-de-
tector) is equivalent to the BER of the coded AWGN channel. In
Section VI, we will give the proof of the convergence of the BER
performance of the turbo-detector to the BER performance of
the coded AWGN channel for any frequency-selective channel.
Proof of Proposition 7: We first consider the case where
d?, < 4. When the a priori information are unreliable
(Heq,in < Heq,lim). the BER at the output of the MAP equalizer
is approximated by

1))/ Y= _210g(1/)min)

\/dmm + 4mmm/l’cq n

Pe ~ ¢pnin@Q (12)
Since Q(v/2)e~¥/? > Q(y/z ¥ y) [2], we obtain
\/dmln + 4mmin/j’gq in + 4’702
P>~ Q : (13)
20
where v = —21og(%min)-
At high SNR, the BER can be approximated by
\/dmm + 4mmin/“”<23q in + 4,70-2
P.~Q : (14)

20

We know that the BER for BPSK modulation, for an AWGN

channel with zero mean and variance o2 is

r-a(L).

Comparing (14) and (15), we can conclude that the BER
performance of the MAP equalizer when it is provided with
a priori information is equivalent to the BER performance
achieved for an AWGN channel with zero mean noise and
variance 0} = (402)/(d2,;,, + 4muinp?,;, + 470?). Hence,
the a posteriori LLRs at the output of the MAP equalizer can
be modeled as i.i.d. samples from a random variable with pdf

N((2sk)/(01), (4)/(a1))-

15)
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Using (2) and assuming that thea priori LLRs and the ex-
trinsic LLRs are independent thanks to the interleaver [11], we

obtain
2 2ul; 4 Apk;
eq €q,1n eq,in
Lk NN(Sk (o'_%_ 0_2 5 O_—%— 0_2 .
Therefore

202

dr2n1n +4 (mmin - 1) qu,in + 4’702
o2 )

When the a priori LLRs are reliable (fteqin > fleq.lim) OF
d2. > 4, the BER can be approximated at high SNR by

min
\/ I+ H’gq,in
Pex Q| ——7—

g

a2 + 4 (Mpmin — 1) p2 .+ 4y02
qu ~ N (sk < min ( )H’eq,m Y 7

(16)

a7

In this case, the BER of the MAP equalizer is equivalent to
the BER of an AWGN channel with zero mean and variance
o5 = (6°)/((1 + plqin)) (note that the BER is independent
from the channel). Heﬁce, the a posteriori LLRs at the output
of the MAP equalizer can be modeled as i.i.d. samples from a
random variable with pdf NV'(2s)/(03),(4)/(03)).

Assuming that the a priori LLRs and the extrinsic LLRs are

independent [11], we obtain
2
4ueq,in
o2 '

e 2 2ll’e in 4
lkq NN <Sk (U% _ 0(21 ) , (U% —
(18)

Hence,
e 2 4
qu NN(Sk <_02> 7—0_2) .

By analogy with the model of a priori LLRs, we define ficq,out
such that the extrinsic LLRs L;" are random variables with the
conditional pdi((zskﬂ'eq out)/( ) (4:U’eq,out)/( 2)) USing
(16) and (18), we can write the quantity ugq out as a function of
ueq in [s€€ (19), shown at the bottom of the page].

D. Simulation Results

We consider the same simulation conditions as in
Section IV-A-1). We do not use channel coding. We con-
sider two channels: Channel 3 and Channel 5 respec-
tively with impulse responses (0.499;0.708;0.499) and
(0.289;0.499;0.579;0.499;0.289). For Channel 3, m,;, = 2
and Jmin = 1.5307. By using (7), we obtain that for Channel
3, Jteq,lim = 0.644. For both channels, when fieq in < fleq,lims
the set of error sequences achieving oy iS Funpn =

d1211i11 +4(mmin - 1)N§q Jin

1>

+4'yo'2

= feq(ﬂzq,in) 4
- fe‘l( oq m) 2 17

2
H’Pq,out

eq out

if d2,,

min

if d2..

min

< 4 and fleq,in < fleq,lim

>4 or (JZ < 4and pleq in > - ) (19)
= min Heq,in Z Heq,lim | -
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Fig. 6. Equalizer analysis for Channel 3: ugq,o“t versus ugq,m.
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Fig. 7. Equalizer analysis for Channel 5: 2, ., versus p2_ ;. .

{(2,-2),(=2,2)}. Thus, Ymin = 2.(1/4) + 2.(1/4) = 1.
We provide the equalizer with Gaussian a priori LLRs with
the conditional pdf N'((2sxpd,i,)/(0%), (402 in)/(0?)), for
a given fleqin = (0)/(0eq,in)- Figs. 6 and 7 show p2 .
versus lj’zq,in respectively, for Channels 3 and 5. The dotted
curves are obtained by simulations for different values of the
SNR = FE,/Ny. We indicate on the figure the corresponding
values of BER at the output of the equalizer when no a priori
information is available at its input. The solid curves are the
analytical curves obtained using (11). Notice that the analytical
curves do not depend on the SNR since 9,;, = 1. We can see
that the analytical curves approximate well the curves given by
simulations as the SNR increases and for relatively high BER
(BER = 0.0023 for Channel 3 and BER = 0.03 for Channel
5) We notice that for Heq,in > Heq,lim and Heq,in < Heq,lim»
the analytical curves approximate well the curves obtained by
simulations. As in Section IV-A-1) and for the same reasons,
around the limit value fieq 1im, the approximation is less accu-
rate. We also notice that the approximation is better for Channel
3 which is less difficult to equalize than Channel 5.
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Fig. 8. Decoder analysis: pi3,. .., versus p2__ .., for the convolutional code

with generator polynomials (7,5).

V. ANALYSIS OF THE DECODER

In order to perform the whole analysis of the turbo-detector,
we have to find a closed form expression for the distribution of
the extrinsic LLRs at the output of the decoder.

Proposition 8: Assume that a priori observations at the input
of the MAP decoder are available and modeled as the outputs of
an AWGN channel with zero mean and variance agec,in. Then,
at high SNR, the extrinsic LLRs L{< on the coded symbols s,
at the output of the decoder, are random variables with the con-
ditional pdf N ((25k12ce out)/(02), (4113ee out)/ (0?)) Where

p’?lec,out = fdec(ﬂ’ﬁec,in) 2 /j’tziec,in(dfree - 1) + /60—2 (20)

with fdec,in £ (0)/(0dec,in); diree 18 the code minimum dis-
tance, f = —2log(mcdsee), me = kgfreerc, kgfree being the
number of codewords of weight d,... caused by information se-
quences whose first one occurs at time 0, and r.. is the code rate.

The proof of Proposition 8 is given in Appendix III.

Simulation Results: The information data are encoded using
the rate . = 1/2 convolutional code having 4 states and gener-
ator polynomials (7,5) in octal. For this code, m. = 7. = 1/2.
We provide the decoder with Gaussian a priori LLRs with the
conditional pdf N (25142 5,)/(02), (41250 1)/ (02). for a
given fldec,in (0)/(0dec,in)- Fig. 8 shows /’l’<2:loc,out versus
uﬁec,in. The dotted curves are obtained by simulations for dif-
ferent values of the SNR. Here SNR = FE; /N, where Ej, is
the energy per information bit and Ny = 20°2. The solid curves
are the theoretical curves obtained using (20). Simulations show
that the analysis of the decoder holds for high SNR values and
is less accurate for low SNR values. Hence, we will use (20)
in the asymptotic convergence analysis in the next section, for
high SNR values. This will allow us to prove, without relying on
simulations, the convergence to the coded AWGN channel per-
formance at high SNR. For low SNR values, we will perform a
simulation of the decoder.
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VI. CONVERGENCE ANALYSIS

In our turbo-detector, equalization and decoding steps are it-
erated by passing the extrinsic LLRs /;* and 12“ between the
equalizer and the decoder. The mechanism of turbo-detection
can be described by the evolution of the density of the extrinsic
LLRs. Under Gaussian and independence approximations (and
thanks to e-symmetry and output-symmetry preservation), the
density of the extrinsic LLRs can be described by a single pa-
rameter, uijout at the output of the equalizer and 'u’(%ec,out at the
output of the decoder. Hence, the density evolution can be ap-
proximated by the changes of p2, i, t0 42, oue = feq(12qin)
and p3.. ;0 10 pio out = fdec(Hieesy)- At the first iteration,
there is no a priori' information at the input of the equalizer,
thus 2, ;, = 0. Then, the extrinsic output LLRs /;* described
bY 1eq.out = Haee in ar€ fed into the decoder yielding extrinsic
LLRs /g described by 'u’(%ec,out = /quyin which are fed back to
the equalizer and so forth.

In this paper, our analysis differs from the conventional EXIT
charts in two aspects. Firstly, conventional EXIT charts [12],
[21], [22] are based on the evolution of the mutual information
whereas our analysis is based on the evolution of the parameters
ugqyout = uﬁec,in and uﬁec’out = ugq7in. We choose this repre-
sentation because it follows naturally from our analysis and al-
lows us to use it easily to prove the convergence to the AWGN
case. Secondly, we give a closed form expression for the evolu-
tion of these parameters at high SNR (there is no need for sim-
ulations). When the MAP equalizer is used, classical analyses
generating EXIT functions [22] rely on extensive computer sim-
ulations. To the best of our knowledge, analytical studies exist
only when a linear equalizer is used [12], [15].

In the following, we consider two cases: the case of low SNR
and the case of high SNR.

A. Semi Analytical Analysis

We consider here the case of low SNR. In this case, as shown
by simulations in Section V, the analytical expression (20) in
Proposition 8 is not very accurate. Thus, uﬁec,out is obtained
here by performing only one simulation while varying o3__; ,
as performed in conventional EXIT charts [21], [22]. The ana-
Iytical expression (20) will be used in the asymptotic analysis
(high SNR) in Section VI-B to prove analytically the conver-
gence to the coded AWGN channel performance.

Simulation Results: We propose to test for the validity of
the convergence analysis of the turbo-detector. We consider the
whole system with the channel coding at the transmitter and the
turbo-detector at the receiver. In the simulations, the modula-
tion used is BPSK. The information data are encoded using the
rate 7. = 1/2 convolutional code with generator polynomials
(7,5) or (23,35) in octal. The interleaver is randomly chosen
and its size is 2048. Figs. 9 and 10 represent uzq.out = uﬁec,in
VETSUS f13ec out = Heoq.in At SNR=6dB respectively for Channels
3 and 5. We plot the iterative trajectory obtained by using simu-
lations when the turbo-detector of Fig. 2 is considered (we sim-
ulate a whole turbo-detector without using any artificial a priori
LLRs). The solid curves for the equalizer (Equalizer analysis)
are obtained by using the theoretical analysis (Proposition 7).
The curves for the decoder (Decoder conventional method) are
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Fig. 10. Convergence analysis at SNR = 6 dB for Channel 5: p2, .., =
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dec,out — HMeq,in*

obtained as in conventional methods [5], [7], [21], [22] by sim-
ulations using artificial Gaussian a priori LLRs with the pdf
N (2850830 10)/(02), (41 1)/ (o)) at its input, when the
codes used have generator polynomials (7,5) or (23,35). We no-
tice that the convergence points are well predicted by our anal-
ysis. These points are on the curve of the coded AWGN channel
corresponding to uquut = uﬁec,in = 1. As in Figs. 6 and 7,
we notice that the analytical curves for the equalizer give an ac-
curate approximation of the curves obtained by simulations for
Heq,in = Heq,lim aNd fleq,in K [leq,lim and less accurate around
the limit value ficq 1im. We also notice that the approximation
is better when Channel 3 is considered. This can be explained
by the fact that Channel 3 is easier to equalize than Channel 5
(the minimum distance of Channel 3 is greater than the one of
Channel 5). The dashed curves for the equalizer (Equalizer con-
ventional method) are obtained as in conventional methods by
simulations using artificial Gaussian a priori LLRs with the pdf
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N ((2skp2q10)/(0%), (4184 1)/ (0%)) atits input. These curves
give a better approximation than the curves obtained by the anal-
ysis. However, they require a simulation of the equalizer for
each value of the couple (o2, qu’in), whereas our analysis does
not need any simulation of the equalizer.

B. Asymptotic Analysis

Proposition 9: For any frequency-selective channel, under
the Gaussian approximation, the BER performance of the MAP
turbo-detector converges at high SNR to the BER performance
of the coded AWGN channel.

Proof of Proposition 9: We consider the asymptotic case
of high SNR. We use here the closed form expression (20) in
Proposition 8 describing the extrinsic LLRs at the output of the
decoder, which becomes accurate. We want to prove that the
BER performance of the turbo-detector converges to the BER
performance of the coded AWGN channel. The asymptotic con-
vergence point of the turbo-detector is represented by the fixed
point of foq0 fdec. To have the convergence of the turbo-detector
performance to the AWGN channel BER performance, the fixed
point needs to be in the region of reliable a priori information
at the equalizer input such that (18) is valid. This is always the
case when d2;, > 4. When d2,; < 4, this means that the value
Of [13ec.out i (20) such that p3,. 5, = 1 must be greater than
12 im = (4= d%;)/(4(mmin — 1)). The condition can be
rewritten as

ugec,out = ugec,in(dﬂee - 1) + ﬁ0-2 | n? =1

dec,in™

4 —dz= .
= dfree — 1 2> _ - min
f M T ——
This leads to
2 2,
Airee > 1 — ———mn 21
f = (mmin - 1) /80. 4('rnmin - 1) ( )

Since o is low (high SNR), we can neglect the term 0% and we
obtain

1 d2

(mmin - 1) B 4(mmin - 1) ’

dfree > 1+ (22)
Since myin > 2, wehave 14(1)/((mmin—1)) < 2. Since dfree
is greater than 2 for a convolutional code, except the identity
code, the condition (22) is always verified.

In the following, we validate by simulation this asymptotic
analysis by comparing it with the convergence of a turbo-de-
tector for finite block length.

Simulation Results: We use here the same simulation con-
ditions as in Section VI-A. The SNR is now equal to 9dB
(high SNR). Figs. 11 and 12 represent (12, ¢ = [13ec in VEISUs
[ ec.out = Hiq in- Tespectively, for Channels 3 and 5. We notice
that the analysis of the equalizer becomes accurate here. As in
Section VI-A, the curves of the decoder (Decoder conventional
method) obtained by using artificial Gaussian a priori LLRs
give an accurate approximation of the decoder behavior. We
also plot in Figs. 11 and 12 the curves obtained by using (20)
in Proposition 8 (Decoder analysis) which predict well the
decoder performance since the SNR is high. Thus, the behavior
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of the turbo-detector is accurately predicted by our analysis at
high SNR. The simulations show that the performance of the
turbo-detector converges to the BER performance of the coded
AWGN channel as proved by the analysis.

To confirm this result, we plot in Fig. 13 the BER performance
curves on the information bits at the output of the turbo-detector
for one to four iterations, for Channel 3 and for one to six it-
erations, for Channel 5. The convolutional code has generator
polynomials (7,5). Fig. 13 also shows the BER performance of
the coded AWGN channel. We notice that for moderate to high
SNR (SNR > 4 dB for Channel 3 and SNR > 6 dB for Channel
5), the BER performance at the output of the turbo-detector
reaches the BER performance obtained for the coded AWGN
channel as predicted by the analysis. For lower SNR values, the
BER performance of the turbo-detector does not converge to the
BER performance of the coded AWGN channel. In this case, our
analysis does not predict the convergence point of the turbo-de-
tector since the expressions of the extrinsic LLRs distributions
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Fig. 13. BER performance of the turbo-detector for Channel 3 (solid curves)
and Channel 5 (dotted curves).

we derived are not close enough in this case (as explained in
Sections IV and V) and the Gaussian approximation is not very
accurate.

C. Validity of the Gaussian Approximation

In [10], it was shown that when the block size goes to infinity,
the density of the extrinsic LLRs at the MAP decoder output
can be well approximated by a Gaussian density. In Section IV,
we proved the convergence of the distribution of the extrinsic
LLRs at the output of the MAP equalizer to a Gaussian distri-
bution at high SNR and for infinite block size. We want now
to test for the validity of the Gaussian approximation by sim-
ulation for a turbo-detector with finite block length. Figs. 14
and 15 show the Kullback—Leibler distance [4] of the distri-
bution of the extrinsic LLRs, when the transmitted symbol is
equal to 41, to the Gaussian distribution with the same mean
and variance, respectively at the output of the equalizer and the
decoder versus the iteration number of the iterative receiver for
SNR € {3,6,9}. We consider here Channels 3 and 5. We use
the convolutional code with generator polynomials (7,5). The
solid curves are obtained when Channel 3 is used and the dotted
curves are obtained when Channel 5 is used. Figs. 14 and 15
show that as the number of iterations and the SNR increase,
the Kullback—Leibler distance decreases. Thus, the pdf of the
extrinsic LLRs approaches a Gaussian pdf when the SNR is
moderately high and as the number of iterations increases (the
a priori information becomes reliable). We notice that on av-
erage the values of the Kullback-Leibler distance obtained for
Channel 5 are higher than those obtained for Channel 3. Thus,
the Gaussian approximation is better verified for Channel 3.
This can be explained by the fact that Channel 3 is easier to
equalize than Channel 5. We also notice that the distribution of
the extrinsic LLRs at the output of the decoder is less close to a
Gaussian distribution than the distribution of the extrinsic LLRs
at the output of the equalizer (the Kullback—Leibler distance is
higher).
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Fig. 14. Kullback-Leibler distance of the distribution of the extrinsic LLRs
at the output of the equalizer when the transmitted symbol is equal to +1 to
the Gaussian distribution with the same mean and variance, versus the itera-
tion number of the iterative receiver for SNR€ {3, 6,9}, for Channel 3 (solid
curves) and for Channel 5 (dotted curves).
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Fig. 15. Kullback-Leibler distance of the distribution of the extrinsic LLRs
at the output of the decoder when the transmitted symbol is equal to +1 to
the Gaussian distribution with the same mean and variance, versus the itera-
tion number of the iterative receiver for SNRe {3, 6,9}, for Channel 3 (solid
curves) and for Channel 5 (dotted curves).

VII. CONCLUSION

In this paper, we considered a coded transmission over a
frequency-selective channel. We proposed to study analytically
the convergence of the turbo-detector using a MAP equalizer
and a MAP decoder. We showed that as for MAP decoding
[17], e-symmetry and output-symmetry are preserved under
MAP equalization. Using the i.i.d. Gaussian approximation, we
showed that the BER performance of the turbo-detector con-
verges to the BER performance of the coded AWGN channel at
high SNR. Simulations showed that our analysis allows one to
accurately predict the turbo-detector behavior at high SNR and
the performance of the convergence stationary points.
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APPENDIX |
PROOF OF PROPOSITION 3

As shown in Fig. 3, we consider the transmission of a se-
quence s = (s7—_1,...,81-1)7 of BPSK symbols over an
output-symmetric channel, Channel 1. The output sequence is
called z. We assume that a set of a priori LLRs with an output-
symmetric density is also available. These a priori LLRs are
associated with an output-symmetric channel, Channel 2, with
input s [17] (see Fig. 3). Letr = (r7—1,...,71-1)T be the se-
quence of a priori observations at the output of Channel 2. Let
y = (z¥,rT)T. Since Channel 1 and Channel 2 are output-sym-
metric, py |s(y|s) = py|s(—y | — 5).

The received sequence y is then fed to the MAP equalizer
(see Fig. 3). The MAP equalizer computes the a posteriori prob-
abilities on the transmitted symbols s;, Ps, |y (s |y), for s €
{41, —1}. Using Bayes rule, we obtain

py|s:(y]s)Ps,(s)
Ps1y(s|y) = =
py(y
Thus
log (Psix<+1|g>> ~log <pxsi(g| +1)>
PSHZ(_HQ) Pz\si(y| - 1)
Ps.(-l-l)
+lo -
; <Psq-<—1>
pX\Si (ﬂ| - 1)
since Ps.(+1) = Ps,(—1) = 1/2.
Let pr,|s,(2]|s) be the density of the a posteriori LLRs
Li = log((pys,(X| + 1))/(pys.(X] — 1))) condi-

tioned on S; ; s € {+1,-1}. We want to show that
the density of these LLRs is e-symmetric and output-sym-
metric, i.e., pr,|s,(2]8) = pr;s.(=2|s)exp(sz) and
Pr; |S’L(Z|s) = PL; |5i(_’z| - 8)‘

1559
First, notice that
Py s.(yls)  Yes—sPyisyls)
pXISi(Q| - S) Z§:5i=—st|§(g|§)
B ZS-S:SPY|S(_y| )
Dssim—s Py |s(—yl —5)
ety s(-uls)
Z§:si:5pX|§( g|§)
- —y| —s
_ pyysi(=yl —9) 23)

py|s.(=yls)

Define N as the length of y and I7%(2) as the set of all y €

RN such that log((py | s, (y| + 1)/(py|s.(y] — 1)) = =

From (23), we have [;(y) = log((py | s, (y | +1))/(py s, (¥ | —
|-

1}3)):10g((px|5( —y[=1)/(py s, (—y|+1))) = =li(=y),
thus

y € l,i_l(z) & -y € l;l(—z).

Let y = (2",7")" = (yo,91,.--,yn—1)". In order to
express the density pr,|s,(z]s), we want to perform
the change of variable y towards z. Thus, we introduce
g = (?/073/17---721/N 2,7 )T = (907917 -3 gN-— 1) Letd
be the N x N matrix with the element on the kth row and
jth column dy, ; = (9gx)/(9y;), for 0 < k < N — 1 and
0 < 5 < N — 1, defined as (24), shown at the bottom
of the page. Let a(y) be the inverse of the determinant of
the matrix d. Smce li(y) = —li(—y), we obtain, for all
0<j<N—1 (9(y)/dy) = —(li(~y))/(9y,) and
then a(y) = —a(-y).

Using change of variables, we can then write [see the
equation shown at the bottom of the page], where the
last step follows from (py|s,(y]s))/(py|s.(=yls)) =
(py)s:(y 1)/ (py s, (y| = 5)) = exp(sz) forall y € I (2).

drj=1,for0<k<N-20<j<N-2andk=
dij=0,for0<k<N-20<j<N-landk#j

ory |5, (u1+1) ory |5, (vl —1)
dy; Jy

(24)

oz .
dkj = By = ~ oy 5 GTF) sy =y fork=N-1and0<j<N -1
pr s (2]s) Jyeien— 1Zyer1(z)pY\S-( I's)|a(y) | dyodys - - dyn—2
pLilsi(_Z|8) fyzﬂyﬁN lzyel ( z)pY|S( | ) Oé( )|dy0dy1dyN—2
_ Jyizn—1 e o) Py 5.yl ) [ay) [ dyodys - - dyn —» e 1-1(2) — —-} ()
Jyizn—1 Sger o Py s (—y ) [a(=y) [dyodys -~ dyn—2" " i
le,L;eN 1 Zyel_ () Py | 5:\Y ( |s)] e g) | dyodyy - - - dyn—2 )
= , since a(y) = —a(—y)

fy,,i;eN—1 dez; (2) Py |s.(=
= exp(sz)

yls)[e(y) [dyody, - --

dyn—2
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Thus, the density of the a posteriori LLRs is e-symmetric. We
can also write

Pr; |Si(_z| - S)
-/ > s
JyitN=1 T

X (y| = s)[e(y) [ dyody: --

/ Z Py |s;
Yi i#FN -1

y€I7(2)

~dyn_2

X (—y| —s)|a(~y) |dyody: - - - dyn—2
/ Z Py |s;
yii#N = 1yez; (2)
x (yls)|a(y) | dyodys - - - dyn -2
=rL; ISZ(Z | 5)

Thus, the density is also output-symmetric.

APPENDIX 11
PROOF OF COROLLARY 4

The extrinsic LLR on the transmitted symbol s; is given by

s (y] 1
lqoxtzlog<p)_|sz(g| )>
py s (yl —1)
) (pR|S 7”L|+1)>
—log
PR;|s; 7"1|_1)

Z< 51—1p37|5(y|§
= log
Zﬁ:si=71 pX|§(g | ﬁ)

) <PRASKTH +1)>
—log | ————= .

PR, | s (ri] = 1)

Since Channel 1 and Channel 2 are independent and Channel 2
is memoryless, we obtain

T—1

H;‘: 7,pR'\5'(Tj|Sj)
Zﬁzsizl pﬁl§(£|§) ( » I:R:|Si (Jm |J+1)

[T prsis;(ralsy)
Z§;51=_1p£|§ (z]s) ( ’ Z:R7L\ s; (Jn IJ—I; :

—1o Z§:si:1 pz\g(g | §)
- Ysem1 Py s@l8) )7

where j = y\{r;} and Y =Y\{R;}

ext
l;

= log

9 = y\{ri} denotes y deprived of 7;.

In order to show that the density of the extrinsic LLRs L¢*t =
log((py 15, (Y| +1)/(py | 5,(Y | ~1)))~log((pn, |5, (R: | +
1))/(pr, s, (Ri| —1))) is e-symmetric and output-symmetric,
we can use the same proof as in Appendix I, by replacing y by
y and Y by Z
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APPENDIX 111
PROOF OF PROPOSITION 8

Let ¢ = (co,...,c1)T be the sequence of coded bits
that are transmitted. The BER on the coded bits can be upper
bounded using a union bound technique [2], [14] by

P, < i kdd@( ﬁ)

o .
d=dreee dec,in

where k4 is the number of codewords of size T" and weight d
and dg.ce 1S the code minimum distance.

At high SNR, the BER can be approximated by the term in-
volving dfec as

k d ree d ree
P, ~ Fdiee s Q(V f )
T Odec,in
V d Tee
= mcdfreeQ <—f>
Odec,in

where kg4, is the number of codewords of weight dge. and
me = (Kag..)/(T)-

When T is large enough, as is the case in this paper, if the
convolutional code has £ codewords of weight dc. caused
by information sequences whose first one occurs at time 0, then

limr—too (kg )/ (L) = K, 7. [14].

Since Q(v/z)e ¥/ > Q(y/z F y) [2], we obtain
dfroc
P>~ Q < + ﬂ) (25)
Udoc in

where 8 = —2log(mcdee).
This bound is tight at high SNR and the overall probability of
error can then be approximated by

dfroc,ufdec in
P.~qQ \/ a— +

This is equivalent to the BER performance of an AWGN
channel with a noise having a zero mean and variance
03 2 (0%)/(divectidee 5, + B0°). Hence, the a posteriori LLRs
at the output of the decoder can be modeled as i.i.d. samples
from a random variable with pdf N'((2s1)/(03), (4)/(c3)).

Assuming that the a priori and extrinsic LLRs are indepen-
dent [11], we obtain

2 2/L2 : 4 4@2 .
Lzec ~ N <5k <_2 _ de;,m , —_ dezc,m .
0'3 g 0'3 g

Hence

(26)

2 (M(Zjec’in(dfree - 1) + /80.2)

2

L(]ioc ~N Sk pu

4 (ugec,in(dﬁco -
2

1)+ HUQ)

27)

g
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As for the equalizer, we can define p3.. .. such that the
extrinsic LLRs L%ec are random variables with the conditional

pdf N((2$kﬂ(21ec,out)/(02)7 (4%218‘:,0“)/(02)). The quantity
Nﬁec,out is a function of uﬁec,in and is defined as

ll’?iec,out = deC(:ugec,in) 2 ,Ugec’in(dfree - 1) + /80'2' (28)
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