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GPS Positioning in a Multipath Environment
Jérôme Soubielle, Inbar Fijalkow, Member, IEEE, Patrick Duvaut, and Alain Bibaut

Abstract—We address the problem of GPS signal delay estima-
tion in a multipath environment with a low-complexity constraint.
After recalling the usual early–late estimator and its bias in a mul-
tipath propagation context, we study the maximum-likelihood es-
timator (MLE) based on a signal model including the parametric
contribution of reflected components. It results in an efficient algo-
rithm using the existing architecture, which is also very simple and
cheap to implement. Simulations show that the results of the pro-
posed algorithm, in a multipath environment, are similar to these
of the early–late in a single-path environment. The performance
are further characterized, for both MLEs (based on the single-path
and multipath propagation) in terms of bias and standard devi-
ation. The expressions of the corresponding Cramér—Rao (CR)
bounds are derived in both cases to show the good performance of
the estimators when unbiased.

Index Terms—Cramér–Rao bound, GPS, maximum-likelihood,
multipath propagation, pseudo-random code, spread spectrum
systems.

I. INTRODUCTION

T HE global positioning system (GPS) allows everybody in
the world, equipped with a GPS receiver, to determine

their position (longitude, latitude, and altitude). The GPS ap-
plication consists of estimation of the propagation duration of
a known coded signal between an emitter satellite and the re-
ceiver. This delay measurement allows the computation of the
distance between the user and the satellite, and with at least four
estimates from the different emitters, the positioning can be re-
alized; see, for instance, [3] and [4].

In this paper, we will consider only one signal from one
emitter thanks to the weakness of the interferences between
the different pseudo random codes (Gold codes) used by the
GPS satellites (i.e., the satellites use almost orthogonal spread
spectrum sequences [16]). For a given code, contributions from
other satellites will be considered to be an additive Gaussian
noise.

Under the additional condition of propagation by the sole
line-of-sight path, the usual technics to solve the problem of
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delay estimation are issued from the maximum likelihood esti-
mator (MLE), early–late receivers. They provide a good enough
estimation to ensure the positioning in many applications and
will show that their accuracy corresponds to the deterministic
Cramér–Rao (CR) bound limit.

Unfortunately, multipath propagation can happen sometimes
(urban environment, low-altitude flight) and generate important
errors (up to 100 m) without the usual receiver to detect any
problem. Enge [3] and others propose to narrow the correlators
to reduce the bias in a tracking context. However, narrowing
the correlator does not provide a good estimate when the prop-
agation conditions change too quickly or when a first acquisi-
tion is required. As a result, many applications, using the GPS
system, need other equipment (differential, GLONASS, etc. [4])
in order to reduce errors or prove validity of estimates. A method
that determines the signal propagation delay in a multipath envi-
ronment as well as in a single-path environment with the same
accuracy as in the single-path case and without increasing the
implementation cost will permit autonomy and reliability of the
GPS system. To look for such a method, we consider the ML
approach, taking into account the multipath propagation. Stoica
and Nehorai [13] propose to improve the ML approach by con-
sidering a random model of the input sequence. However, in
our context, this would involve a matrix inversion that cannot
be allowed in terms of complexity. Improvements can also be
obtained by refining the noise model in taking into account the
receiving filter induced correlation. Again, this results in a ma-
trix inversion to solve the likelihood maximization and, thus,
cannot be considered in this study. The algorithm we propose
is aimed to keep the complexity similar to that of the current
early–late receiver.

After introducing some notations (Sections II and III), we re-
call in Section IV the ML estimator applied to a single-path
model used by current receivers and its performance. An ex-
ample illustrates why and how the presence of multipath propa-
gation affects the estimation precision. Section V addresses the
ML estimator, its performance, and the CR bound when ap-
plied to a two-path model (the direct signal one reflected
signal). Results of this estimator (called ML2) are compared
with the current ML estimator, and improvements of precision
are shown. Finally, we propose to extend the two-path estimator
(ML2) to the general case of multipath propagation.

II. SPREAD SPECTRUMCODE PROPERTIES

The emitted signal is generated by sending periodically a
well-chosen pseudo-random sequence through a lowpass
shaping filter . is generated as a Gold code (see [7])
whose properties are recalled in the following. The sequence is
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composed by binary chips of time duration ; the sequence
period is then . Before pulse shaping, the signal de-
noted as can be expressed as

(1)

where takes the value of 1 forin and 0 elsewhere.
Thus, the emitted signal after the pulse-shaping filter (of
bandwidth around 4 MHz) of is then

(2)

This filter is assumed to provide an ideal pulse shaping. We
explain, in the sequel, how time delay estimation is actually
realized, yet we can introduce that the maximum likelihood
estimator uses properties of the crosscorrelation between the
Gold code and received signal. As a result, the autocorrelation
properties of Gold codes are very important to understand GPS
methods. If the autocorrelation of is denoted by

, (4) describes the properties of this function.

(3)

for
for .

(4)

The approximations above are justified for the actual high values
of ( , ns and ms in civil GPS
applications). The main advantage to using the crosscorrelation
function is in improving the signal-to-noise ratio (SNR). Indeed,
for an integration time (the crosscorrelation is computed during
this time) of 1 ms (equal to the code period ), the SNR is
improved by dB (the signal is sampled at the rate

MHz) and more if the integration time is greater. Such gains
let us deal with SNR (before integration) of around20 to 30
dB.

III. M ULTIPATH PROPAGATION MODEL

In mobile satellite communication, multipath propagation is
often modeled by a Rician distribution; see [6]. The received
signal is then supposed to be composed by the LOS signal com-
ponent and by the sum of reflected signals whose amplitudes

, delays , frequency Doppler , and phases differ from
the LOS signal parameters (, , , ). If the frequency
demodulator is assumed to be locked on the LOS path frequency

, (5) can be used to modelize the baseband received signal

(5)

Moreover, differences between Doppler frequenciesand
are generally very small since the distance and relative speed
between the mobile and reflecting surface are very small with
respect to the satellite-mobile ones; see [1]. As a result, where

is considered to be constant and included in
the reflected components, phase shiftsin (6) also depend on

the reflecting surface nature and on the angle of incidence of the
th signal.

(6)

where
emitted signal (assumed known);
line-of-sight signal amplitude;
received signal lag to be estimated.

Characterizations of phase shifts effects on direct signal
delay ML estimation (see [2] and [11]) allow us to conclude
that the worst configuration for estimation accuracy is when the
direct and reflected signals are in phase ( or 180 ). On
the contrary, a reflected signal in quadrature does
not generate a biased estimation. As a result, from now on, we
will only consider that signals are always in phase. Therefore,
we neglect information that could be in the quadrature com-
ponent by projection. Moreover, we can guarantee minimal
performance since all reflections being in-phase corresponds to
the worst possible case. Thanks to the different pseudo random
Gold codes used by the satellites, the remaining interfering
signal after crosscorrelation is modelized by the Gaussian and
real-valued noise that includes the thermal noise.

Sampled data are collected during symbols
, where the time delay is assumed to be

constant, whereas the amplitude is a constant function (7)
on time periods of only . In fact, this amplitude could be set
to a constant value on intervals of , but for robustness
reasons, this hypothesis has been preferred. The sampling
frequency is typically MHz and
for a SNR around dB. Finally, is the number of code
samples during .

for (7)

where takes the value 1 forin and 0 elsewhere.

IV. EARLY–LATE RECEIVER

In this section, we recall the usual GPS receiver that was con-
ceived assuming the propagation is due to the line-of-sight path
only: the so-called early–late receiver. We also recall its lack
of robustness to a strong multipath scatterer inducing a delayed
path within the length of the spreading sequence.

A. Early–Late Receiver

In the single path propagation, the frequency demodulation is
supposed to be perfect; thus, (6) simplifies to

(8)

Denoting , the probability density function
is

(9)
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Fig. 1. Configuration of pointsE, P , andL.

The MLE zeros the derivative of the log-likelihood function (9)

(10)

where and represent, respectively, the energy of the fil-
tered pseudo random code on one period and the cross-
correlation between the input signal and code during
the interval :

(11)

Replacing by , (10) reduces in

solving . Since is a nonlinear
parameter of the crosscorrelation functions, it is impossible
to give an explicit expression of its optimal value. To solve this
problem, an iterative MLE can be computed (see [5] for the
iterative Newton algorithm):

(12)

The second term of the denominator of (12) can be neglected;
see [11]. In order to implement (12), we need an estimation of

and its derivatives. Since is sampled at
MHz and the number of samples collected during a time

is , one access the values
spaced by a time interval

only. The algorithm is initialized with a precision of about
(through maximization of ), which is assumed to be cor-
rect in the sequel. The updating equation is also implemented as
the so-called early–late algorithm:

(13)

where , , and , respectively, denote ,
, and . Equation (13) is obtained using the

approximation . Fig.1
presents the configuration of the three points, , and on the
noiseless crosscorrelation function described in Section II.

B. Performance of the Early–Late Receiver

The performance of the early–late receiver have already been
investigated through simulations in many papers; see, for in-
stance, [14]. For the sake of comparaison, we recall the perfor-

Fig. 2. Single-path propagation, SNR= �20 dB,N = 100. Errors in chips
(normalized) versus iterations.

mance of the early–late receiver when the single-path model (8)
is valid and derive the corresponding CR bound for its standard
deviation. We explain also shorthy the bias caused when multi-
path propagation occurs.

Performance for a Single-Path Propagation:Assuming
there is no estimation bias when the single-path model (8) is
valid, the estimator variance is minimized by the CR bound [5].
The corresponding Fisher information matrix of all parameters
is derived in Appendix, and its expression is displayed in (14).
The first line concerns delay parameter, and the others
lines are relative to amplitude parameters. Equation (14) is
obtained under the following hypothesis , where
is the lowpass receiver filter bandwidth. This condition is valid
since for the GPS application, kHz, and MHz.

...
(14)

where is the identity matrix of size , and

(15)

where is the Fourier transform of the code correlation function
in (4). Then, the CR bound associated twith the delay estimation
is .

Simulations show that the series (see Fig. 2) converges
to within a small number of iterations. Computing the bias
of the ML estimator averaged on 50 realizations for SNR from

20 dB to 30 dB, the bias was around 0.001 chips. This re-
sult confirms that the ML estimator is unbiased in the case of a
single-path propagation. The estimation variance computed in
the same conditions is very close to the CR bound (see Fig. 3)
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Fig. 3. Single-path propagation: Standard deviation and CR bound versus
SNR.

Fig. 4. Crosscorrelation ofs(t) in a two-path context for two configurations
of � � � .

(less than 0.02 difference). The parameters used for the simula-
tion ( and SNR 20 dB) were set to match a range
of values encountered in typical GPS applications.

Performance for a Multipath Propagation:It is well known
that the early–late receiver is biased when there is multipath
propagation [14], specifically when the scaterers induce a sup-
plementary delay with . The reason for this bias
is illustrated in a two-path propagation context (16) in Fig. 4.
This error is easily explained by the values of, where is
modified by the second signal contribution to the crosscorrela-
tion function. This problem is due to a mismatch between the
single-path signal model and the real multipath data. Simula-
tions show that the early–late estimator bias can be up to 0.3,
for adirect to reflected signals ratio(DRR) of 5 dB. 0.3 corre-
sponds to an estimation error of 100 m in distance. Therefore, in
the sequel, we study the direct signal delay ML estimator based
on a multipath model.

V. TWO-PATH GPS RECEIVER

We want to propose a method to estimate the direct signal
propagation delay in the presence ofreflected paths with
greater than or equal to 1. First, we consider the case of 1 re-
flected path for which we derive the ML receiver and study
its performance including the corresponding CR bound. A very
strong constraint in this study is the implementation cost. We
want to keep it similar to that of the early–late receiver.

A. Two-Path Model

The two-path model is composed by a direct and a reflected
signal both in phase with respective delays and amplitudes

. is an additive Gaussian noise:

(16)

We assume that is a constant function on time intervals of
and that the same applies for . Our goal is to estimate

the direct signal delay by an MLE based on model (16). This
estimator is denoted ML2 estimator in reference to the two-path
model. To be efficient, the proposed algorithm needs to esti-
mate correctly the direct signal delay when there is one reflected
signal (as in the two-path model) but when there is also no re-
flected component (single-path model for ).

B. New Likelihood Function

Using model (16), the expression of the density of probability
to maximize is , which is proportional to

(17)
As in Section IV, the previous section, and the hypothesis on

, the log-likelihood function is expressed in
(18). We note an expression similar to the single-path one (terms
related to and ). Similar terms are found for the reflected
signals . Finally, a crosscorrelation term between direct
and reflected signals appears.

(18)

C. Maximum Likelihood ML2 Estimator

The ML2 estimator zeroes the derivative of the
likelihood function (18), which is denoted as (19), shown
at the bottom of the next page.

As previously stated, estimates of the delaysand are non-
explicit values because they appear as parameters of crosscor-
relation and autocorrelation functions and . To get an
expression of the direct signal delayin this context, applica-
tion of Taylor’s formula and Newton algorithm could be done
with now being a vector of delays and amplitudes .
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Unfortunately, even if the second derivative terms of the likeli-
hood function can be easily de-
rived, it turns to be impossible to get an explicit expression of
the inverse Hessian matrix .

To solve this problem, we propose to rewrite the first two
equations of (19) as

(20)

Using the expressions of the autocorrelation , (3) and the
crosscorrelation (11), (20) can be rewritten as

(21)

(22)

where

(23)

The function is the crosscorrelation between the replica
code delayed by and the received signal minus the reflected
signal . If and , which are the reflected signal
parameters, are known, the crosscorrelation can be com-
puted, and solving (21) is equivalent to solve the problem of
delay estimation in a single-path propagation. Indeed, (21)
would be equal to (10) found in paragraph Section IV-A. Ac-
cordingly, (22) is equivalent to the delayestimation if and

, which are the direct signal parameters, are assumed to be
known.

Therefore, we propose a new algorithm (denoted as ML2
in the sequel) consisting of realizing, iteratively, both estima-
tions using for each the previous ML estimator calculated with
the parameters from the previous iteration. Note that this al-
gorithm is first introduced in [15] as anad hocalgorithm to
combat multipath with details of neither the implementation nor
the performance study. Each track needs the amplitude estima-
tion and to compute signals and

used for (23). The expressions of these
estimators can be deduced from the third and fourth lines of (19)

(24)

Fig. 5. ML2 estimator principle.

D. ML2 Estimator Implementation

We denote and as the previous iteration estimates of the
delay parameters. During integration time, the following cross-
correlations are computed: , as in (11)
and , , , ,

and as in (23) with, respectively,
in each case, the last estimates of the amplitudes given by (24).

Compared to ML, five additional integrators are used by the
ML2 algorithm. However, these integrations are realized simul-
taneously so that ML2 and ML processing delays are equal.
On one hand, early, late, and prompt values of crosscorrela-
tions , and

are used to compute :

(25)

On the other hand, early, late, and prompt values of crosscor-
relations , , and

are used to compute :

(26)

Fig. 5 shows positions of points , , , , , and at
the instant in comparison with the crosscorrelation function

between the noiseless incoming signal and replica code.
Both delays are estimated separately using parameters ,
which are equal to the last estimates that have been

.

(19)

Authorized licensed use limited to: Inbar Fijalkow. Downloaded on July 23,2010 at 09:00:48 UTC from IEEE Xplore.  Restrictions apply. 



146 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 1, JANUARY 2002

Fig. 6. CR bound of direct signal delay estimator versus SNR for various� =
(� � �).

computed just previously. The global estimator architecture has
been patented [12].

E. CR Bound

In the case of a two-path propagation model, the Fischer’s
information matrix is no longer diagonal. As for the likelihood
function, crosscorrelation terms between the direct and reflected
signals appear, and it turns to be more difficult to get values of
CR bounds; they have, however, been derived (see the Appendix
for the expression).

Indeed, the CR bound values depend on noise and direct and
reflected signal powers. Moreover, according to Appendix A–2
(50), they depend on the paths delays difference .
Fig. 6 shows the CR bound of direct signal delay estimation
versus SNR for several values of for a DRR of 5 dB. When
the direct and reflected signals get close to each other, the CR
bound increases because it becomes too difficult to separate the
two contributions, whereas whenis greater than 1.5, the CR
bound of the two-path model becomes equal to the CR bound
found in the case of a single-path model. Indeed, for high values
of , cross correlations between the reflected signal and direct
signal are almost zero thanks to properties of pseudo-random
Gold codes.

F. ML2 Algorithm Constraints and Initialization

The initialization of the first ML2 estimator is the same
as in the case of the ML estimator. However, the initialization
of the second estimatoris much more difficult. Indeed, when
the ML2 algorithm is initialized, noa priori information on the
reflected signal is available, and even its presence is uncertain.
Since results show that the need for estimating is effective when

in , is forced to be

(27)

and arbitrarily, is equal to . A reinitialization is
performed each time does not respect (27). Finally, a detec-
tion of the presence of the reflected signal is done by a test on the

Fig. 7. Bias versus�, " = 1:0T .

amplitudes and . In fact, when the direct to reflected signal
power ratio 20 is greater than 12 dB, the influence
of the reflected signal is close to zero; therefore, the amplitude
estimate is forced to zero. As a result, when is close to
zero, ML2 algorithm is reduced to the ML algorithm.

G. ML2 Estimator Performances in Two-Path Propagation

The incoming signal is generated by the two-path propa-
gation model (16). Fig. 7 compares the ML and ML2 bias versus

in and with a correlation window of .
For in , we verify that the ML and ML2 algorithms
are equivalent. For in , the proposed algorithm
is successful in estimating the direct signal delay (almost no
bias), whereas the ML algorithm is biased. Finally, forin

, the two algorithms are quite equivalent again, but
they are both biased. In each case, the test on amplitude has been
able to detect correctly the presence or absence of a reflected
signal in . Results have been greatly improved, but
some bias still remains for in .

Additional improvement can be obtained by narrowing the
correlator (smaller values of; see [3]). This technique is often
used to reduce estimation errors in presence of reflected signals
but is insufficient by itself. Fig. 8 displays the same simulation,
only was decreased to 0.5. The bias of the ML algorithm is
indeed reduced but remains important, whereas the ML2 algo-
rithm results are satisfactory since they remove almost entirely
the estimation bias for greater than 0.3. Some errors remain
for in , but they are not too large.

Finally, Fig. 9 compares the CR bound and standard deviation
of the simulation realized with and . Due
to the presence of reflected signal, both curves are higher than
in the single-path case (see Fig. 3). However, results are quite
similar, and the simulated standard deviation is very close to the
CR bound limit.

H. -Path Case

It seems to be possible to extend our approach to the case of
more than two paths. The resulting new algorithm we are going
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Fig. 8. Bias versus�, " = 0:5T .

Fig. 9. Standard deviation," = 0:5T , � = 0:75T .

to describe in this section will be denoted as MLP and is directly
deduced from the ML2 method.

The signal model is supposed to be composed by a direct
signal component (amplitude and delay ), specular re-
flected signals (amplitudes and delays for ), and
an additive Gaussian noise

(28)

The same hypothesis (see Section V-A) on temporal variations
of parameters and are realized. Both are constant
functions on time intervals. In a first approximation, param-
eter is supposed to be known.

Writing the likelihood function as we have done in (17) and
(18) and the different estimators of time and amplitude param-

eters in (19) give the following equations in the-path propa-
gation case:

(29)

(30)

where , , and are, respectively, early,
late, and prompt channels of for . ,

, and are relatives to function . There-
fore, according to (23)

(31)
and for

(32)

These last equations prove that amplitudes need to be estimated
to guarantee estimation of delays. As for the two-path propa-
gation case, there is only one parameter (direct signal delay)
useful to the positioning, but all other amplitudes and delays pa-
rameters of model (28) must be also estimated.

Amplitudes and can be estimated by solving
the following system:

(33)

where and
are vectors of dimension . The symmetric

matrix is composed by
and .

The MLP algorithm has the same functioning principle as the
ML2 algorithm proposed in Section IV. At time , the
amplitudes are estimated, thanks to (33), which uses the
precedent delays estimations and . Then, the delay esti-
mators and are calculated thanks to (29) and (30).
Conditions on reflected signal delaysare the same as in the
two-path propagation case, and all delay estimators are forced
to be in the time interval since at this sector, the
positioning precision is not affected by these reflected signals.

Moreover, further conditions on the estimatorsare fixed,
and they guarantee the invertibility of the matrix.

(34)

Indeed, the number of reflected signals is unknown and
difficult to estimate. We suggest setting to arbitrary the value
of in the procedure by overestimating the actual value. Note
that it is not useful to greatly increase the value ofsince two
reflected signals very close in time can be estimated as only one
without perturbation on the direct path delay estimation [10]. In
[10], we have shown that a two-path model is often sufficient.
As a result, should not be taken higher than 5 or 6. Moreover,
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in order to prevent spurious path estimation, we set a threshold
on the direct path to estimated path to take it into account. From
simulations, the threshold was set to 12 dB. Below the threshold,
the amplitudes are put to 0 so that the corresponding path is
not taken into account.

VI. CONCLUSION

In this paper, we have addressed the problem of the prop-
agation delay estimation for a GPS signal in the presence of
multipath propagation. Since the usual early–late estimator de-
rived by the ML principle in the single-path case is biased when
there is multipath propagation, we have derived the ML iter-
ative etimator for the case of two-path propagation (ML2) by
reusing the current architecture. The ML2 good performances
have been illustrated on simulations and by derivation of the
corresponding CR bound. Finally, the algorithm has been ex-
tended to the general case of-path propagation (with ),
where should represent a small number of propagation beams
(each beam modeling a cluster of propagation paths). The new
receiver complexity is at most six times that of the early–late
receiver.

APPENDIX

A. Fisher’s Information Matrix in Single-Path Propagation

Since the estimation is done using sampled values

(35)

The Karunen–Loeve decomposition [7] allows a return to the
continuous time expression since

The Fischer information matrix is defined by

(36)

where is the mean expectation, and is the second
derivative matrix with component equal to . De-
noting , we get

(37)

(38)

(39)

Since the random noise distribution is independent from the
other parameters, the mean expectation of the terms involving

are null. Moreover, can be expressed as the low-
pass (bandwidth ) filtered Gold code , and we will
consider the following approximation:

(40)

which is true since ( ms and
MHz in the case of actual GPS application). Defining

, the mean value of (39) becomes

sinc

sinc (41)

(42)

where is the Fourier transform of autocorrelation function
. Accordingly, (37) and (38) can be expressed as

(43)

(44)

Assuming that is even, (44) becomes 0.
With the notations in (15) and the identity matrix of

size , the expression of the diagonal Fischer informa-
tion matrix is the diagonal matrix in (14).

B. Fisher’s Information Matrix in Two-Path Propagation

Based on two-path propagation model (16), the log-likeli-
hood of the observation vectoris proportional to

(45)

The mean expectation of the second derivative of the log-value
of (45) defines the Fischer information matrix:

(46)

The terms related to the direct signal have already been given in
(42), (43), and (14) in the previous part of the Appendix. In the
same way, expressions of the terms related to the reflected signal
are the same with the parameters replaced by :

(47)

(48)
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Finally, only nondiagonal terms due to crosscorrelation between
direct and reflected signals need to be calculated. The only re-
quired hypothesis is still that .

(49)

where .
As a result, is given by (50), and CR bounds are diagonal

terms of . The matrix is invertible as long as .
Thus, delay and amplitude bounds are, respectively, the diagonal
terms of the matrices and :

(50)

where

(51)

(52)

(53)

Solving equation allows expres-
sion of and through (54). Again, invertibility of matrices

and is guaranteed by

(54)

REFERENCES

[1] J-C. Auber, A. Bibaut, and J-M. Rigal,Characterization of Multipath
on Land and Sea at GPS Frequencies. Elancourt, France: Thomson
CSF-Detexis, 1995.

[2] D. Doris-Blais, “Modélization de récepteurs GPS, application à l’étude
de l’influence des multitrajets sur les performances du récepteur L1
GPS,” Ph.D. dissertation, Inst. Nat. Polytech., Toulouse, France, 1997.

[3] P. K. Enge, “The global positioning system: Signals, measurements, and
performance,”Int. J. Wireless Inform. Networks, vol. 1, no. 2, 1994.

[4] E. Kaplan, Understanding GPS: Principles and Applica-
tions. Norwell, MA: Artech House, 1996.

[5] S. M. Kay,Fundamentals of Statistical Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[6] S. Ohmori, H. Wakana, and S. Kawase,Mobile Satellite Communica-
tions. Norwell, MA: Artech House, 1996.

[7] J. G. Proakis,Digital Communications, 3rd ed. New York: McGraw-
Hill, 1995.

[8] A. A. Simanin, Time Delay Estimation in Multipath Recep-
tion. Moscow, Russia: Andreev Acoust. Inst., Acad. Sci. USSR,
1991.

[9] S. G. Glisic, T. J. Poutanen, and W. W. Wu, “New PN code acquisi-
tion scheme for CDMA networks with low signal to noise ration,”IEEE
Trans. Commun., vol. 47, pp. 300–310, Feb. 1999.

[10] J. Soubielle, I. Fijalkow, P. Duvaut, J.-Y. Delabbaye, and A. Bibaut, “A
bayesian method for GPS signals delay estimation,” inProc. EUSIPCO,
1998.

[11] J. Soubielle, “Estimation de Retards de Signaux GPS en Présence de
Multitrajets,” Ph.D. dissertation, Univ. de Cergy-Pontoise, Cergy-Pon-
toise, France, 1999.

[12] J.-Y. Delabbaye and J. Soubielle, “Récepteur pour système de position-
nement par satellites en présence de trajets d’ondes radioélectriques par-
asites,” Thomson-CSF Patent 99 14 599, 1999.

[13] P. Stoica and A. Nehorai, “Performance study of conditional and uncon-
ditional direction of arrival estimation,”IEEE Trans. Acoust., Speech,
Signal Processing, vol. 38, pp. 1789–1795, Oct. 1990.

[14] R. D. J. Van Nee, “Spread-spectrum code and carrier synchronization
errors caused by multipath and interference,”IEEE Trans. Aerosp. Elec-
tron. Syst., vol. 29, pp. 1359–1365, Oct. 1993.

[15] R. D. J. Van Nee, J. Siereveld, P. C. Fenton, and B. R. Townsend, “The
multipath estimating delay lock loop: Approaching theoritical accuracy
limits,” Proc. IEEE Position, Location Navigation Symp., pp. 246–251,
Apr. 1994.

[16] A. J. Viterbi, CDMA : Principles of Spread Spectrum Communica-
tion. Reading, MA: Addison-Wesley, 1997.

[17] M. Wax and A. Leshem, “Joint estimation of time delays and directions
of arrival of multiple reflections of a known signal,”IEEE Trans. Signal
Processing, vol. 45, pp. 2477–2484, Oct. 1997.

[18] Z. Zvonar and D. Brady, “Linear multipath-decorrelating receivers for
CDMA frequency-selective fading channels,”IEEE Trans. Commun.,
vol. 44, pp. 650–659, June 1996.

Jérôme Soubiellewas born on April 20, 1972, in Toulouse, France. He re-
ceived the Engineering degree in signal processing from the Ecole Nationale
Supérieure de l’Electronique et de ses Applications (ENSEA), University de
Cergy-Pontoise, CNRS UPRESA Cergy-Pontoise, France, in 1995. From 1996
to 1999, he pursued the Ph.D. degree at the Equipe de Traitement des Images et
du Signal (ETIS), Cergy-Pontoise, on GPS signal delay estimation with multi-
path. He received the Ph.D. degree in October 1999.

Since then, he has been a Study Engineer for Thales Air Defence, Bagneux,
France.

Inbar Fijalkow (M’96) received the Engineering and
Ph.D. degrees from Ecole Nationale Supérieure des
Télécommunications (ENST), Paris, France, in 1990
and 1993, respectively.

From 1993 to 1994, she was a Research Associate
at Cornell University, Ithaca, NY. From 1994 to 1999,
she was an Associate Professor at the Ecole Nationale
Supérieure de l’Electronique et de ses Applications
(ENSEA), University de Cergy-Pontoise, CNRS UP-
RESA Cergy-Pontoise, France, where she has been
a Professor since 1999. Since 1994, she has been a

member of ETIS, Cergy-Pontoise. In 1998, she was a Visiting Researcher at
the Australian National University (ANU), Canberra, Australia. Her current
research interests are in signal processing applied to digital communications:
adaptive and iterative (turbo) processing, blind deconvolution/equalization of
multiple sources, and sensors systems.

Dr. Fijalkow is member of the board of the GDR ISIS, which is the CNRS
research group on signal image and vision processing. She has been an associate
editor of the IEEE TRANSACTIONS ONSIGNAL PROCESSINGsince August 2000.

Authorized licensed use limited to: Inbar Fijalkow. Downloaded on July 23,2010 at 09:00:48 UTC from IEEE Xplore.  Restrictions apply. 



150 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 1, JANUARY 2002

Patrick Duvaut received the Agregation degree in physics from the Ecole Nor-
male Superieure de Cachan, Cachan, France, in 1981. He received the Ph.D.
degree in detection and estimation theory in 1987 and the Habilitation to Drive
Research (HDR) degree in 1991 from the University of Paris, Orsay, France.
He has been Professor with the Ecole Nationale Supérieure de l’Electronique et
de ses Applications (ENSEA), University de Cergy-Pontoise, CNRS UPRESA
Cergy-Pontoise, France, since 1992. He wrote two books on signal processing,
has written 50 papers, and has filed 20 patents. He was Technical CEO of KUR-
TOSIS Ingenierie from 1990 to 1999. He is presently with GLOBESPAN Inc.,
Red Bank, NJ.

Alain Bibaut received the degree from SUPELEC, Paris, France, in 1979.
He is with the Thales Airborne Systems Technical Direction, Elancourt,

France. He has been working for more than 20 years in signal processing
and simulation domain for seekers and spatial systems. Since 1992, he has
published papers about the processing of multipath effects in the GPS or GNSS
reception in several conference proceedings and international journals.

Authorized licensed use limited to: Inbar Fijalkow. Downloaded on July 23,2010 at 09:00:48 UTC from IEEE Xplore.  Restrictions apply. 


