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In the context of frame-based multimedia wireless transmission, a link adaptation strategy is proposed, assuming that the source
decoder may accept some remaining errors at the output of the channel decoder. Based on a target mean bit error rate for erro-
neous frames, a minimum bit-energy-to-equivalent-noise ratio is chosen. Under this constraint, a new link adaptation criterion
is proposed: the maximization of the minimum user’s information rate through dynamic spreading gain and power control, al-
lowing to guarantee a transmission for each and every user. An analytical solution to this constrained optimization problem is
proposed and its performance is studied in a Rayleigh-fading environment.
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1. INTRODUCTION

The framework of the paper is the transmission of multime-
dia data through a wireless multiuser communication sys-
tem such as the direct-sequence code-division multiple ac-
cess (DS-CDMA). The main feature of the transmitted data
is that we consider a packet-mode transmission system. On
one hand, the source coder and decoder are communicating
with compressed data packets, and on the other hand, DS-
CDMA communication systems such as the Universal Mo-
bile Telecommunication System (UMTS) are framed-based
communication systems [1, 2]. Therefore, we can assume
that the source-formatted data packets containing the com-
pressed bitstream are sent over one or several frames at the
physical layer. Moreover, the source decoder can offer some
advanced features, such as robust decoding and rate adapta-
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tion capability [3]. Robust source decoding can be performed
using for example an embedded forward-error correction
(FEC) and synchronization techniques to mitigate the effect
of remaining errors after channel decoding [3]. The source
decoder can also tolerate some erroneous packets; however,
the bit error rate (BER) within an erroneous packet should be
lower than a critical value. The rate adaptation capability [3]
allows the source decoder to adapt its rate during the trans-
mission, depending on the available rate in the wired link
and/or the possible rate on the wireless link to ensure a de-
sired quality of service (QoS). By QoS, we mean the ability to
guarantee a required BER for erroneous packets (we denote
this measure as the conditional BER (CBER)), while guaran-
teeing a minimum user’s information rate as high as possible.
The rate adaptation capability of the source coder permits to
consider link adaptation, that is, the adaptation of the radio
resources of the physical layer depending on the variations of
the communication systems (fading, number of users, etc.),
as conceivable for real-time applications. As we are interested
in real-time applications, we will consider that there is no

mailto:poulliat@ensea.fr
mailto:fijalkow@ensea.fr
mailto:declercq@ensea.fr


154 EURASIP Journal on Applied Signal Processing

possibility of retransmission, that is, the users cannot bare a
long latency (such as for an automatic repeat request (ARQ))
to get the data. Note that the following proposed link adap-
tation strategy can be applied to delay-tolerant applications
such as video broadcasting.

Most works dealing with adaptive multirate CDMA are
focused on the maximization of the total throughput in a cell
[4, 5, 6] (see [7] for other multiple-input multiple-output
(MIMO) systems). This is achieved through joint rate and
power adaptation. The rate adaptation is itself done through
either multiple codes [8], multiprocessing gains [4, 5, 6],
or multirate modulations [9, 10]. When dynamic spreading
gain and power control are performed, maximizing the total
throughput implies that some users in the cell that are sub-
ject to a large fading are prevented from transmitting whereas
these who are subject to a small fading transmit at their full
power [5, 6]. This induces some latency on the wireless link
for the weakest users, who are not allowed to transmit during
as many frame durations as they stay in a large fading envi-
ronment. This may not satisfy the concerned users. In this
paper, we propose a new criterion in order to optimize the
power and rate: we want to optimize the minimum of the
user’s information rates. Our goal is to provide a minimum
QoS service for all users. When achieved, each and every user
transmits at any time.

To do so, we need to evaluate the performance that can
be achieved by the maximization of the minimum user’s
information rate through joint rate and power adaptation
with perfect channel side information, subject to an in-
stantaneous minimum bit-energy-to-equivalent-noise spec-
tral density ratio constraint and with conventional single-
user matched filter detection for each user at the base sta-
tion. Based on the previous comments that the communi-
cation system is framed-based, the minimum bit-energy-to-
equivalent-noise spectral density ratio constraint will depend
on a new frame-based performance measure that we denote
by CBER. As mentioned before, we insist on the fact that
no user should be prevented from transmitting within a cell.
The optimization will be achieved through dynamic process-
ing gain and power control. We assume that a set of channel
codes are available for each user. We will consider an addi-
tional maximum power constraint as there exists necessarily
an upper limit on the maximum transmitter power for prac-
tical systems. We will derive some upper bounds of the con-
sidered DS-CDMA system under our link adaptation strat-
egy. As we focus on upper bounds of the system performance,
all items that can limit the practical system performance,
such as nature of the feedback channel, errors in the chan-
nel estimates, or rate of the adaptation, are not considered in
this paper.

The rest of the paper is organized as follows. The sys-
tem model, including the definition of our new performance
measure, and the notations used, are described in Section 2.
A general description of our link adaptation strategy is given
in Section 3. Optimal solution for unlimited continuous
rates and power adaptation is provided in Section 4. Some
analytical expressions and bounds are also derived. Section 5
investigates the impact of limited or discrete rates on the so-
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Figure 1: Communication chain.

lution set. Some simulation results will be given in Section 6
and proofs are given Appendices A, B, and C.

2. SYSTEM MODEL AND NOTATIONS

2.1. Communication system description and notations

We consider the uplink transmission (i.e., from the mobiles
to the base station) of a DS-CDMA communication system
composed of a transmitter (convolutional channel coder and
spreader) and a receiver (decorrelator + Viterbi decoder)
as in Figure 1. At the base station, the receiver is the con-
ventional single-user matched filter detector for each user.
The wireless propagation channel is assumed to be a block
Rayleigh-fading channel (the fading is supposed to be con-
stant over a frame duration) and affected by an additive white
Gaussian noise (AWGN). We assume that there are Nu users
in the system inducing white and Gaussian interference. Let
Sk and Rk be, respectively, the spreading factor and the chan-
nel coding rate associated with user k. BPSK modulation
with amplitudes {−1, +1} is used for each user. At the trans-
mitter, the pulse shaping filter generates a rectangular pulse
of a one-chip duration with unit energy. Let Pk be the trans-
mitted power and αk be the channel gain which is assumed
known and constant during a frame for user k. We assume
that the number Nu of interferers is known and constant dur-
ing the frame duration. This assumption is motivated by the
fact that the receiver is frame-based at the physical layer and
that side information can be updated each frame. The con-
sideration of nonconstant number of interferers is beyond
the scope of this paper.

2.2. Wireless link performance measure:
the equivalent Eb/Ne

As DS-CDMA systems such as UMTS [2] transmit frames of
a fixed time duration which implies a fixed number of chips,
the number of information bits depends on the spread-
ing factor and on the channel coding rate. For the wire-
less link, we can define an equivalent signal-to-noise ratio
at the output of the matched filter at the frame level that
takes into account all the perturbations due to the channel.
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At the receiver, the matched filter output for user k′ can be
written as

yk′ = xk′ + nu + n, (1)

where xk′ is the transmitted symbol vector of interest for
user k′, nu denotes the multiuser interference for user k′,
and n is the AWGN with double-sided spectral density N0/2.
All quantities in (1) are vectors of components correspond-
ing to a complete frame duration. Assuming the multiuser
interference is white and Gaussian (true for large spread-
ing factors and asynchronous users, i.e., uplink) and assum-
ing independence between nu and n, we can explicitly write
[9, 11], within each frame, the bit-energy-to-equivalent-
noise spectral density ratio, Eb/Ne, at the input of the channel
decoder as

Eb(k′)
Ne(k′)

= 1
Rk′

Pk′α
2
k′Sk′

N0 + β
∑

k �=k′ Pkα2
k

, (2)

where Eb(k′) is the mean bit energy at the receiver for user k′

and Ne(k′) is the noise-plus-user interference variance. β is
a constant depending on the choice of spreading sequences.
Typically, β = 2/3 for random spreading sequences. We re-
call that αk is the channel gain which is assumed constant
during a frame. Pk, Rk, and Sk are, respectively, the transmit-
ted power, the channel coding rate, and the spreading factor
of user k.

The performance analysis of the physical layer of this sys-
tem is also equivalent to the performance analysis of a con-
volutional code for an AWGN channel with mean signal-to-
noise ratio Eb/Ne during a frame duration. For a convolu-
tional code with rate R, over an AWGN channel, the frame
error rate (FER) can be expressed at the output of a Viterbi
decoder for a terminated trellis as [12, 13]

FER = 1− (1− Pe
)K−ν

, (3)

where K is the number of information bits within a frame, ν
is the memory of the code, and Pe is the error event probabil-
ity that can be expressed as a function of Eb/Ne, as explained
in the sequel. An error event of length l and Hamming weight
d is a path diverging at a particular node from the reference
path (here, the all-zero codeword) and merging again after l
trellis sections. Pe can be approximated using the coefficients
of the weight enumerator polynomial [14] as follows:

Pe �
+∞∑

d=dmin

adPd, (4)

where ad is the number of error events with Hamming weight
d, dmin is the minimum distance of the code, and

Pd = Q

(√
2dR

Eb
Ne

)
(5)

with Q(·) the Gaussian tail probability function. In the same
way, the BER can be deduced from the weight enumerator

polynomial [14] as

BER �
+∞∑

d=dmin

cdPd, (6)

where cd is the number of erroneous information bits for all
error events of Hamming weight d. For a given convolutional
code, the coefficients ad and cd can be calculated using stan-
dard techniques based on the generalized transfer function
of the encoder state diagram [15].

Using (4) and (5), BER and FER are directly related to
Eb/Ne. We will thus consider Eb/Ne as our performance mea-
sure for the output of the receiver, since it is a classical per-
formance measure for practical systems.

2.3. On the consideration of a new performance
measure: the conditional bit error rate

2.3.1. Performance measure

In this section, we will present a new performance measure
that can be useful to determine a suitable behavior of the sys-
tem. We try to show that this measure is an alternative mea-
sure choice to the traditionally used BER or FER.

For the considered communication system, as we are in-
terested in the performance at the output of the channel de-
coder, the system performance is usually described with mea-
sures such as the BER or the FER. If we now consider the
source decoder side, the processing of the received data is of-
ten frame-based [3]. Moreover, a robust source decoding can
be performed using for example an embedded FEC and some
synchronization techniques to mitigate the effect of remain-
ing errors after channel decoding [3]. Combining these two
aspects (robust decoding and frame-based processing), we
can see that we have to determine the BER at the frame level
to reach the best suitable behavior for our specific source de-
coder, since the concealment capabilities are directly related
to the remaining errors after channel decoding. It also ap-
pears to us that both measures, BER and FER, are not suit-
able in the case where a packet transmission mode is used
and when errors in the packets are tolerated. In fact, the BER
only deals with average bit error probability and does not
take into account the error’s correlation or burst phenom-
ena. Thus, the BER for an erroneous frame is higher than
the average BER and thus, using only BER can conduct to an
unsatisfying behavior. The FER is related to the frame level,
but does not benefit from the error concealment capabili-
ties of the source decoder that can mitigate some remain-
ing errors and thus tolerate a given BER for an erroneous
frame.

Therefore, we suggest to consider, as alternative measure
of performance, the CBER, which is the average BER con-
ditional to the fact that a frame is erroneous. The CBER al-
lows to take into account errors at the frame level and can be
useful to choose the transmission parameters more suitably
according to the error concealment capabilities of the source
decoder.
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Figure 2: CBER for an AWGN channel with different frame lengths
K ; where (B) denotes bounds for high signal-to-noise ratios and (S)
denotes simulations.

2.3.2. Definition

We define the CBER as the average BER conditional to an
erroneous frame. From Bayes rule, it can be defined as the
ratio between the BER and the FER:

CBER = BER
FER

. (7)

The CBER allows to take into account some correlation of
errors, if no interleaving between frames is used after chan-
nel decoding. It is a good performance measure if we want to
take into account that the source decoder may accept erro-
neous frames.

2.3.3. Bounds and simulations

The classical approximations (4) and (6) on decoding error
performance are very accurate for high signal-to-noise ra-
tios. Therefore, we can use (4) and (6) in the definition of
the CBER (7) to have a good approximation of the CBER
for high signal-to-noise ratios. Figure 2 shows the CBER ver-
sus the Eb/Ne for different frame lengths for the rate 1/2
convolutional code with polynomial representation in octal
(561,753), as used in the UMTS standard [2]. Both bound
and simulation show that above a given threshold in Eb/Ne,
the CBER is constant for all frame lengths K . This can be
interpreted by the fact that, for high Eb/Ne, the most prob-
able error events are those with minimum Hamming dis-
tance dmin. When a frame is erroneous, there is just one error
event and the mean error probability is related to the average
number of erroneous bits introduced by this error event. So,
working in the Eb/Ne range of constant CBER provides min-
imum CBER for a given frame length. This property will be

used in the sequel to determine the minimum Eb/Ne required
to achieve the desired QoS.

3. MAXIMIZATION OF THE MINIMUM INFORMATION
RATE: PROBLEM STATEMENT AND CONSTRAINTS
DEFINITION

In this section, we present the constrained maximization
problem induced by our goal to allow each and every user
to be able to transmit at any time. As we allow each and ev-
ery user to transmit during each frame duration, a link adap-
tation strategy based on the usual maximization of the total
throughput using dynamic spreading gain and power con-
trol (see [5, 6]) is not well suited, because, as a result of the
optimization problem, some users are prevented from trans-
mitting during some frames. This is a solution we want to
avoid. Therefore, in order to guarantee a minimum QoS for
each user, we propose a link adaptation strategy based on the
maximization of the minimum information rate with a con-
straint on a minimum target signal-to-equivalent-noise ratio
(Eb/Ne)t. The QoS issue is also to provide a minimum infor-
mation rate for each user for a given required performance at
the output of the channel decoder.

3.1. Information rate expression

The information rate for user k′ is defined as

rk′ = Rk′

Sk′
. (8)

Considering (2), it becomes

rk′ =
(
Eb(k′)
Ne(k′)

)−1 Pk′α
2
k′

N0 + β
∑

k �=k′ Pkα2
k

. (9)

Assuming that the fading gains are known and con-
stant during a frame duration, we can see in (9) that
rk′ is a function of the communication system constants
({α2

k, k = 1, . . . ,Nu},N0,β), of users’ transmitted powers
{Pk, k = 1, . . . ,Nu}, and of the Eb(k′)/Ne(k′). Eb(k′)/Ne(k′)
is the parameter related to the QoS constraint. As explained
above, we suggest to maximize the minimum rate over all
users.

3.2. Optimization problem constraints

We will give here the constraints for our link adaptation op-
timization problem. We assume that each and every user is
transmitting during a frame, so preventing a user from trans-
mitting is not permitted, and that no retransmission is al-
lowed. The following two constraints are considered simul-
taneously.

(C1) We want to guarantee a given QoS for each user. This
implies a target value for the signal-to-equivalent-noise ratio
of each user. Assuming that all users belong to a same priority
class, the target signal-to-equivalent-noise ratio is the same
for each user. This threshold value, denoted by (Eb/Ne)t, is
related to the CBER constraints as explained in Section 2.
According to the observations made in the previous section,
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we consider the signal-to-equivalent noise range values for
which the CBER is almost constant, ensuring for each frame
length a “quasi-” minimal CBER. This can be formulated as
follows:

(
C1
)

:
Eb(k)
Ne(k)

=
(
Eb
Ne

)
t
, k = 1, . . . ,Nu. (10)

(C2) Due to hardware limitation, cost constraints, or health
safety, the transmitter peak power is limited to a maximum
value Pmax for the uplink transmission. The Pmax value is as-
sumed to be the same for all users (i.e., all mobiles are of the
same type). This can be formulated as follows:

(
C2
)

: 0 < Pk ≤ Pmax, k = 1, . . . ,Nu. (11)

3.3. Optimization formulation

Our goal is to adapt the spreading gains and powers to
achieve the maximization of the minimum rate. Considering
(9), the maximum information rate that meets the (Eb/Ne)t
(constraint (C1)) is given, for user k′, by

rk′ =
(
Eb
Ne

)−1

t

Pk′α
2
k′

N0 + β
∑

k �=k′ Pkα2
k

. (12)

Thus, the maximization of the minimum information
rate, under the constraints described in Section 3.2, can be
expressed using (12) as follows:

max
{Pk′ }

min
k′

rk′ constrained to
(
C1
)
,
(
C2
)
. (13)

Note that according to the cost function (13), the joint
rate and power adaptation is reduced to a power optimiza-
tion problem. The choice of information rates results from
the power adaptation.

3.4. Different constraints on the rate solution sets

Solving the above optimization problem requires an op-
timization on the transmitted power only. Let P =
(P1, . . . ,PNu) be the vector solution to the optimization
problem. Each user’s information rate is calculated know-
ing P according to (12). This induces a theoretical rate so-
lution set taking real positive values in R+. However, the
rates rk being defined by (8) can only take discrete values.
For instance in the UMTS standard, Rk = {1, 1/2, 1/3} and
S f = {2q|q = 0, 1, . . . , 9}. We should therefore study differ-
ent solution sets with additional constraints on the available
space where the rates can take their values, and study the im-
pact of such constraints on the optimal performance and on
the solution to cost function (13).

Next, we will consider that possible rates resulting from
the optimization problem are subject to constraints. Three
kinds of a rate solution set are considered in the sequel.

(S1) Continuous rates. The information rates can take any
value in R+. The problem is also completely separa-
ble: first the power allocation is given by solving (13)
and then the rate allocation is a straightforward ap-
plication of (12). This will give upper bounds on the
performance of the practical system.

(S2) Continuous rates with boundaries constraints. This
constraint takes into account that the information rate
is in general bounded by a minimum and a maximum
available rate.

(S3) Discrete solution set. The solutions are bounded and
belong to a discrete solution set.

4. AN OPTIMAL SOLUTION FOR CONTINUOUS RATE
AND POWER ALLOCATION

In this section, we consider users’ information rates as con-
tinuous variables over the entire range of positive real num-
bers.

4.1. Motivation of the study

In the case of continuous rates, the results of the optimization
problem (13) give an upper bound on the performance of a
practical system. Moreover, the obtained solution can be a
useful tool to compare theoretical performance of different
link adaptation schemes.

4.2. Solution to the optimization problem

Under the constraints (C1) and (C2), the solution to the con-
strained optimization problem (13) is given by the following
proposition (see Appendix A for a proof).

Proposition 1. Ordering the users indices {1, . . . ,Nu} in an in-
creasing channel gain order (α2

1 ≤ . . . ≤ α2
Nu

), the solution to
the constrained optimization problem (13) is given by

Pkα
2
k = Pmaxα

2
1, k = 1, . . . ,Nu, (14)

where α1 is the weakest channel gain.

Corollary 1. When the maximization of the minimum rate is
achieved (14), each and every user has the same information
rate given by

rmax−min =
(
Eb
Ne

)−1

t

Pmaxα
2
1

N0 + β
(
Nu − 1

)
Pmaxα

2
1
. (15)

4.3. Proposed link adaptation scheme
in the continuous-rate case

In the light of Section 4.2, we describe here the proposed link
adaptation scheme which consists in the maximization of the
minimum rate, constrained by a required (Eb/Ne)t at the in-
put of the channel decoder based on the CBER and power
limitation.

We now describe the different steps of the link adaptation
strategy we propose.

(i) Select the required target signal-to-equivalent-noise
ratio (Eb/Ne)t. This constraint is based on the CBER
ensuring that CBER is minimal for each frame length.

(ii) Knowing the channel gain amplitudes αk and the num-
ber of users Nu in the cell, select the weakest user (as-
sociated with the minimum channel gain).

(iii) Compute powers at the transmitter according to
Proposition 1.
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The main advantage of this scheme is the very low computa-
tional complexity to find the optimum powers and the asso-
ciated rates.

4.4. Comments on the solution

The solution found in (14) underlines the necessary trade-
off between strong and weak users. From (14), the received
powers have to be equal to the same constant: Pkα2

k = c, for
all k = 1, . . . ,Nu. Thus, the users fight against the near-far
effect at the base station. Each user generates the same in-
terference. Note that the solution to the proposed link adap-
tation is similar to the existing techniques to avoid near-far
effect, since all the received powers are equal (see [16] for a
general description). The fact that the constant is equal to
Pmaxα

2
1, where α1 is the weakest channel gain, shows that the

best achievable performance in this context is constrained by
the weakest user due to his strong fading and the power lim-
itation.

4.5. Analytical expressions and bounds in the
continuous-rate case

The previous scheme gives the instantaneous solution to the
optimization problem (13), that is to say, the solution for a
given frame duration and given channel gains. We will now
derive some analytical bounds on the average performance
(in terms of the average information rate per user or aver-
age received bit energy per user) of the proposed scheme in
order to evaluate the performance and compare with other
link adaptation strategies. Average performance can be de-
termined by averaging out over the probability distribution
of the channel gains.

We assume that for each and every user, the channel
gains αk, considered as random variables, are independent
and identically distributed and have a Rayleigh distribution
parameterized by the parameter Ω = E(α2

k).

4.5.1. Probability density function of the minimum
channel gain

Each and every performance measure is related to the weak-
est channel gain α1. As a classical result of order statistics
[17], the minimum channel gain α1 follows a Rayleigh distri-
bution with parameter E(α2

1) = Ω/Nu and the corresponding
probability density function (pdf) is given by

fα1 (α) = 2Nuα

Ω
e−Nuα2/Ω, α > 0. (16)

Based on this result, we can now derive some analytical ex-
pressions regarding average performance and some bounds.

4.5.2. Average information rate

Using the instantaneous solution to the optimization prob-
lem for each frame (15), we can average out over the
channel gains described by their pdf (16). By defining
C = (Eb/Ne)−1

t Pmax and λ = β(Nu − 1)Pmax, the average

information rate is given by

r = E(r) =
∫ +∞

0
rmax−min fα1 (α)dα

= C
Nu

Ωλ2
eNuN0/Ωλ

(
I1 − I2

) (17)

with

I1 = Ωλ

Nu
e−NuN0/Ωλ,

I2 = N0Γ
(

0,
NuN0

Ωλ

)
,

(18)

where

Γ(p, z) =
∫ +∞

z
tp−1 exp(−t)dt (19)

is the incomplete Gamma function. Note that (17) is always
positive since I1 > I2. The detailed proof of (17) is given in
Appendix B.

It is of practical interest (in terms of computational com-
plexity) to derive simple bounds that can be close to exact
analytical expressions for a large range of values. First, by
considering (17), we can get a lower bound for r using an
upper bound for I2, which is finally given by the following
expression (see the detailed proof given in Appendix C):

I2≤N0e
(−NuN0/Ωλ)

(
NuN0

Ωλ

)(1/p−1)

(p−1)(1−2/p)p(1/p−1),

∀p > 1.
(20)

Since (20) is true for all p > 1, the closest upper bound is
reached by optimizing the parameter p to minimize the sec-
ond member of (20): for a given number of users Nu and a
given noise power, the optimal value for the real parameter p,
such as p > 1, is the one which minimizes the second mem-
ber of (20). So the parameter p varies over the range of noise
powers and for different values of Nu. Finally, reporting this
expression in (17), we get a lower bound for r.

Using (17), and since I2 ≥ 0, we have the following upper
bound:

r ≤ C
Nu

Ωλ2
eNuN0/ΩλI1

≤ C

λ

(21)

and finally, we get

r ≤
(
Eb/Ne

)−1
t

β
(
Nu − 1

) . (22)

The asymptotic value of r when the noise power goes to
zero cannot increase to infinity, since it is upperbounded by
the multiple-access load capacity (22). The accuracy of these
bounds is shown in Section 6.
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4.5.3. Average bit energy

We focus on the received average bit energy. During a frame
duration, the energy bit for a user is given by

Eb =
(
Eb
Ne

)
t

(
N0 + λα2

1

)
. (23)

Then, averaging out over the pdf of the channel gains, the
average bit energy per user is given by

Eb = E
(
Eb
) = (Eb

Ne

)
t

(
N0 + λ

∫ +∞

0
α2 fα1 (α)dα

)

=
(
Eb
Ne

)
t

(
N0 +

λΩ

Nu

)
.

(24)

Therefore, the average bit energy is a constant when N0

goes to zero (low noise power). This constant is equal to
(Eb/Ne)t(β(Nu − 1)PmaxΩ/Nu). Thus, when Nu increases, the
average bit energy increases due to the load of the cell. This
can be interpreted as follows: at low noise power, we only
have multiuser interference, which increases when Nu in-
creases. We then have to transmit more energy per bit to fight
against the multiuser interference.

We can also deduce the average signal-to-noise ratio at
the input of the receiver, given by

Eb

N0
=
(
Eb
Ne

)
t

(
1 +

β
(
Nu − 1

)
PmaxΩ

NuN0

)
. (25)

In Section 6, we will compare these bounds to the simu-
lated values to check for their validity in terms of number of
users, noise power, and so forth.

5. IMPACT OF THE CONSTRAINTS ON
THE RATE SOLUTION SET

In Section 3.4, we have seen that the information rates result-
ing from the optimization problem (13) are subject to two
additional constraints for practical systems: firstly, the rates
are bounded by some maximum and minimum values, and
secondly, they take their values in a discrete space. Even if
the continuous case can give an upper bound for practical
systems, it is necessary to study the solution to the optimiza-
tion problem (13) subject to the additional hypothesis (S2)
or (S3) defined in Section 3.4. The solutions to the optimiza-
tion problem with constraints (S2) and/or (S3) are not obvi-
ous and cannot be directly inferred from the continuous-rate
case. Nevertheless, the impact of hypotheses (S2) and (S3) on
the rate solution set can be studied by considering the fol-
lowing approach. We consider the rates resulting from the
optimization problem (13) and we apply to these rates the
hypothesis (S2) or (S3). This is equivalent to considering in
the first case (S2) a saturation of rmax−min at the boundaries
and in the second case (S3) a quantization of rmax−min values.
In doing so, we will measure the performance loss on the link
adaptation scheme induced by the constraints (S2) and (S3).
We will focus on the average information rate as a measure of
performance to study impact of the constraints (S2) and (S3)
on the rate solution set.

5.1. Bounded continuous rates

In this subsection, we will consider the case of bounded con-
tinuous rates.

5.1.1. Link adaptation strategy for bounded
continuous rates

Considering that the optimal rate solution to the optimiza-
tion problem (13), in the continuous-rate case, given by (15),
is subject to the constraint

rm ≤ rmax−min ≤ rM , (26)

we propose a suboptimal link adaptation strategy based on
the saturation of rate outside the boundaries. The different
steps of the link adaptation strategy proposed in Section 4.3
for the continuous-rate case are modified as follows.

(i) Select the required target signal-to-equivalent-noise
ratio (Eb/Ne)t.

(ii) Knowing the channel gain amplitudes αk and the num-
ber of users Nu in the cell, select the weakest user (as-
sociated with the minimum channel gain).

(iii) Compute powers at the transmitter according to
Proposition 1.

(iv) Compute rate rmax−min. If rmax−min<rm (resp., rmax−min

> rM), then saturate rmax−min to rm (resp., to rM).

The additional step (iv) just controls the saturation of the
rate if it is outside the boundaries.

5.1.2. Average information rate

We want to evaluate the average information rate achieved
when a saturation of the continuous rate solution is used.
This will allow us to compare with the unlimited-rate case
and to evaluate the loss of performance. Before averaging,
we have to explicit rmax−min with regard to the range val-
ues of the weakest channel gain α1. Thus, considering (26),
rmax−min is given as follows:

rmax−min

=




rm, α1 ≤ αmin,(
Eb
Ne

)−1

t

Pmaxα
2
1

N0 + β
(
Nu − 1

)
Pmaxα

2
1

, αmin≤α1≤αmax,

rM , αmax ≤ α1,
(27)

where α1 is the weakest channel gain. αmin and αmax are solu-
tions to rmax−min = rm and rmax−min = rM , respectively. Av-
eraging out over the channel gains and taking into account
the saturation, the average information rate is given by

r =
∫ +∞

0
rmax−min fα1 (α)dα

=
∫ αmin

0
rm fα1 (α)dα +

∫ αmax

αmin

rmax−min fα1 (α)dα

+
∫ +∞

αmax

rM fα1 (α)dα

= rmIm + IP + rMIM ,

(28)
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where Im, IM , and IP are given by

Im =
∫ αmin

0
fα1 (α)dα

=
∫ αmin

0

2Nuα

Ω
e−Nuα2/Ωdα

= 1− e−Nuα
2
min/Ω,

IM = 1−
∫ αmax

0
fα1 (α)dα = e−Nuα2

max/Ω,

IP =
∫ αmax

αmin

rmax−min fα1 (α)dα

=
∫ αmax

αmin

Cα2

N0 + λα2
fα1 (α)dα,

(29)

where C and λ are constants previously defined in Section
4.5.2.

We focus on the calculation of IP . Applying the same cal-
culation techniques as in Section 4.5.2, we have

IP =
∫ αmax

αmin

rmax−min fα1 (α)dα

=
∫ αmax

αmin

Cα2

N0 + λα2
fα1 (α)dα

= C
Nu

Ωλ2
eNuN0/Ωλ

∫ umax

umin

u−N0

u
e−Nuu/Ωλdu

= C
Nu

Ωλ2
eNuN0/Ωλ

(
I′1 − I′2

)
,

(30)

where

umin = N0 + λα2
min,

umax = N0 + λα2
max,

I′1 =
Ωλ

Nu

(
e−Nuumin/Ωλ − e−Nuumax/Ωλ

)
,

I′2 = N0
(
Γ
(
0, vmin

)− Γ
(
0, vmax

))
,

(31)

with vmin = Nuumin/Ωλ and vmax = Nuumax/Ωλ. Γ(p, z) is the
incomplete Gamma function given by (19).

Thus, considering (28), we can predict the asymptotic be-
havior of the average rate under bounded-rates constraint.
For low noise powers, the average information rate converges
to the maximum rate rM . For high noise powers, the average
information rate converges to the minimum rate rm.

5.2. Finite-discrete-rate set case

In this section, we will consider the case where the rates take
their values in a finite size and a discrete space. The rates rk
resulting from the optimization problem (13) must be a ra-
tio of the available channel coding rates Rk and the available
spreading factors Sk for the user k. Therefore, rk = Rk/Sk
should take a finite number of discrete values. The set of
available channel coding rates and spreading factors may
vary from a user to another. The present constraint can be
viewed as a refinement of the previous case: the rates are ef-
fectively bounded due to the discrete nature of the set, and
inside the boundaries, the rates take a finite number of dis-
crete values.

Following the approach of the preceding section, we will
express analytically the performance loss induced by the
finite-discrete rates constraint on the continuous rates solu-
tion set given by (15). Note that with a finite number of dis-
crete rates, the optimization might be solved by an exhaustive
search. This issue is not addressed in this paper.

After giving the modified and suboptimal link adaptation
strategy we propose, we discuss the average information rate
that can be reached with constraint (S3) compared to case
(S2).

5.2.1. Modified link adaptation scheme in the
finite-discrete-rate set case

Considering that the optimal rate solution to optimization
problem (13), in the continuous-rate case given by (15), is
submitted to the constraints (C2) and (C3), and that rmax−min

takes a discrete value depending on the user’s available chan-
nel coding rates an spreading factors, we propose a subop-
timal link adaptation strategy based on the quantization of
rates. The different steps of the link adaptation strategy pro-
posed in Section 4.3 are modified as follows.

(i) Select the required target signal-to-equivalent-noise
ratio (Eb/Ne)t.

(ii) Knowing the channel gain amplitudes αk and the num-
ber of users Nu in the cell, select the weakest user (as-
sociated with the minimum channel gain).

(iii) Compute powers at the transmitter according to
Proposition 1.

(iv) Compute rate rmax−min. Knowing the set of available
Rk and Sk for user k, select the best suited set {Rk, Sk}
such as

rk = Rk

Sk
≤ rmax−min. (32)

The additional step (iv) controls the saturation of the rate
and allows to find the best tradeoff between channel coding
rate and spreading factor for the quantization.

5.2.2. Asymptotic behavior

In this section, we do not derive analytical expressions, but
discuss the behavior of the proposed link adaptation strategy
in the discrete case. Comparisons with the previous cases will
be done in Section 6.

Similarly to the previous bounded-rate case, we can ex-
plicit the average performance in terms of average informa-
tion rate. Considering a finite set of available rates (rk, k =
0, . . . ,M), where r0 and rM are, respectively, the minimum
and the maximum information rates available, the quantiza-
tion of the optimal solution yields to the following expression
for rmax−min:

rmax−min =



rm, α1 ≤ α0,

rk, αk ≤ α1 ≤ αk+1, ∀k = 0, . . . ,M − 1,

rM , αM ≤ α1,
(33)
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Figure 3: Average information rate r versus inverse noise power
1/N0: simulation results for Nu = 5, 10, 15, 20, 25.

where αk are the solutions of rmax−min(αk) = rk using (15).
Averaging out over the channel gains and taking into account
the quantization, the average information rate is given by

r =
∫ +∞

0
rmax−min fα1 (α)dα

=
∫ α0

0
r0 fα1 (α)dα +

M−1∑
k=0

∫ αk+1

αk
rk fα1 (α)dα

+
∫ +∞

αM
rM fα1 (α)dα

= r0I0 +
M−1∑
k=0

rkIk + rMIM

(34)

with

I0 = 1− e−Nuα
2
0/Ω,

IM = e−Nuα
2
M/Ω,

Ik = e−Nuα
2
k/Ω − e−Nuα

2
k+1/Ω.

(35)

The main modification in the discrete case is that the
rates below the maximum rate and above the minimum rate
are quantized to discrete values. So the bounded-continuous
case is an upper bound of the discrete case. Moreover, we
can claim that the behavior at the boundaries are the same
in both cases, that is, the rates go to the minimum rate for
high noise powers and go to the maximum for low noise
powers. For medium noise powers, the performance of the
discrete case is upper bounded by the bounded-continuous
case. How close are the performance in both cases will be
discussed with simulation results in Section 6.
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Figure 4: Average bit energy Eb versus inverse noise power 1/N0 in
the continuous-rate case: simulation results for Nu = 5, 10, 15.

6. SIMULATION RESULTS

In this section, we present some simulation results in or-
der to check for the validity of the analytical expressions
and bounds we developed, and to compare the different so-
lutions constrained by (S1), (S2), and (S3). For all simula-
tions, the users’ channel gains have the same Rayleigh dis-
tribution parameterized by the parameter E(α2

k) = 1, for all
k = 1, . . . ,Nu. The maximum peak power is set to 1. We
suppose that each and every user has only one channel cod-
ing rate R available. We set R = 1/2. The target signal-to-
equivalent-noise ratio is set to (Eb/Ne)t = 3 dB. Considering
randomly chosen spreading sequences, β is equal to 2/3. Each
and every user has the same available spreading factors, such
that S f = {2q| q = 0, 1, . . . , 9}. Thus, S f is always less than or
equal to 512.

First, we consider the continuous-rate case and analyze
the influence of the different system parameters such as the
number of users in the cell and the noise power. Analytical
expressions and bounds in the continuous case are compared
to the simulation results to check for their validity. Then, we
study the loss of performance due to saturation and quanti-
zation rate of the solution.

6.1. Average performance for the continuous-rate case

Figures 3 and 4 give simulation results for the average in-
formation rate per user and the average bit energy versus
the inverse noise power for different number of users Nu. In
Figure 3, as expected, for a given noise power, the average rate
decreases when the number of users Nu increases. This is due
to the increase of multiuser interference when Nu increases.
All curves are strictly increasing functions of the inverse of
the noise power, that is, when the noise power decreases, the
average rate increases. Since rates are continuous, they go to
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Figure 5: Average information rate r versus inverse noise power
1/N0 in the continuous-rate case, where (UB) denotes asymptotic
upper bound, (S) simulation, (AE) analytic expression, and (LB)
lower bound. Nu = 5, 10.

zero for high noise power. For low noise powers, the rates
converge asymptotically to the constant given by (22). This
constant is related to the maximum reachable information
rate when the users are only subject to multiuser interference.
As we can see, this constant is directly related to the num-
ber of users Nu. For example, when Nu = 20, the asymptotic
value given by (22) for low noise power is 0.0395, which is the
asymptotic value we observe. In Figure 4, the average bit en-
ergy for a given Nu is a strictly decreasing function of the in-
verse of noise power: the higher the noise power is, the higher
the average transmitted bit energy has to be. This is due to the
fact that, for high noise powers, the information rate is low,
requiring low channel coding rates and high spreading fac-
tors. Thus, the required bit energy to transmit with the given
QoS increases. For a given noise power (cf. (24)), the average
bit energy increases with increasingNu. The asymptotic value
for low noise power is given by (24) whenN0 goes to zero. For
example for Nu = 20, Eb theoretically goes to 1.2444. Simu-
lation results are close to this value for low noise powers.

Figures 5 and 6 allow to compare analytical expressions
and bounds to simulation results. Figure 5 displays results
for the average information rate and Figure 6 displays results
for the average bit energy. In Figure 6, both analytical expres-
sions and simulations are very close. In Figure 5, we compare
for Nu = 5 and Nu = 10 the analytical expressions given by
(17), and the bounds given by (22) and by (20) with simu-
lations. The bound given by (20) is obtained by finding, for
a given number of user Nu and a given noise power N0, the
value of the parameter p which minimizes the second mem-
ber of (20). Thus, (22) gives the asymptotic value of reach-
able average information rate in presence of multiuser inter-
ference only. Equation (20), when optimized with the param-
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Figure 6: Average bit energy Eb versus inverse noise power 1/N0 in
the continuous-rate case, where (AE) denotes analytic expression
and (S) denotes simulation. Nu = 5, 10.

eter value p for a given noise power, gives a tight lower bound
over the entire range of noise power values.

6.2. Impact of rates saturation and quantization

Here, we study the influence of saturation and quantization
of the solution to the continuous-rate case. First, we check for
the validity of the analytical expression of the average infor-
mation rate when saturation only is used. Then, we compare
the different link adaptation schemes when saturation and
quantization are used with the continuous-rate case.

Figure 7 shows simulation results and analytical ex-
pressions for the bounded-continuous-rate and the finite-
discrete-rate cases. The analytical expressions are given by
(28) and (34). The spreading factors are bounded in both
cases by S f max = 512 and S f min = 8 for Nu = 5, and
S f min = 16 for Nu = 10. We have a good matching of sim-
ulation curves with theoretical expressions. For high noise
power, the minimum rate is the same and is equal to 1/1024.
The rates obtained by simulation converge to this asymptotic
value for high noise power. For low noise power, the asymp-
totic expected rates are given for Nu = 5 and Nu = 10, re-
spectively, by 1/16 and 1/32. These values are the asymptotic
values we can observe by simulation.

Figure 8 displays simulation results for the average infor-
mation rates with Nu = 5 and Nu = 10 for continuous-rate,
bounded-continuous-rate, and finite-discrete-rate cases. It
allows to compare the performance for the different cases
(S1), (S2), and (S3). We can see that, due to saturation,
we have a significant loss of performance compared to the
continuous-rate case. The loss is greater for low noise power.
This is due to the strong limitation of the rate, necessary
to avoid a bandwidth expansion or some non physically
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Figure 7: Average information rate r versus inverse noise 1/N0

power in the bounded-continuous-rate (Sat) and the finite-
discrete-rate (Q) cases, where (AE) denotes analytic expression and
(S) denotes simulation. Nu = 5, 10.

reachable rates. The loss due to quantization is less important
with respect to the saturated case. Actually, the performance
of (S2) and (S3) are relatively close. So it seems that the satu-
ration is the constraint which implies the major performance
loss.

7. CONCLUSION

In this paper, we have considered the optimization of the
transmitters resources in a multiuser time-varying fading en-
vironment while guaranteeing a target QoS (CBER) and a
connection to any user through the network. We proposed a
new link adaptation strategy consisting in the maximization
of the minimum user’s information rate under the constraint
of a required bit energy-to-equivalent noise ratio based on a
mean BER for erroneous frames criterion. This is performed
through dynamic spreading gain and power control. An easy
computational solution to this problem is provided in the
continuous-rate case. In more realistic cases with saturation
and quantization of the rate’s space, we propose suboptimal
link adaptation strategies based on a simple saturation of the
continuous case or on its quantization. Through simulations,
we analyze the influence of finite spreading factor set on the
performance of the link adaptation, showing that the main
loss is due to saturation.

As shown in the paper, the saturation or quantization
of the rates solutions to the continuous case do not give
a complete satisfaction due to a performance loss. So, fu-
ture works will consider the solution to the maximization
of the minimum rate, when fully taking into account that
the resulting rates can only take their values in a finite set.
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Figure 8: Average information rate r versus inverse noise power
1/N0: simulation results comparison between continuous-rate case
(C), bounded-continuous-rate case (Sat), and finite-discrete-rate
set case (Q). Nu = 5, 10.

Moreover, since the system is constrained by the weakest user,
we can study alternative or hybrid schemes with classes of
users depending on the fading each one encounters (not to
be dependent on the weakest user only) and on the kind of
service each user demands (different QoS classes modifying
the constraint (C1)).

Another area of interest is the estimation and prediction
of the channel parameters by the base station and its feedback
to the mobiles. This will involve scheduling and a dynamic
study of the side information transmission.

APPENDICES

A. PROOF OF PROPOSITION 1

When

Pkα
2
k = Pmaxα

2
1, k = 1, . . . ,Nu,

rk = C
Pmaxα

2
1

N0 + β
(
Nu − 1

)
Pmaxα

2
1
= r0 ∀k,

(A.1)

where C = (Eb/Ne)−1
t is the inverse of the desired Eb/Ne.

Therefore, rmax−min satisfying (13) verifies

rmax−min ≥ r0. (A.2)

We want to prove that rmax−min is equal to r0. We will
use a reductio ad absurdum. We assume that rmax−min > r0,
therefore all users satisfy rk > r0, otherwise, there exists one
user so that rk ≤ r0. For all k �= 1, let λk be defined as

Pkα
2
k =

Pmaxα
2
1

λk
. (A.3)
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Considering (12), we can also rewrite for all k′ �= 1,

rk′ = CPmaxα
2
1/λk′

N0 + βPmaxα
2
1

∑
k �=1,k′ 1/λk + βP1α

2
1
. (A.4)

We focus on the subsystem composed by the Nu − 1 in-
equalities defined such that rk′ > r0; this is equivalent to

CPmaxα
2
1/λk′

N0 + βPmaxα
2
1

∑
k �=1,k′ 1/λk + βP1α

2
1

>
CPmaxα

2
1

N0 + β
(
Nu − 1

)
Pmaxα

2
1

,

N0
(
1− λk′

)
+ βPmaxα

2
1

((
Nu − 1

)− ∑
k �=k′,1

λk′

λk

)

> βλk′P1α
2
1.

(A.5)

As for each inequality, the second member is strictly pos-
itive, we have also a second subsystem with Nu − 1 inequali-
ties by considering the first member strictly positive. We are
looking for a solution set {λ2, . . . , λNu} for these inequali-
ties. If a solution set does not exist, there exists i0, ri0 ≤ r0

and so rmax−min ≤ r0. As rmax−min ≥ r0, this implies that
rmax−min = r0.

If there exists a solution set to this sub-system, let i0 be
the user’s index such that, for all user k �= 1, k �= i0, and
λi0 ≥ λk. We can consider the following two cases: (1) λi0 < 1
and (2) λi0 ≥ 1. For case (1), for all k �= 1, λk < 1. Thus,

r1 <
CP1α

2
1

N0 + β
(
Nu − 1

)
Pmaxα

2
1
≤ r0 (A.6)

since P1 ≤ Pmax. This is in contradiction with the hypothesis
that for all k, rk > r0. For case (2), considering the inequality
associated with rate ri0 , we have

N0
(
1− λi0

)
+ βPmaxα

2
1

((
Nu − 1

)− ∑
k �=i0,1

λi0
λk

)
> βλi0P1α

2
1.

(A.7)

As λi0 ≥ λk,

N0
(
1− λi0

)
+ βPmaxα

2
1 > βλi0P1α

2
1

=⇒ Pmaxα
2
1 > λi0P1α

2
1.

(A.8)

Finally, we have P1 < Pmax/λi0 , which gives us

r1 = CP1α
2
1

N0 + βPmaxα
2
1

∑
k �=1 1/λk

<
CPmaxα

2
1/λi0

N0 + β(Nu − 1)Pmaxα
2
1/λi0

≤ r0,

(A.9)

which is in contradiction with the hypothesis that for all k,
rk > r0.

Finally, we can conclude that rmax−min = r0.

B. PROOF OF (17)

Using the instantaneous solution to the optimization prob-
lem for each frame (15), we can average out over the channel
gains described by their pdf (16). The average information
rate is given by

r = E(r) =
∫ +∞

0
rmax−min fα1 (α)dα

= C
∫ +∞

0

α2

N0 + λα2

2Nuα

Ω
e−Nuα2/Ωdα,

(B.1)

where C = (Eb/Ne)−1
t Pmax and λ = β(Nu − 1)Pmax.

Let u be defined as u = N0 +λα2. By variable substitution,
it follows that

r = C
∫ +∞

0

α2

N0 + λα2

Nu

Ω
e−Nuα2/Ω2αdα

= C
∫ +∞

N0

u−N0

λu

Nu

Ω
e(−Nu/Ω)((u−N0)/λ) du

λ

= C
Nu

Ωλ2
eNuN0/Ωλ

∫ +∞

N0

u−N0

u
e−Nuu/Ωλdu

= C
Nu

Ωλ2
eNuN0/Ωλ

(∫ +∞

N0

e−Nuu/Ωλdu−N0

∫ +∞

N0

e−Nuu/Ωλ

u
du
)

= C
Nu

Ωλ2
eNuN0/Ωλ

(
I1 − I2

)
.

(B.2)

The integral expressions are, respectively, given by

I1 =
∫ +∞

N0

e−Nuu/Ωλdu

= Ωλ

Nu
e−NuN0/Ωλ

(B.3)

and using variable substitution v = Nuu/Ωλ,

I2 = N0

∫ +∞

N0

u−1e−Nuu/Ωλdu

= N0

∫ +∞

NuN0/Ωλ

Nu

Ωλ
v−1e−v

Ωλ

Nu
dv

= N0

∫ +∞

NuN0/Ωλ
v−1e−vdv

= N0Γ
(

0,
NuN0

Ωλ

)
,

(B.4)

where (19) is the incomplete Gamma function.

C. PROOF OF UPPER BOUND (20)

In the light of (19), we consider the following integral:

I =
∫ +∞

z
v−1e−vdv. (C.1)
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Considering V = [z, +∞), since f (v) = v−1 ∈ Lp(V) and
g(v) = e−v ∈ Lq(V) with 1/p + 1/q = 1 and p > 1, q > 1,
applying Hölder inequality [18], we have

I =
∫ +∞

z
v−1e−vdv

≤
(∫ +∞

z
v−pdv

)1/p(∫ +∞

z
e−qvdv

)1/q

∀p > 1, q > 1

such that
1
p

+
1
q
= 1.

(C.2)

Moreover,

Ia =
(∫ +∞

z
v−pdv

)1/p

=
(

1
(p − 1)

z−p+1
)1/p

= (p − 1)−1/pz(−1+1/p),

Ib =
(∫ +∞

z
e−qvdv

)1/q

=
(

1
q
e−qz

)1/q

= q−1/qe−z.

(C.3)

Substituting q = p/(p − 1), we get

Ib =
(

p

(p − 1)

)(1/p−1)

e−z = (p − 1)(1−1/p)p(1/p−1)e−z. (C.4)

Finally, we get the following upper bound for I :

I ≤ e(−z)z(1/p−1)(p − 1)(1−2/p)p(1/p−1) ∀p > 1. (C.5)

Applying (C.6) to (19) with z = (NuN0)/(Ωλ), we finally
have the following expression for I2:

I2≤N0e
(−NuN0/Ωλ)

(
NuN0

Ωλ

)(1/p−1)

(p − 1)(1−2/p)p(1/p−1)

∀p > 1.
(C.6)
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