
1

Multi-Rate Resource Allocations for TH-UWB
Wireless Communications

Philippe Mary Member, IEEE, Inbar Fijalkow Senior Member, IEEE and Charly Poulliat Member, IEEE

Abstract—In this paper, we are interested in resource allocation
strategies for wireless time-hopping ultra-wide band (TH-UWB)
communications with multiple rate capabilities between users.
Multiple rates are achieved by assigning different processing
gains, i.e. Nf , to users. For this purpose, the multiple-access
interference (MAI) variance accounting for multi-rate is needed.
It is a challenging task due to the lack of a suitable closed-
form expression for the MAI variance in a multi-rate context.
We further study the multi-rate resource allocation problem in
uplink TH-UWB systems for which an optimal search cannot
be envisaged due to the exponential complexity induced. Our
contribution lies in three-fold: i) A new intercode correlation
expression accounting for multi-rate communications is derived,
and the variance of the MAI averaging over the codes is obtained.
ii) The multi-rate resource allocation problem is tackled by
relaxing the integer constraint on the processing gains and
modeled via a signomial programming problem. iii) Based on
this, a branch and bound (BB) algorithm is derived for the
allocation of the processing gains in TH-UWB systems. We also
propose a really simple heuristic with linear complexity for the
Nf allocation. We show that the algorithm proposed outperforms
the BB algorithm in average throughput and average starvation
rate 1.

I. INTRODUCTION

Time-hopping ultra-wideband (TH-UWB) based on impul-
sive radio technology is a very promising technique to achieve
high spectral efficiency under low radiated power [2]. This
technique has received a great amount of attention from the
scientific community during the last decade [3], [4]. TH-
UWB is a code division multiple access (CDMA) technology;
multiple users can access to the channel at the same time by
assigning a time-hopping code (THC) to each user. In [5],
the authors showed that an optimal THC design rule can be
derived by minimizing the variance of the multiple access
interference (MAI), but without considering the general multi-
rate case.

Resource allocation is a critical task in the cellular system
optimization, greatly influencing the network performance. In
this paper, we are interested in resource allocation strategies
allowing to increase the global data rate in the uplink scenario.
The power control cannot really be envisaged in practical TH-
UWB systems, due to the very large bandwidth of the system,
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e.g. several Gigahertz. Moreover, it has been shown that rate
control is an efficient technique to achieve high throughput
in TH-UWB systems. In [6], the authors have shown that the
coding rate adaptation allows to achieve better throughput than
power adaptation if the rate control is performed according to
the interference level experienced at the destination. However,
they do not consider the rate adaptation based on a variable
symbol length which is the case when the THC have different
processing gains.

Since TH-UWB systems are based on CDMA technology,
works on rate allocation in multi-rate cellular CDMA systems
are pertinent for our study, e.g. [7], [8] and references therein.
Authors in [7] consider the adaptive rate allocation problem
in DS-CDMA systems, by assigning various spreading gains
among users. However, the particular frame structure of TH-
UWB systems with Nc chips and Nf frames implies non
trivial dependency between these parameters and the global
throughput. This particular structure makes the physical (PHY)
layer model of [7] as well as the associated multi-rate re-
source allocation strategy unsuitable for TH-UWB systems.
On the other hand, the works dealing with multi-rate TH-
UWB systems do not focus on rate adaptation via a variable
processing gain allocation. Indeed, the authors in [9] developed
an SINR model for multi-rate TH-UWB systems based on an
approximation of the MAI variance. However, only AWGN
and synchronous transmission have been considered and hence
the variance expressions given in [9] are simpler and not as
realistic as the ones which would be obtained in multipath
fading environments. Moreover, they considered that the pro-
cessing gain ratio between users is an integer. This is a strong
hypothesis, significantly simplifying the intercode interference
analysis. In [10] the authors deal with a maximum-likelihood
(ML) receiver for multi-rate TH-UWB communications and
the work in [11] deals with coded and uncoded TH-UWB
systems with multi-rate capabilities with multi-services as-
signment. The authors in [11] effectively consider the use of
various spreading gains for several rate services. However, they
only consider the AWGN channel case and no spreading gain
allocation has been studied.

In this work, we consider the general case of multipath
fading channels and non-integer processing gain ratio between
users. An accurate MAI model based on [5] is derived for
multi-rate TH-UWB communication systems and the proofs of
theorems given in [1] are provided. These proofs significantly
enhance our previous paper since the intercode correlation
in the general multi-rate context was unknown and far from
trivial. We extend the problem of variable spreading gain
allocation as partially treated in [1] by showing that the
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processing gain allocation is a general mixed integer and sig-
nomial programming problem. Due to its very difficult nature,
it cannot be guaranteed to find the global optimal solution.
We prove that the mixed integer and signomial programming
problem can be approached locally by a posynomial problem
and hence can be solved via the combination of geometric
programming and a branch and bound (BB) algorithm. These
new algorithms can serve as benchmarks for the evaluation
of other algorithms and/or heuristics. Finally, we compare
the performance of a new heuristic with linear complexity,
partially presented in [1], w.r.t. the BB-based algorithm.

The remainder of the paper is organized as follows. The
next section introduces the system model. Section III provides
a new closed form expression for the variance of the multiple
access interference in multi-rate TH-UWB communications.
In Section IV, we revisit the allocation of the spreading gains
as a signomial programming problem. We hence provide a
solution by relaxing the integer constraint on the Nf values
and by approaching locally the signomial problem by a posy-
nomial problem. We further deal with the integer constraint by
proposing a BB algorithm based on the previous formulation
and we present a simpler heuristic with linear complexity to
allocate the spreading gains to the users. Section V gives the
numerical results by comparing the BB performances to the
proposed heuristic and Section VI draws the conclusions.

II. SYSTEM MODEL

We consider asynchronous uplink multiuser communica-
tions in a single cell network, with one base station (BS)
and Nu users. A UWB symbol is defined as Nf frames each
containing Nc chips. The number of chips per frame, i.e. Nc,
and the duration of the chip, Tc, are fixed for all users in
the network. The UWB symbol duration of the u−th user is
T

(u)
s = NcN

(u)
f Tc, with N

(u)
f the number of frames of the

u−th user. The signal transmitted by the u−th user is:

su(t) =
∑

i

du(i)

NcN
(u)
f
−1∑

j=0

cu(j)w
(
t− iT (u)

s − jTc − θu
)
,

(1)
where w(t) is the impulse of duration Tw � Tc, du are
the transmitted PAM information symbols with E

[
d2
u

]
= 1

and θu is the asynchronism between users. Moreover, cu :=

{cu(j)}
NcN

(u)
f
−1

j=0 is the u−th developed time hopping code
(DTHC) as defined in [5]. The UWB signal is sent through
a multipath channel with Np paths and processed at the BS
by a rake receiver containing Lr fingers. The intersymbol
interference (ISI) can be neglected by inserting a guard time at
the end of each frame [3], [5], [12]. If the user u is assumed to
be of interest, its received signal at the BS can be decomposed
as [5]:

z(u) = zu + zmai + η(u), (2)

with:

zu =
√
Pu

Lr∑

l=1

(
Alu
)2
N

(u)
f du (0) , (3)

zmai =
Lr∑

l=1

Alu

Nu∑

u′=1
u′ 6=u

√
Pu′

Np∑

n=1

Anu′y
n,l
u′,u (θu′) , (4)

where:

yn,lu′,u (θu′) =
∑

i

du′ (i)

NcN
(u′)
f
−1∑

j=0

NcN
(u)
f
−1∑

ju=0

cu′(j)cu(ju)

× rww

(
iT (u′)
s + (j − ju)Tc + ∆n,l

u′,u + θu′
)
,

(5)

zu and zmai are the useful part of the signal and the mul-
tiple access interference respectively. Moreover, rww (s) =∫∞
−∞ w(t)w(t − s)dt and η(u) is the filtered Gaussian noise

with N0 as the one-sided power spectral density and its
expression can be found in [5], [12]. Anu = anue

−τnu /2γ is the
n−th path amplitude of the u−th user where τnu is the delay
of the n−th path of the user u and anu are zero mean random
variables (RVs) independent of delays and with a variance σ2

a

[5], [13]. Moreover γ is a statistical channel parameter and
is related to the channel impulse response length as defined
in [13] and used in [5], [12]. We also define ∆n,l

u′,u = τnu′ − τ lu
and Pu is the received power at the BS for the u−th user after
path loss propagation.

We set N (u)
f = α(u′)N

(u′)
f , with α(u′) > 0 and α(u′) ∈ Q,

i.e. the rational number set. As proposed in [5], we consider the
Euclidean division of θu′ + ∆n,l

u′,u w.r.t. T (u′)
s and Tc yielding

to θu′ + ∆n,l
u′,u := Qn,lu′ T

(u′)
s + qn,lu′ Tc + εn,lu′ with:

Qn,lu′ =
⌊
θu′+∆n,l

u′,u

T
(u′)
s

⌋
∈ {−∞,∞} , (6)

qn,lu′ =
⌊
θu′+∆n,l

u′,u−Q
n,l

u′ T
(u′)
s

Tc

⌋
∈
{

0, · · · , NcN (u′)
f − 1

}
(7)

and εn,lu′ ∈ [0, Tc[ is the remainder of the Euclidean division
and b·c denotes the floor rounding. Thanks to this relationship,
eq. (5) can be written as:

yn,lu′,u (θu′) =
∑

i

du′ (i)

NcN
(u′)
f
−1∑

j=0

NcN
(u)
f
−1∑

ju=0

cu′(j)cu(ju)

× rww

((
i+Qn,lu′

)
T (u′)
s +

(
qn,lu′ + j − ju

)
Tc

+εn,lu′
)

(8)

III. VARIANCE OF zmai WITH MULTIPLE RATES

A. Expression of multiple access interference

We can prove that the autocorrelation function rww in (8) is
non zero if and only if −2 < Qn,lu′ + i ≤

⌈
α(u′)

⌉
−1, with d·e

being the ceil rounding. Our first theoretical result is stated in
the following lemma [1], which extends and generalizes the
result in [5]:
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Lemma 1 In multi-rate PAM TH-UWB communications, the
multiuser interference can be written as:

yn,lu′,u (θu′) =

⌈
α(u′)

⌉
−1∑

k=−1

du′
(
k −Qn,lu′

)
×

[
Cku,u′

(
qn,lu′
)
rww

(
εn,lu′
)

+

Cku,u′
(
qn,lu′ + 1

)
rww

(
εn,lu′ − Tc

)]
(9)

Where ∀α(u′):

C−1
u,u′ (q) =

min
(
q,NcN

(u)
f

)
−1∑

p=0

cu (p) cu′ (p− q) (10)

If α(u′) < 1:

C0
u,u′ (q) =

NcN
(u)
f
−1∑

p=min
(
q,NcN

(u)
f

) cu (p) cu′ (p− q) (11)

If α(u′) ≥ 1 and for 0 ≤ k ≤
⌈
α(u′)

⌉
− 1 then:

Cku,u′ (q) =

min

(
q+(k+1)NcN

(u′)
f

,NcN
(u)
f

)
−1

∑

p=q+kNcN
(u′)
f

cu (p)×

cu′
(
p− q − kNcN (u′)

f

)
(12)

The proof is provided in Appendix VII-A.

B. Variance of zmai with multiple rate
Thanks to the Lemma 1 and by averaging over the ampli-

tudes A, symbols du, asynchronism θu and delays τu as in
[5], the variance of the MAI w.r.t. the THC can be written as:

V
(u)
mai|c = Λ

Nu∑

u′=1
u′ 6=u

Pu′

N
(u′)
f

NcN
(u′)
f
−1∑

q=0

⌈
α(u′)

⌉
−1∑

k=−1

(
Cku,u′ (q)

)2
,

(13)
with Λ = ρww(0)σ4

a

∑Lr
l=1

∑Np
n=1 (λ/(λ+ 1/γ))n+l

/
(
3N4

c Tc
)

where ρww (0) =
∫∞
−∞ r2

ww(t)dt and λ is the channel path
density [5], [13]. In order to express the global average
multiple access interference, we need to average over the
codes and the following theorem holds [1]:

Theorem 1 (Variance of zmai) In multi-rate TH-UWB com-
munications with PAM signals, the variance of the MAI
averaging over the codes is:

V
(u)
mai = Λ

Nu∑

u′=1
u′ 6=u

Pu′

N
(u′)
f

Mc (u, u′) , (14)

with, if α(u′) ≥ 1 then Mc (u, u′) := M+
c (u, u′):

M+
c (u, u′) = N

(u′)
f

[
3Nc

(
N2
c +NcN

(u′)
f − 1

)
N

(u)
f

−N2
cN

(u′)
f

2
+ 1
]
,(15)

and if α(u′) < 1 then Mc (u, u′) := M−c (u, u′):

M−c (u, u′) = N
(u)
f

[
3Nc

(
N2
c +NcN

(u)
f − 1

)
N

(u′)
f

−N2
cN

(u)
f

2
+ 1
]
. (16)

A sketch of proof is provided in Appendix VII-B.
From Lemma 1 and Theorem 1, the signal to interference

and noise ratio (SINR) of the user u can be written as
in eq. (17) at the top of the next page. We define Gu =
Ea,τ

[∑Lr
l=1

(
Alu
)2]

and Vn = σ2
a

∑Lr
l=1 (λ/(λ+ 1/γ))l is the

noise enhancement due to the rake receiver, moreover N0 is
the one-sided noise power spectral density (PSD). We also
define the following sets [1]: I+ =

{
u′ | α(u′) ≥ 1, u′ 6= u

}

and I− =
{
v | α(v) < 1

}
, such as I+ ∪ I− = I and

I+∩I− = ∅. Fig. 1 illustrates the second order moments of the
intercode correlation w.r.t. the delay q of the intercorrelation
for α(u′) = 3/8 < 1 (Fig. 1(a)) and for α(u′) = 8/3 ≥ 1 (Fig.
1(b)). When α(u′) = 3/8, according to Lemma 1 there are two
intercorrelation terms, i.e. C−1

u,u′(q), C0
u,u′(q) and four terms,

i.e. C−1
u,u′(q), C0

u,u′(q), C1
u,u′(q), C2

u,u′(q) for α(u′) = 8/3.
The THC are randomly selected from a binomial random
variable, it means the pulse position in the code structure is
selected randomly, according to a Bernoulli variable for each
pulse (cf. the proof of the Theorem 1 and [14]). Fig. 2 shows
the SINR of the user 1, assumed to be the user of interest,
evaluated with eq. (17) compared to the SINR in simulation
w.r.t. the number of users. The number of frames of the user
1 is N (1)

f = 8 and the number of frames of the interfering
users are respectively: N (2)

f = 3 for the user 2, N (3)
f = 4

for the user 3 and so on until N (11)
f = 12 for the user 11. A

perfect agreement between the theory and the simulation can
be observed in Figs. 1 and 2 which validates our findings.

In Fig. 3, the average SINR is plotted for user 1 assumed to
be the user of interest and considering another interfering user
in the network, i.e. user 2. The SINR is plotted according to
some values of the number of frames of the interfering user,
i.e. N (2)

f = 1, 3, 5, 13. The number of chips is fixed to Nc =
13 and the chip duration is Tc = 5 ns. The channel model
used is the one described in [5] with λ = 2.1 ns−1, γ = 12
ns and Np = 25. One can observe that the SINR of user 1
increases as N (1)

f increases as expected because of the useful

power dependence on N (1)
f

2
. We also observe a higher SINR

sensibility to the number of frames of the interferer for higher
values of N (1)

f than for lower values. Since we have provided
theoretical background for multiuser multi-rate SINR, we will
now move on the suitable processing gain allocation.

IV. ADAPTIVE RATE ALLOCATION SCHEMES

In this section, we study the multiple rate allocation problem
in order to maximize the global throughput for TH-UWB
systems in the uplink scenario. First, the integer constraint on
N

(u)
f is relaxed yielding to a signomial programming problem.

In a second step, the integer constraint is taken into account
and the optimization problem is solved via a BB algorithm.
We finally propose a simpler heuristic for the adaptive rate
allocation.
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SINRu

(
N

(u)
f

)
=

PuGuN
(u)
f

2

Λ

(
∑
u′∈I+
u′ 6=u

Pu′

N
(u′)
f

M+
c (u, u′) +

∑
v∈I−

Pv
N

(v)
f

M−c (u, v)

)
+

N0N
(u)
f

2 Vn

(17)
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A. Signomial Programming

The effective throughput of a user u is Du =
1/
(
NcN

(u)
f Tc

)
provided that its SINR is greater than a

threshold Γmin [1], [7]. The maximization of the global
throughput, i.e. max

∑
uDu, subject to an SINR constraint

for each user can be written as in [1]. This problem is highly
non-convex, essentially because of the SINR requirements, and
combines continuous constraints (i.e. SINR constraints) and
integer constraints (i.e. N (u)

f ∈ {1, · · · , Nc}). This combina-

tion induces an exponential complexity, i.e. O
(

(Nc)
Nu
)

, of
the optimal search and cannot be envisaged for large problem
(i.e. large Nc and Nu).

Actually, the cost function of the optimization problem in
[1], i.e. max

∑Nu
u=1 1/N (u)

f can be easily proved to be equiva-
lent to min

∏Nu
u=1N

(u)
f yielding to the modified optimization

problem:

min
Nf

Nu∏

u=1

N
(u)
f , s.t.

(c1) if Pu > 0 then Γmin

SINRu
(
N

(u)
f

) ≤ 1,∀u ∈ I

(c2) N
(u)
f ≥ 1,∀u ∈ I,

(c3) N
(u)
f ≤ Nc,∀u ∈ I,

(c4) N
(u)
f ∈ N,∀u ∈ I,

(18)

where I is the set of the transmitting users, Nf =[
N

(1)
f , · · · , N (Nu)

f

]T
is a vector representing the number of

frames for each user. The optimization problem stated in (18)
is a mixed integer signomial programming (MISP) problem
for which a global optimal solution cannot be found efficiently
[15]. The problem is referred as signomial because of sum-
mation of products with positive and negative coefficients in
the constraint (c1) [15]. The constraint (c3) refers to the work
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βu =
ru

(
N̂f

)

∏Nu
j=1

(
N

(j)
f

)αu and αu =
N2
c Γmin(u)Λ

[∑
v∈I− PvN

(v)
f

−1
N

(u)
f − 2

∑
u′∈I+ Pu′N

(u′)
f

2
N

(u)
f

−2
]

ru

(
N̂f

) ∀u ∈ I (19)

pu

(
N̂f

)
= 3N2

c Γmin(u)Λ
∑

u′∈I+
Pu′N

(u′)
f N

(u)
f

−1
+ 3Γmin(u)ΛNc

(
N2
c − 1

)

 ∑

u′∈I+
Pu′ +

∑

v∈I−
Pv


N

(u)
f

−1

+ Γmin(u)Λ
∑

u′∈I+
Pu′N

(u)
f

−2
+ Γmin(u)Λ

∑

v∈I−
PvN

(v)
f

−1
N

(u)
f

−1
+ 3Γmin(u)ΛN2

c

∑

v∈I−
Pv + Γmin

N0Vn
2

N
(u)
f

−1

(20)

of Le Martret et al. in [5] who have shown that there exists
rigorous algebraic conditions to minimize the multiple access
variance of pair of codes and in particular Nf should not be
greater than Nc. The problem in (18) can be converted locally
in a geometric programming optimization problem by relaxing
the integer constraint on N (u)

f .

Proposition 1 The MISP optimization problem stated in (18)
can be locally approximated by the following geometric pro-
gramming problem (GPP):

min
Nf

Nu∏

u=1

N
(u)
f , s.t.

(c̃1) if Pu > 0 then
pu(N̂f)

βu
∏Nu

j=1

(
N̂

(j)
f

)αu ≤ 1,∀u ∈ I

(c2) N
(u)
f ≥ 1,∀u ∈ I,

(c3) N
(u)
f ≤ Nc,∀u ∈ I,

(21)
βu
∏Nu
j=1

(
N̂

(j)
f

)αu
is the best local monomial approximation

around N̂f of the posynomial ru
(
N̂f

)
given as:

ru

(
N̂f

)
= 1 +N2

c Γmin(u)Λ
∑

u′∈I+
Pu′N

(u′)
f

2
N

(u)
f

−2
+

N2
c Γmin(u)Λ

∑

v∈I−
PvN

(v)
f

−1
N

(u)
f

where Γmin(u) = Γmin/ (PuGu) and the parameters βu and
αu of the monomial approximation are given in eq. (19) on the
top of the page. Moreover, pu

(
N̂f

)
is a posynomial whose

the expression is given in eq. (20) on the top of the page.

A proof is given in Appendix VII-C.
The constraint (c̃1) in Proposition 1 is now a posynomial

constraint (the ratio between a posynomial and a monomial
is a posynomial). Hence, if N (u)

f is allowed to be real valued
in [1, Nc], the optimization problem in (21) is a geometric
programming problem and can be solved very efficiently with
modern techniques [15]. This allows us to find a local optimal
allocation of N (u)

f ∀u ∈ I . However, since (21) is only a
local approximation of the problem (18), the optimal point

N̂f returns by the resolution of (21) cannot be considered as
valid if it is too far from the current guess [15]. Hence, additive
constraints on the validity of the solution need to be added,
leading to an iterative resolution of (21). It can be stated by
the following problem:

min
Nf

Nu∏

u=1

N
(u)
f , s.t.

(c̃1) if Pu > 0 then
pu(N̂f)

βu
∏Nu

j=1

(
N̂

(j)
f

)αu ≤ 1,∀u ∈ I

(c2) N
(u)
f ≥ 1,∀u ∈ I,

(c3) N
(u)
f ≤ Nc,∀u ∈ I,

(c̃4) (1− η) N̂ (u)
f ≤ N (u)

f ≤ (1 + η) N̂ (u)
f ,∀u ∈ I

(22)
where η controls the validity of the next guess; it ensures the
next estimation of the solution to be near to the current guess,
i.e. N̂f . In order to solve the optimization problem stated in
(22), we propose the adaptive rate allocation with signomial
programming (ARASP) procedure stated in the algorithm 1.
The function solveGP is a procedure solving geometric pro-
blems very efficiently with traditional convex solver tools [15],
[16] 2. The algorithm starts once a feasible processing gain
vector is found, i.e. a vector Nf making the problem (22)
feasible. Once the problem is feasible, the algorithm iterates
until the convergence (step 8). It is worth noting that even
though the problem was feasible, it can become infeasible, i.e.
step 11. Indeed, not only the problem in (18) is signomial but
it also contains high non-linearities in the SINR constraints
which can make the problem infeasible even though it was
feasible at first. Let us focus on this issue for a while and
in particular on the SINR expression in (17). We remark
that two subsets I+ and I− are involved at the denominator.
According to the range of these subsets the SINR expression
changes. Moreover, these subsets are defined according to
the N

(u′)
f values of the interfering users u′ compared to

the N
(u)
f of the user of interest u. It means that while the

N
(u)
f value is updated for each user, the SINR expression

2We have used the tools developed by Boyd et al in
order to solve the convex problem related to (22) available at
http://www.stanford.edu/ boyd/index.html
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is changing as well as the constraints (c̃1) in (22). In other
words, the coefficients of the posynomial constraints (c̃1) in
(22) are changing from one iteration to another implying non
linearities in the algorithm. This property is very critical and
prevents to find the global optimal solution surely. However,
the proposed algorithm approaches the optimal solution by a
local approximation of the signomial constraint combined with
an iterative procedure in order to converge toward a suitable
solution.

Algorithm 1 Adaptive Rate Allocation with Signomial Pro-
gramming (ARASP)
Require: Nu ≥ 1, Nc > 1,
Ensure: Nf ∈ R allocation for feasible problems

1: Initialize M , η, ε, i = 0 and find a feasible N̂f . A =
{u | SINRu < Γmin}

2: Nf (1)← N̂f

3: [N̂f , status]← solveGP (Nf (1),SINRu)
4: if status = infeasible then
5: return Nf (1) and quit
6: else if status = solved then
7: update SINRu and A with N̂f

8: while
(

maxu
∣∣∣N̂f −Nf

∣∣∣ > ε | A 6= ∅
)

& i ≤M do
9: Nf ← N̂f

10: [N̂f , status]← solveGP (Nf ,SINRu), i = i+ 1
11: if status = infeasible then
12: N̂f ← Nf , i = M + 1
13: end if
14: update SINRu and A
15: end while
16: if status = infeasible then
17: return Nf (1) and quit
18: else
19: Nf ← N̂f

20: end if
21: end if

B. Branch and Bound Algorithm

The solution obtained with the ARASP algorithm belongs to
R which is not suitable for practical systems. Indeed, the pro-
cessing gain Nf for each user needs to be an integer belonging
to {1, · · · , Nc} as stated by the constraint (c4) in (18). The
well-known branch and bound (BB) algorithm is particularly
adapted to this kind of problem, i.e. integer programming
problem [17]. The BB algorithm is not a heuristic in the
sense that it provides a provable upper and lower bound of
the optimal solution [15]. However, we are still dealing with
non linearities in our problem and we are hence facing up to
the same issue than the one exposed above which prevents
to find the global optimal solution surely. However, the BB
algorithm remains a benchmark to evaluate other heuristics.

The BB principle is firstly to solve the signomial pro-
gramming problem in (22) for which the integer constraint
in (18) has been released leading to the solution N∗f ∈ R.
For a given non-integer entry in the vector N∗f , let say N (j)

f ,

two subproblems are created, i.e. P1 and P2, the former with
the additional constraint N (j)

f ≤
⌊
N

(j)∗

f

⌋
and the latter with

N
(j)
f ≥

⌈
N

(j)∗

f

⌉
3. This operation is repeated until the vector

Nf only contains integer entries. We propose the adaptive rate
allocation with branch and bound and signomial programming
(ARABBSP) stated in the algorithm 2.

Algorithm 2 Adaptive Rate Allocation with Branch and
Bound and Signomial Programming (ARABBSP)
Require: Nu ≥ 1, Nc > 1,
Ensure: Nf ∈ N allocation for feasible problems

1: find a feasible N̂f

2: create P =
{

min
∏
uN

(u)
f , s.t. constraints in (22)

}

3: while P 6= ∅ do
4: solve all problems in P with ARASP
5: remove all infeasible problems from P
6: if all solutions ∈ N then
7: Choose the one minimizing

∏
uN

(u)
f

8: else if for a given Pi ∈ P , at least one N (j)
f is non-

integer then
9: remove Pi from P

10: create the new problem Pi with the constraints in P
plus N (j)

f ≤
⌊
N

(j)∗

f

⌋

11: create the new problem Pi+1 with the constraints in
P plus N (j)

f ≥
⌈
N

(j)∗

f

⌉

12: end if
13: end while

The first step in the algorithm 2 (or in the ARASP algo-
rithm) is very important and the question how to find a feasible
vector in an efficient way is not trivial. A feasible vector is
typically an Nf satisfying the problem constraints, i.e. the
SINR constraints essentially. We start by allocating the same
number of frames to each user starting with Nf = 1 and
incrementing Nf up to Nc until all the SINR constraints are
satisfied. If some users do not fulfill their QoS constraints at
the end of this procedure, a random search on Nf is performed
until the constraints are satisfied or a maximum number of
iterations is achieved. In this case, the search is stopped and a
user is removed from the resource allocation controller and the
procedure reboots. We draw the reader’s attention that there is
no general method to find a feasible point due to the mixed
signomial and integer nature of the problem4.

C. Adaptive rate allocation heuristic

Branch and bound procedures give good results in general
but remain often relatively complex. The complexity may grow
exponentially with the problem dimensions in some cases [15]
which can motivate the search for practical algorithms with
lower complexity even though their good performances cannot
be proved formally. The BB algorithm proposed above can be

3It is worth noting that N(j)∗
f

violates these new constraints
4Finding a feasible solution for very difficult problems (such as NP

problems) can be an issue
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complex and it might be worth searching for a lower complexi-
ty processing gain allocation procedure. Let us focus on the
optimization problem (18). One way to formulate the problem
is to find the minimum N

(u)
f for each user such as they satisfy

their SINR constraint, i.e. (c1) in (18). The constraint (c1) in
(18) can be rewritten in order to be a third degree equation
in N (u)

f ,∀u ∈ {1, · · · , Nu} as expressed in [1, eq. (18)] and
reported in eq. (23) in the paper for the sake of readability.
By choosing the minimum N

(u)
f solving this equation for each

user, we propose the following heuristic stated in Algorithm
3 for the processing gain allocation procedure.

Algorithm 3 Adaptive Rate Allocation Algorithm (ARAA)
Require: Nu ≥ 1, Nc > 1,
Ensure: Assign valid number of frames to users.

1: Initialize M , I = {1, · · · , Nu}, Nf = [1, · · · , 1]. Sort I
such that P1 > · · · > PNu

2: N
′
u ← Nu, i = 0

3: while SINRu < Γmin ∀u ∈ I do
4: u = N

′
u, i = i+ 1

5: while u ≥ 1 do
6: N

(u)
f ← solve F

(
N

(u)
f , N

(u′)
f

)
u′ 6=u

≥ 0

7: if N
(u)
f > Nc or N (u)

f < 1 then
8: N

′
u ← N

′
u − 1 and remove u from I

9: u = N
′
u and ∀u ∈ I,N (u)

f = 1
10: else if i > M then
11: N

′
u ← N

′
u − 1 and remove N

′
u from I

12: u = N
′
u and ∀u ∈ I,N (u)

f = 1, i = 0
13: else
14: u = u− 1
15: end if
16: end while
17: Update SINRu ∀u ∈ I
18: end while

The algorithm starts by allocating the minimum Nf to each
user, i.e. N (u)

f = 1,∀u ∈ I and by sorting the users in
decreasing order according to the received power at the BS.
The SINR of each user is then computed. If some users do not
fulfill their SINR constraint, the number of frames of each user
is updated starting by the farthest user from the BS because it
experiences the lowest SINR a priori. The minimum Nf for
this user is computed by solving the inequality in step 6 of the
algorithm ARAA5. If a valid solution is found, the algorithm
goes to the next user and so on. If no solution is found, the
user is removed from the resource allocation controller and the
algorithm reboots. Once all the users’ processing gains have
been updated, the SINR of each user is checked, if all SINR
constraints are fulfilled the algorithm stops. If not, the last user
is removed from the network and the algorithm restarts. This
algorithm has a linear complexity with the number of users
and hence the Nf allocation is very simple.

5The expression of F
(
N

(u)
f

, N
(u′)
f

)
u′ 6=u

can be found in [1, eq. (18)]

and has been reported in eq. (23) at the top of the next page.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we investigate the relative performances
of the three algorithms proposed in this paper i.e. ARASP,
ARABBSP and ARAA. The performances are investigated in
terms of the global throughput and the average starvation rate,
i.e. the average rate of users without resources. The channel
and system parameters used in the simulations are summarized
in Table I. The cell is assumed to be a square of side-length
normalized to the unity and the base station is assumed to
occupy the center of the cell. The cartesian coordinates of
each user, i.e. xu and yu, are randomly selected from a uniform
distribution in

[
− 1

2 ,
1
2

]
. We assume that the path loss exponent

is 2 as reminded in Table I (under the notation PL) and
hence the received power after the path loss propagation is
proportional to 1/

(
x2
u + y2

u

)
.

In Fig. 4, the normalized average throughput and the average
starved user rate for the ARASP, ARABBSP and ARAA
algorithms are investigated w.r.t. the number of users Nu
labeled on the number of chips Nc. The normalized throughput
is the global throughput of the cell, in Mbps, normalized
w.r.t. the throughput which would be achieved if all users
would transmit at their maximum data rate without any QoS
constraint. While the average starved user rates are of the same
order of magnitude between the different algorithms for a same
number of chips, as it can be inferred from Fig. 4(b), there
is an interesting behavior of the throughput of the ARASP
and ARABBSP revealed by Fig. 4(a). We could first think
that since the ARASP solves the allocation problem in R,
the average throughput obtained would be greater than the
throughput of the ARAA. However, if the number of users
and the number of chips are of the same order of magnitude,
e.g. Nc = 9 and Nu = 9, then the throughput of the ARASP
falls below the throughput of the ARAA and increases again
for an increasing number of users. This non expected and
interesting behavior can be explained by the fact that the
average Nf value per user is greater for the ARASP than for
the ARAA, as illustrated in Fig. 5 and hence leads to a lower
average throughput. We remind that the ARASP algorithm
(and hence ARABBSP) needs to be initialized by a feasible
Nf (cf. Section IV). This vector is generally of the form
Nf = q · 1, where q ∈ {1, · · · , Nc} and 1 is a vector with all
entries are equal to one. It leads to a higher average number
of frames per user compared to the ARAA algorithm which
starts with Nf = 1 and computes the minimal Nf for each
user. Moreover, the problem can start from a feasible point but
can become infeasible as the relative values of N (u)

f change
between the users. This behavior is due to the non linearities
involved in the problem (22) as previously discussed in Section
IV. Moreover, let us remind that the original problem is far
from convex and the ARASP is based on a local convex
approximation of the problem. Hence, there is no reason that

Parameters λ γ Np Lr Tc Γmin PL
Values 2.1 ns−1 12 ns 25 3 5 ns 10 dB 2

TABLE I
SYSTEM PARAMETERS USED IN THE SIMULATIONS
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F
(
N

(u)
f , N

(u′)
f

)
u′ 6=u

= N2
cΛΓmin

∑

v∈I−

Pv

N
(v)
f

N
(u)
f

3
+


PuGu − 3N2

cΛΓmin

∑

v∈I−
Pv


N

(u)
f

2
− Γmin ×





Λ



∑

v∈I−

(
3N3

c − 3Nc +
1

N
(v)
f

)
Pv + 3Nc

∑

u′∈I+
u′ 6=u

(
NcN

(u′)
f +N2

c − 1
)
Pu′




+
N0Vn

2

}
N

(u)
f + ΛΓmin

∑

u′∈I+
u′ 6=u

(
N2
cN

(u′)
f

2
− 1
)
Pu′ (23)
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Fig. 4. Normalized Average Throughput and Average Starvation Rate w.r.t.
the number of users Nu and labeled on Nc

a good heuristic cannot be better than the ARASP.
The behavior of the ARABBSP is similar to the ARASP

since the former is derived from the later. However the average
throughput of the ARABBSP is lower than the throughput of
the ARASP since the set of solutions belongs to N for the
former instead of R for the later. For Nc = 5, the throughput
of the ARASP is slightly above the one of the ARAA while the
throughput of the ARABBSP is slightly below the ARAA. For
higher number of chips, e.g. Nc = 9 or Nc = 13, the ARASP
outperforms the ARAA when Nu < Nc but the behavior is
inverted for Nu ≥ Nc. But in any cases, the BB algorithm
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Fig. 5. Average Nf allocated per user w.r.t. the number of users and labeled
on Nc

(i.e. ARABBSP) does not perform better than the ARAA. We
can observe the same kind of behaviors in Fig. 6 where the
average normalized throughput, Fig. 6(a), and the starvation
rate, Fig. 6(b), have been plotted w.r.t. the number of chips
Nc and labeled on the number of users Nu. The throughput of
the ARASP suddenly falls below the throughput of the ARAA
when Nu and Nc are of the same order of magnitude, excepted
for Nu = 5 for which there is no crossover point; the ARASP
outperforms the ARAA which outperforms the ARABBSP. We
also draw the reader’s attention that the algorithms presented
above can be applied for heterogeneous QoS requirements
between users, i.e. when different SINR thresholds among
users are considered, and all the materials developed in this
paper remain valid in the aforementioned case.

Moreover, Γmin has an impact on the network performance.
For instance, a lower Γmin would imply that more users in
average would be satisfied and the user starvation rate would
be lower. An opposite conclusion would arise for an higher
Γmin requirement. However, Γmin is not a parameter which
can be optimized; it is a constraint of the system, it is a
QoS requirement for each user or a set of users. The system
has to perform the resource allocation procedure in order to
optimize the objective function while satisfying in the same
time the SINR requirement for all users. If the problem is too
constrained, all the users cannot be satisfied and some of them
are in starvation.

The ARASP is an iterative procedure calling a geometric
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programming solver at each iteration. The resolution of geo-
metric programming problems is now quite efficient with in-
terior point-based methods and can be solved in a polynomial
time with the problem size, i.e. the number of users, in the
worst case. The number of iterations depends on the precision
required and can be fixed off-line. The ARABBSP is based on
the ARASP since the latter is called in the former (cf. step 4
in Algorithm 2). Moreover, the branch and bound procedure
itself has a higher complexity which can grow exponentially,
in the worst case, with the number of users. However, it may
converge quickly if the initial guess is good. On the other
hand, the ARAA has a linear complexity with the number of
users and hence is very simple.

From a more practical point of view, the multi-rate alloca-
tion is performed at the base station. The resource allocation
controller needs to evaluate the average SINR of each user
which implies to know the average received power i.e. Pu ∀u,
the current number of frames for each user i.e. N (u)

f ∀u, the
SINR requirement for each user i.e. Γmin and the basic channel
parameters obtained in the channel estimation procedure i.e.
λ, γ and Np. All these parameters can be obtained during
the first channel estimation and signal acquisition procedure
provided that the time selectivity of the channel is slow enough
to allow the resource allocation procedure to be performed and
the results to be sent back to mobile stations. Other parameters

are obviously known at the base station since they are full-part
of the system, e.g. Nc, Lr. A feedback channel is also needed
between the base station and the mobile stations in order to
communicate the number of frames N (u)

f to the user u.

VI. CONCLUSIONS

In this paper, multi-rate resource allocation for TH-UWB
wireless communications have been investigated. We have first
provided a closed-form expression for the average multiple
access interference for TH-UWB multi-rate systems. The
closed form expression has been derived by extending the
intercode cross-correlation model to the multi-rate context
making the multiple access interference model more general
than those provided in the existing literature. The multi-rate
resource allocation problem has been revisited by expressing
the processing gain allocation issue via a general signomial
programming problem. We have proved that the signomial
problem can be locally approximated by a geometric pro-
gramming problem which can be solved efficiently. From
this, an adaptive rate allocation procedure with signomial
programming has been provided as well as a branch and
band based algorithm allowing to find processing gains as
integers. We finally proposed a very simple adaptive rate
allocation procedure with linear complexity. The performances
of these new resource allocation algorithms have been com-
pared according to their maximum throughput and average
starvation rate. The investigations have shown that the ARAA
algorithm outperforms the branch and band algorithm in both
average throughput and average starvation rate with a lower
computational complexity.

VII. APPENDIX

A. Proof of Lemma 1

The autocorrelation function rww in (8) is non zero if and
only if:

−Trww ≤
(
Qn,lu′ + i

)
T (u′)
s +

(
qn,lu′ + j − ju

)
Tc+ε

n,l
u′ ≤ Trww

(24)
with Trww denotes the support of the function rww. Moreover,
0 ≤ εn,lu′ < Tc hence (24) can be changed in:

−Trww−Tc <
(
Qn,lu′ + i

)
T (u′)
s +

(
qn,lu′ + j − ju

)
Tc ≤ Trww

(25)
Since Trww < Tc, from (25) we can assess:

−2Tc <
(
Qn,lu′ + i

)
T (u′)
s +

(
qn,lu′ + j − ju

)
Tc < Tc (26)

Let us consider the two cases i) α(u′) < 1 and ii) α(u′) ≥ 1.
Let us start with i) α(u′) < 1. We have

⌈
α(u′)

⌉
− 1 = 0.

Hence, knowing that −2 < Qn,lu′ + i ≤
⌈
α(u′)

⌉
− 1, it

follows that 1) i = −1 − Qn,lu′ or 2) i = −Qn,lu′ . Let us
continue with the first case for which (26) becomes −2Tc <(
qn,lu′ + j − ju −NcN (u′)

f

)
Tc < Tc. From this, it follows

that:

qn,lu′ + j − ju −NcN (u′)
f =

{
0
−1 (27)
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Hence, according to these latter cases, (8) can be written as:

yn,lu′,u (θu′) = du′
(
−Qn,lu′ − 1

)

×



NcN

(u′)
f
−1∑

j=0

NcN
(u)
f
−1∑

ju=0

cu′(j)cu(ju)rww
(
εn,lu′
)

+

NcN
(u′)
f
−1∑

j=0

NcN
(u)
f
−1∑

ju=0

cu′(j)cu(ju)×

rww

(
εn,lu′ − Tc

)]
. (28)

Let us consider the first case in (27). Then we have j =
ju + NcN

(u′)
f − qn,lu′ . Considering 0 ≤ ju ≤ NcN

(u)
f − 1,

the following inequalities hold:

NcN
(u′)
f − qn,lu′ ≤ j ≤

(
α(u′) + 1

)
NcN

(u′)
f − 1− qn,lu′ . (29)

Moreover j ≤ NcN
(u′)
f − 1, hence NcN

(u′)
f − qn,lu′ ≤ j ≤

NcN
(u′)
f − 1. We also have ju = j − NcN

(u′)
f + qn,lu′ and

hence ju ∈
{

0, · · · , qn,lu′ − 1
}

. It comes:

NcN
(u′)
f
−1∑

j=0

NcN
(u)
f
−1∑

ju=0

cu′(j)cu(ju) =
∑

ju

cu(ju)×

cu′
(
ju − qn,lu′ +NcN

(u′)
f

)
(30)

and cu′ is NcN
(u′)
f periodic and cu(ju) = 0 if ju > NcN

(u)
f −

1. We finally have:

NcN
(u′)
f
−1∑

j=0

NcN
(u)
f
−1∑

ju=0

cu′(j)cu(ju) =

min
(
qn,l
u′ ,NcN

(u)
f

)
−1∑

ju=0

cu (ju) cu′
(
ju − qn,lu′

)
:= C−1

u,u′

(
qn,lu′
)
. (31)

When the second case in (27) is considered, the same kind of
results are derived leading to C−1

u,u′

(
qn,lu′ + 1

)
. Considering

the second case above named 2), i.e. Qn,lu′ + i = 0, and similar
steps than above, leads to the definition of C0

u,u′ in eq. (11)
which closes the case i) α(u′) < 1.

Let us now describe briefly the steps for ii) α(u′) ≥ 1. In this
case, Qn,lu′ + i = k, k ∈

{
−1, · · · ,

⌈
α(u′)

⌉
− 1
}

. The inequa-

lities (26) become −2Tc <
(
qn,lu′ + j − ju + kNcN

(u′)
f

)
Tc <

Tc. From this, it follows that:

qn,lu′ + j − ju + kNcN
(u′)
f =

{
0
−1 (32)

Eq. (8) can now be written as:

yn,lu′,u (θu′) =

⌈
α(u′)

⌉
−1∑

k=−1

du′
(
k −Qn,lu′

)
×



NcN

(u′)
f
−1∑

j=0

NcN
(u)
f
−1∑

ju=0

cu′(j)cu(ju)rww
(
εn,lu′
)

+

NcN
(u′)
f
−1∑

j=0

NcN
(u)
f
−1∑

ju=0

cu′(j)cu(ju)rww
(
εn,lu′ − Tc

)

 . (33)

Let us consider the first case in (32). Then we have j = ju −
kNcN

(u′)
f − qn,lu′ . Considering 0 ≤ ju ≤ NcN

(u)
f − 1, the

following inequalities hold:

−kNcN (u′)
f −qn,lu′ ≤ j ≤ NcN

(u)
f −kNcN

(u′)
f −qn,lu′ −1. (34)

The case Qn,lu′ + i = −1 has already been discussed above
and in the following only the cases k ≥ 0 will be considered.
Moreover, j ≥ 0 hence 0 ≤ j ≤ NcN

(u)
f − kNcN

(u′)
f −

qn,lu′ − 1. We also have ju = j + kNcN
(u′)
f + qn,lu′ and

hence ju ∈
{
qn,lu′ + kNcN

(u′)
f , · · · , NcN (u)

f − 1
}

. The sym-

bol du′
(
k −Qn,lu′

)
is related to the intercode interference:

NcN
(u′)
f
−1∑

j=0

NcN
(u)
f
−1∑

ju=0

cu′(j)cu(ju) =
∑

ju

cu(ju)×

cu′
(
ju − qn,lu′ − kNcN

(u′)
f

)
. (35)

If ju ≥ qn,lu′ + (k + 1)NcN
(u′)
f , the intercode interference

term is related to the symbol du′
(
k + 1−Qn,lu′

)
. Due to the

definition range of qn,lu′ , if qn,lu′ +(k+1)NcN
(u′)
f ≤ NcN (u)

f −1,
it implies 0 ≤ k ≤ α(u′) − 2. For the sake of brevity, let us
consider the general case α(u′) ∈ Q∗\N∗6, we hence have
0 ≤ k ≤

⌈
α(u′)

⌉
− 3 and:

Cku,u′
(
qn,lu′
)

:=

qn,l
u′ +(k+1)NcN

(u′)
f
−1∑

ju=qn,l
u′ +kNcN

(u′)
f

cu (ju)×

cu′
(
ju − qn,lu′ − kNcN

(u′)
f

)
. (36)

For k =
⌈
α(u′)

⌉
−2, if qn,lu′ ≤

(
α(u′) −

⌊
α(u′)

⌋)
NcN

(u′)
f −1,

then (36) is used, else the upper bound of the summation is
NcN

(u)
f − 1. It follows that:

Cku,u′
(
qn,lu′
)

:=

min

(
qn,l
u′ +(k+1)NcN

(u′)
f

,NcN
(u)
f

)
−1

∑

ju=qn,l
u′ +kNcN

(u′)
f

cu (ju)×

cu′
(
ju − qn,lu′ − kNcN

(u′)
f

)
. (37)

6Similar results can be derived for α(u′) ∈ N∗. The notation S∗, S being
a set, stands for S\{0}
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Ec
[
C−1
u,u′ (q)

2
]

=
min

(
q,NcN

(u)
f

)

N4
c

(
min

(
q,NcN

(u)
f

)
+N2

c − 1
)
, (38)

if α(u′) < 1:

Ec
[
C0
u,u′ (q)

2
]

=
NcN

(u)
f −min

(
q,NcN

(u)
f

)

N4
c

(
NcN

(u)
f −min

(
q,NcN

(u)
f

)
+N2

c − 1
)
, (39)

if α(u′) ≥ 1:

Ec
[
Cku,u′ (q)

2
]

=





N
(u′)
f

N3
c

(
NcN

(u′)
f +N2

c − 1
)
, 0 ≤ k ≤

⌈
α(u′)

⌉
− 3, ∀q,

N
(u′)
f

N3
c

(
NcN

(u′)
f +N2

c − 1
)
, k =

⌈
α(u′)

⌉
− 2, and q ≤

(
α(u′) −

⌊
α(u′)

⌋)
NcN

(u′)
f − 1,(

1+α(u′)−
⌊
α(u′)

⌋)
NcN

(u′)
f
−q

N4
c

((
1 + α(u′) −

⌊
α(u′)

⌋)
NcN

(u′)
f − q +N2

c − 1
)
, k =

⌈
α(u′)

⌉
− 2,

and q ≥
(
α(u′) −

⌊
α(u′)

⌋)
NcN

(u′)
f ,(

α(u′)−
⌊
α(u′)

⌋)
NcN

(u′)
f
−q

N4
c

((
α(u′) −

⌊
α(u′)

⌋)
NcN

(u′)
f − q +N2

c − 1
)
, k =

⌈
α(u′)

⌉
− 1,

and q ≤
(
α(u′) −

⌊
α(u′)

⌋)
NcN

(u′)
f − 1,

0, k =
⌈
α(u′)

⌉
− 1, and q ≥

(
α(u′) −

⌊
α(u′)

⌋)
NcN

(u′)
f

(40)

If k =
⌈
α(u′)

⌉
− 1 then (k + 1)NcN

(u′)
f > NcN

(u)
f . Hence,

the last intercorrelation term is given by:

Cku,u′
(
qn,lu′
)

:=

NcN
(u)
f
−1∑

ju=qn,l
u′ +kNcN

(u′)
f

cu (ju)×

cu′
(
ju − qn,lu′ − kNcN

(u′)
f

)
(41)

and the eq. (12) is proved and the proof is complete.

B. Sketch of proof of Theorem 1

The vector cu ∀u, is the realization of an i.i.d. random
vector whose each component is a Bernoulli random variable
with parameter p = 1/Nc [14]. Hence, Cku,u′(q) is a bino-
mial random variable depending on k and on α(u′). For the
reader’s convenience, the second order moments of Cku,u′(q),
depending on k, are expressed in (38), (39) and (40) on top of
the page. After summation on k and q, and tedious algebraic
manipulations, the expressions in Theorem 1 are obtained and
the proof is complete.

C. Proof of Proposition 1

Expanding the constraint (c1) in (18) into a sum of mono-
mials of the form N

(u′)
f

α1
N

(u)
f

α2
, with u, u′ ∈ I and

(α1, α2) ∈ R2, (c1) can be re-arranged as:

pu (Nf )− qu (Nf ) ≤ 1, ∀u ∈ I, (42)

where pu and qu being two posynomials in a standard form
[15], pu (Nf ) is expressed as in eq. (20) and qu is:

qu (Nf ) = N2
c Γmin(u)Λ

∑

u′∈I+
Pu′N

(u′)
f

2
N

(u)
f

−2
+

N2
c Γmin(u)Λ

∑

v∈I−
PvN

(v)
f

−1
N

(u)
f . (43)

By simply moving the posynomial qu on the right side of the
inequality (42), (c1) can be expressed as pu (Nf ) ≤ ru (Nf )
with ru is given as in Proposition 1.

The problem in this form remains signomial. Let us
consider the best monomial approximation fu

(
N̂f

)
=

βu
∏Nu
j=1

(
N̂

(j)
f

)αu
of the posynomial ru

(
N̂f

)
[15]. Around

the point N̂f , we have:





fu

(
N̂f

)
= ru

(
N̂f

)
∀u ∈ I

∇
N

(u)
f

fu

(
N̂f

)
= ∇

N
(u)
f

ru

(
N̂f

)
∀u ∈ I

(44)

From the first equality, we can express βu as in eq. (19).
Taking the partial derivative in the second equality we get
∀u ∈ I:

αuβuN
(u)
f

−1
Nu∏

j=1

(
N

(j)
f

)αu
= N2

c Γmin(u)Λ×


∑

v∈I−
PcN

(v)
f

−1
− 2

∑

u′∈I+
Pu′N

(u′)
f

2
N

(u)
f

−3


 . (45)

Substituting the expression of βu in eq. (19) in (45), the
expression of αu in eq. (19) is obtained and the proof is
complete.
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