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Abstract—in the development of equalization algorithms forun-  discretization by using an analog filter matched to the overall
known channels, the effects of the sampling rate and the analog channel impulse response and sampling its output at the symbol
receive prefilter prior to discretization of the received signal are rate provides a set of sufficient statistics for maximum likeli-
often overlooked. In this paper, these effects are investigated. The hood timati fthe t itted Thi
relationship between the fractionally spaced output samples of a 0od sequence estimation o . € transmi _e Sequence_‘ IS re-
noise-limiting prefilter and the symbol spaced output samples of a Sult has been used as the basis for essentially all works in equal-
matched filter is studied for both the time-invariant and the time- ization in justifying (at least implicitly) the use of symbol rate
varying channels. It is shown that the prefilter and the sampling discrete time models. However, in most wireless communica-
rate can have significant effects on blind equalization algorithms. 4, sy stems and nonfixed wireline communication systems, the
Thus, this paper provides a common framework for comparing h i tk L dth tched filter is. th '
different blind algorithms that are studied in the literature with channel IS not knowi prior, an ¢ ma_c_ edn e.r '_S' ere-
different sampling rates. A case study of the well-known subspace fore, unknown. As a result, a set of sufficient statistics cannot
method for blind channel identification is presented. The effects be guaranteed by discrete symbol rate samples at the receiver
of the noise color due to the prefilter on equalizers is investigated, filter output [2]. In short, it is incorrect to assert that any symbol
and the sensitivity of the truncation of the overall channel impulse 446 giscrete time channel model is functionally equivalent to an
response in terms of the mean squared error (MSE) performance tual phvsical del
criterion is investigated through numerical examples. actual physical mode " . o

The developments in fractionally spaced equalization al-
gorithms have presented an alternative to a front-end analog
matched filter. Although fractionally spaced equalizers have
been studied for a long time [3]-[6], blind fractionally spaced
equalization algorithms and their analysis are relatively more
. INTRODUCTION recent [7]-[10]. These algorithms operate on samples obtained

MAJORITY of equalization algorithms proposed in theédl & rate higher than the symbol rate, usually satisfying the
A literature for unknown channels start with a discrete tinfdyquist sampling criterion. Although there is an increase in
quadrature amplitude modulation (QAM) baseband systdhf complexity of the analog-to-digital conversion process,
model. Many of these algorithms are blind algorithms that cdese equalizers offer potentially significant advantages over
be broadly grouped into two classes depending on the samplii§ conventional symbol spaced equalizers in terms of lower
rate of the receiver: symbol spaced blind algorithms adtning phase sensitivity [4], [5], reduced noise enhancement,
fractionally spaced blind algorithms. It is commonly assumeyd additional statistical information for channel identification
that after symbol spaced or fractionally spaced sampling, tHell, [12]. In fact, the use of fractional sampling often allows
discrete noise sequence remains discretely white. the blind identification of unknown channels based only on

For symbol spaced algorithms, the functional equivalence $fcond-order statistics by providing a discrete single input
the discrete-time channel model to the actual continuous-tirffg!ltiple output (SIMO) channel model.
channel has been largely overlooked. This possible misconcepYachula and Hill [13] showed that fractionally spaced sam-
tion may be traced to an incorrect interpretation of the work ®ing in the receiver front end alleviates the need to use an

Forney [1]. There, itis shown that for arpriori known channel analog prefilter matched to the overall channel impulse response
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Fig. 1. Block diagram showing part of a data communication system.

found in [7], [9]. The prefilter presented in [14] does not adAs shown in Fig. 1, the signal¢) passes through a channel with
dress the noise coloring problem in the context of fractionallynpulse response(t) resulting in an output signal
spaced blind equalization algorithms.

In this paper, we highlight the critical role that sampling and r(t) = Z apu(t — nT) + n(t) Q)
prefiltering play in the justification and development of blind n
algorithms. In the literature, many comparisons of the fraction- oo . -
ally spaced blind equalizers have been done unfairly using difere(t) = ¢(®) = p(t) = [~ e(7)p(t — 7) dr is the finite
ferent sampling rates [15], [16]. They tend to create the impre‘nsr—“a“-]’y convolution of the_respo_n_se of the cha_mnel with the input
sion that faster sampling will generate better identification rg'anal pulsey(t), andn(t) is .add|t|ve white noise.
sults. This work is aimed at studying the validity of modeling ,LEt the front-end analog fllter.of the recever be giveryis).
under different front-end analog filterings, sampling rates, a Ezs well known that a matched filter having an impulse response

_ LT W 1 1 1
noise models by bringing the analysis of blind algorithms und? t) = “d( ft)' where *dde_note(sj (fzomple_x conjggatlo_n, 'S tfh?]
2 common framework. ront end of a receiver designed for optimum detection of the

The contributions of this paper are as follows. input data sequence [1], [18]. Symbol rate samgigs} of the
output of the matched filter are givendy

1) We generalize the results in [2] and [13] to show that an
arbitrary analog prefilterwith spectral support at least
equal to the signal part of the received signal, in conjunc-
tion with fractionally spaced sampling, yields sufficient = / r(mu*(r —t)dr (2)
statistics for maximum likelihood sequence estimation T8 t=nT

and related criteria. The relationship between the symighere( is the observation interval. These symbol rate samples

spaced output samples of a matchedfilter and the fraction); 1 form a set of sufficient statistiesfor maximum likeli-

ally spaced output samples of a noise-limiting prefiltehood sequence estimation (MLSE) and provide discrete time

is studied for both time-invariant and time-varying chanstationary samples as input to the equalizer. Clearly, the key

nels. condition needed for deriving sufficient statistics from symbol
2) We demonstrate that an analog prefilter in conjunctiqite samples is that the overall respongs is knowna priori.

with fractionally spaced sampling mbust to sampling \when the channel is not knowa priori, as in the case of

phase offsettat remove the requirement to synchronizgjing equalizers or whenever a training sequence is employed

with the symbol timing implicitin [2], [13], and [17].  for channel identification, a matched filter cannot be used,
3) We show the relationship of the analog prefilter, the samgnq we cannot rely on (2) in our receiver design to provide a

pling rate, and the noise model assumed in the equakst of sufficient statistics [2]. As a result, the performance of

ization algorithms and thus establish the analog prefiltgympol-spaced equalizers becomes dependent on the choice of
needed to satisfy the white noise SIMO blind identifiyne prefilter,

cation model. A case study of the well-known subspace
method is presented.
4) We demonstrate the effect of the noise color on linear
and decision feedback equalizers. The sensitivity of tife Background
truncation of the overall channel impulse response lengthBecause symbol rate samples of the prefilter output may not
in colored noise is shown through numerical examplespreserve sufficient statistics for channel equalization (since the
channel is usually unknown and the correct sampling phase is

Yn = 7(t) (=) ltmnr

I1l. FRACTIONALLY SPACED EQUALIZATION

ll. SYMBOL SPACED EQUALIZATION unknown), we now investigate whether faster sampling rate will
Consider a transmitted waveform admit sufficient statistics and whether this is feasible for imple-
mentation. The objective will be to show how the ideal symbol
s(t) = Z anp(t —nT) spaced samples in (2) that contain sufficient statistics can be ex-
n pressed in terms of fractionally spaced samples. This will imply
where 2Note that these samples are taken with correct sampling phase, and any
{an} input data sequence; timing offsetA (which is not a multiple of the symbol peridd) in the form of

T symbol interval; y(nT + A) usually implies loss of optimality.

. | ’ fth | haping filter: 3In fact, these symbol rate samples obtained at the output of a matched filter
p(t) impulse response of the pulse shaping filter; provide sufficient statistics for a much broader class of optimality criteria that
n symbol spaced time index. subsumes the MLSE case [18].
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that the fractionally spaced samples also contain sufficient s@iven {q,,}, let the receiver prefilteg(¢) be matched tg(¢),
tistics, but they do so under far more lax requirements than thasein

implicit in (2).
We now consider the case when the input signal pulse shaping 9(t) = ¢" (1) (6)
filter p(¢) is bandlimited td f| < 1/2T;., whereZ,. = T'/r with where
integerr > 1. In most QAM and PAM systems, = 2 can be
chosen when the transmitted pulse has a roll-off factor so that ad . 1
there is no signal energy beyopt| > 1/7'.4 = > n S'“(TT (t - mT?‘)>
Assuming that.(t) is bandlimited within|f| < 1/27;., we e
can expand:(t) in terms of its1/7;. rate sampling with some is a filter bandlimited tdf| < 1/27... Its response to the channel
arbitrary timing offsetA using the sampling theorem, i.e., outputr(¢) (1) is given by
d0= S Smc<Ti . A)) - v(t) = r(t) * ¢* (1)
m=—00 r whose fractionally spaced samples are

with fractionally spaced coefficients Um = V() lt=mT, +A

s = (8 et 5 = [0 = tdrl s
TC
wherem is the fractionally spaced time indé&hlote that the ar- _ i a r(7)
bitrary sampling phase offsét is relative to the symbol spaced e, JTCR
optimum sampling phase implicitin (2). Therefore, utilizing (3), 1
the symbol spaced matched filter output samgigs, given by x sinc <— (r— (k+m)T, — A)) dr. (7)

(2), can be written as
- This expression is analogous to the symbol spaced samples of
= / () Z o the matched filter output (4).
" reQ m Using (5), we can express (4) in terms of the fractionally
spaced samples (7)

. 1
X SII‘]C<T (r —nT —mT, — A)) dr o
%) " Yn = Um * d*_7n,|rn,=n1* it Z d;kn,vrm*—l—rn (8)
= D un | e
TER

mETee where we recall thafy,, } is the set of sufficient statistics ob-
X sinc<i (r — (nr +m)T, — A)) dr  (4) tained from sampling the matched filter output at the symbol
1, rate with the optimum sampling phase. Equation (8) shows that
{y»} and, hence, sufficient statistics can be extracted from the
Nyquist (fractional) rate samplel,,, } at output of prefilter
g(t) = ¢*(—t) and that such a relationship exists for all
Note that the discrete convolution in (8) (and: 1 decima-
The question arises about the existence and classificationigh) is a theoretical construction only and need not be explic-
general prefilterg(¢) that yield sufficient statistics under frac-itly implemented as a filter in the receiver. Such a digital filter
tionally spaced sampling. It is highly desirable that such syfg), which maps the fractionally spaced samples to the outputs
ficient statistics are maintained under arbitrary sampling phagethe symbol spaced matched filter output samples (obtained

A. Partial answers to this question in the form of explicit filtergith correct sampling phase), will be referred to as a sufficient
(special cases) and when the sampling phase is zero have hggfistics filter.

presented in the literature [2], [13]. Here, we generalize these re-
sults and give a simple demonstration that essentially any filt€r Frequency Domain Interpretation

g(t) that is invertible within the signal bandwidth and any sam- |, the previous subsection, the “choice” of prefilter (6) ap-

pling phase can be used. pears to be arbitrary. Here, we use the frequency domain to show

The key idea in what follows is to factorize the fractionallynat there are only very weak conditions on the choice of pre-
spaced overall channelimpulse respofisg } into two impulse  fjiter and therefore, in a practical sense, it can be arbitrary.

r

where we have substitutéd = 7.

B. Sufficient Statistics Prefiltering

responses—{,, } and{¢,, }—given by the discrete convolution penote D) = X, duz ™ Q) = 3. gmz ™,
andU(z) = >, umz~ ™. Thus, the sufficient statistics filter
Um = drn, * Qm- (5)
. : . . U(z)
Indeed, the so-called excess bandwidth, which is the bandwidth of the D(z) = 9)
channel beyond /2T, is typically only 10 to 30% ofl /27" and, therefore, Q(2)

considerably less thaty T [13]. . .
SWe use the convention of indexing symbol-spaced samples amdin- W”_I e)_('St as Iong aSQ(Z) does not have extra zeros on the
dexing fractionally spaced samples. unit circle that are not zeros éf(z) (where the zeros need to
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be counted with multiplicity). In other wordany bandlimited Let ¢,,, (¢t — nT — m~T) = w,,(¢) sind(1/T,)(t — nT —

filter impulse responsg(t) (6) can be used as a prefilter as longn1;)), wherey = I, /T. Thenp, »(t — (n +m~)T) is ban-

as it does not have additional spectral nulls besides those of diienited to| f| < f; + fp since it is a product o, (¢), which

true channel (nor greater multiplicity of the order of any zeris bandlimited td f| < fp, and the sinc function, which is ban-

if it does correspond). From a practical perspective, there is dlimited to| f| < f;. Therefore, using the sampling theorem

sense in having a prefilter that has spectral nulls for the reasons

that i) the channel is unknown, and therefore, any zeros of thém,» (t — (n +m~) T)

channel would be unknown; and ii) it would not be a robust filter . 1

under mismodeling. , : =D Pm,n,kSINC <f (t—(n+my)T - kL, - A))
This simple zero condition is sufficient to realize (5) and to b

retain the sufficient statistics for channel equalization. This con-

trasts with [2] and [13], wherein specific prefilters need 0 beren s an arbitrary sampling phase offset. The sampling rate
implemented. The discretization analog prefilter can be eSSeNT satisfies1 /T, > 2(f, + fp), andy k= Pm,n(t —
tially arbitrary, and any matching can be done completely digij, . m)T) T e ' m’"’ e
tally without approximation.

(14)

lt—(ntmey)T=kT, +a- Therefore

ta t—nT) = m,n, k
D. Extension to Time-Varying Channels ul ") zm:zk:z/} o

The sufficient statistics prefiltering results can be extended to _ 1 T BT — A
time-varying channels. Le{t, 7) be the impulse response of a x SN 7 (t=(ntm)T =KL —A) ).

time-varying channel, wher€t, ) denotes the response of the

channel at time due to an impulse applied at tinle- ~ [19]. ~ The matched filter output samples in this time-varying
We show here that the sufficient statistics prefilter in this cag&annel case are given by

is a time-varying filter with a spectral suppdt| < f; + fp,

where the transmit filtep(¢) is bandlimited to|f| < fs, and Yn = / r(u”(t, t —nT)dt

¢(t, ) is bandlimited ir¢ within | f| < fp. The received signal €9

r(t) equals = Dk :
P)ILAY PR

r(t) = anu(t, t —nT) +n(t (20) 1

) zn: ( ) ) X sinc<7(t —(nr+my+ k)T, — A)) dt. (15)
whereu(t, t—nT) = [ p(t—nT —7)c(t, T)dr is the con-
volution of the time-invariant transmit pulgét) with (¢, 7).
We can express this in a more general form as

This expression is similar to (4). The sequeRgg,, .. .} can
be factored into two sequences;, ». x = dm, n, k * gk, @S iN
(5). Therefore, a similar prefiltey* (—¢) can be used, but the

) bandwidth of this filter in this case isf| < 1/2T;., which is
u(t, §) = / p(§ = 7)e(t, 7)dr. (11) more than the bandwidth of the filter in (6). The sampling rate
—ee must be larger tha(f, + fp). In the rest of the paper, the

Since the transmit pulse(t) is bandlimited to|f| < f,, fora channelis assumed to be time invariant.
givent, u(t, &) is also bandlimited i within | f| < f, since it

is obtained as a convolution pf¢) andc(t, ¢) in &. Therefore, IV. DISCRETENOISE SPECTRUM UNDERSAMPLING AND
using the sampling theorem, the respon@e ¢) at a given time PREFILTERING
t can be expressed as A. Uniformly Sampled Noise Spectra

) 1 In the following, we willl assume that the received signal is
u(t, €) =D um(t) sinc i(g —m1;) (12)  pandiimited td f| < 1/7 so that samples at the ratgr’, + > 2
m provide sufficient statistics. The objective is to study whether

wheref, = 1/2T,, and there is an advantage for equalization in selectit@rger than
the minimum that is necessary to achieve sufficient statistics (in
U (1) = u(t, E)|e=mrT., - this caser = 2). Now obviously, as far as optimal detection

is concerned, higher rates provide no additional information, so
The coefficientqu,,,(¢)} provide the time variations af(¢, £) such a study would be futile. The issue here is that the equal-
até = mT;. Sincep(¢é — 7) in (11) is independent of, and, ization structures employed in blind equalization are typically
therefore, ifc(t, 7) is bandlimited in¢ within |f| < fp, then suboptimal, and the algorithms that operate on those structures
for a givené, u(t, &) is also bandlimited irt within |f| < fp. are also suboptimal.
Therefore, from (12),,(¢) is bandlimited to| f| < fp for a In the blind equalization literature, different sampling rates
givené. Usingé = t — nT', we get, from (12) are often used in simulation of blind equalization systems. How-
ever, the white noise assumption persists in almost every case,
u(t, t—nT) = Z Um(t) Sinc <i(t T — mTS)> . (13) regardless of the ghoice of(sampling _rate). In this section, we
— T show that the prefilter and the sampling rate affect the statistics
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of the noise samples. Consequently, the white noise assungpwhite or has a nonsingular covariance matrix allowing
tion and the actual value of the noise variance must be carefulifritening. This assumption has its roots in array processing
examined in performance comparisons of fractionally spacedhere the sequences at different antenna elements are assumed

blind equalizers.

to be white. In the case of fractionally spaced samples, as the

Given a prefilterg(t), the analog noise at the receive filtedata sequence can be divided imtgubsequences, each noise

output is given by

w(t) =

n(m)g(t —7)dr. (16)

If the filter output is sampled at instartq’. + A, then the sam-
pled noise is

= w(kl}) = /_C:

The autocorrelation sequence of the noise samples is

W, n(r)g(kT, + A —71)dr.  (17)

an—k,7 E{wrn 7wk r

//

(KT, — A —19) 5 (11 — 72) dri dms

g(mT, — A —1q)

N,
:70/ gmT. + A —1)g" (kT + A —71)dr
Ny [~ .
= 4—0 |G(w)|? I =RTr g (18)
s

— o0

Therefore, the power spectral density of the output noise sam-

ples is given by

0o
—jwmT,
5 Rm,, rC J "

m=—0oc
o>
No

—/ |G(1/)|2 Z M=l gy,

a dmr m=—oco
S 2
o <1/ —w — ”;17r> dv

m=—0o<

No

2 [ieorr-

:47r

2m

T,

Ny < m2r\ |’
=07 m;m ‘G <w + )‘ (19)
Hence, with7,. = T'/r, the sampled noise spectrum is
-N, i 2y 2
s,,(w):g_TO ‘G <w+m 7”)‘ . (20)

When symbol rate samples are taken witk 1, the sampled
noisewy, 1 has power spectrum

= m2m 2
G — .

m=—0o<

Sl(w) = %

5T (21)

It is clear that the oversampling facterand the prefilter re-

subsequence is white, but it is correlated with the 1 other
noise subsequences. Therefore, the requirement for the white
noise model assumption needs investigation. Specifically, the
following question is important: For a fixed receiver prefilter,
does the sampling rate affect performance? Note that the sam-
pled noise may be colored if the sampling rate is increased and
whitening the noise with a wider bandwidth prefilter increases
the noise power.

As we showed in Section IlI-B, the receiver prefilter should
have no spectral nulls in the channel passband. In additon, if the
equalizer design requirement is for white sampled neige, a
good choice of lowpass prefilter is the root raised cosine (RRC)
filter with roll-off over » /2T. The impulse response of an RRC
filter with a roll-off over 1/2T is known [20]. A generalization
of this expression for an RRC filter with a roll-off ovét +
3)/2T, whereg is a constant, gives the following expression
for the impulse response.

g(t) = T T

a . fat 1 1+t «
+TSInC<T+4>COS< T +4

a . fat 1 1+t =«

- - = ~—4 ). (22
+TS|nC<T 4) COS< T ) (22)

The constan3 controls the bandwidth of the filter. We will
call this prefilter a fractional rate uncorrelated noise (pre)filter
(FRUNF). For a fractionally spaced white noise model at the
output of the prefilter, we neefl = » — 1. However, it should

be noted that in an effort to guarantee that the fractional rate
noise is white, the prefilter may be letting additional noise into
the equalizer. The frequency response of a transmit filfer

and the FRUNF filter for = 2 andr = 3 is shown in Fig. 2.

(1—a+p) Sinc<(1 - a+/3)t>

C. Symbol Rate Uncorrelated Noise Prefilter

Clearly, the bandwidth of FRUNF is much wider than the
channel signal bandwidth for higher sampling rates. In effect,
the use of a FRUNF as receiver prefilter admits channel noise at
frequencies where there is no signal content. This indicates that
in an effort to guarantee that the fractional rate noise is white, the
receiver must let additional noise into the equalizer. Hence, the
fractional white noise assumption may have sacrificed system
performance for the sake of having a simplifying noise assump-
tion for the development of the blind algorithm. We now show
how this condition can be relaxed using a different prefilter.

sponseG(w) both contribute to the sampled noise spectrum. From Fig. 2, it is clear that the channel bandwidth is limited
Hence, their effects on the performance of blind equalizatigithin |f] < 1/T. Hence, to reduce the channel noise effect, it

algorithms should not be overlooked.

B. Fractional Rate (Uncorrelated) White Noise Filter

would make sense to design a prefilter that has bandwidth equal
to the channel bandwidth without admitting additional noise.
As has been shown in Section III-B, sufficient statistics by frac-

In many blind equalization algorithms [7]-[9], there is ofterional sampling are preserved as long as the prefilter does not
the underlying assumption that the oversampled noise sequeimteduce additional nulls in the channel passband. It is, there-
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oo error (MSE)E[|v,, — a,—a|?] SO that the optimal solution for

the equalizer taps is

f— (HHH + Rw) "y (24)

S wherehy denptes thelth column ofH, and it correspond_s to
ronFory | LNE Set of achievable delaj N + L — 2]. The parameted is
- muNFrors  Feferred to as the decision delay. The noise correlation matrix is
R, = E[ww!!]. Then, the following cases can be considered.
3 Case 1: The algorithm assumes white noise model, and the
true noise samples are white. In that case, the MSE becomes

(5]
]
==k
[
-
(53
-
-
[ 353
_

Fig. 2. Frequency response of the transmit filter and the fractional rate H H 9 -1
uncorrelated noise filter. MSE=1-hy (HH + OwI) h,.

) ] ) The computation of the equalizer taps by this approach
fore, clear that the prefilter can use the RRC filter with roll-offequires an estimate of the noise varianed,. Ob-

over1/2T so that3 = 0 in (22). _serve that if the noise power spectral density Ng, for

Nevertheless, (20) shows that the use of a lowpass RRC filigrsampling rater, ¢2 = No(r/T). Therefore, using
with roll-off frequencyl /27" will not generate a white fractional gyy# 4 ;21 — U(A + X)U#, where the columns otJ
variance. An obvious question we must answer is whether fraGyenvalues oHHH, respectively, we have

tional rate blind equalization performs better under white dis-

crete noise with higher variance or under colored discrete noisey g _ 1 3 uiha® 3 lui” hy| (25)
The answer to this question will have significant impact on the ; Ai + 02, o (Do

design of practical blind equalizers for QAM communication it
systems.

It will be observed in our numerical results (Fig. 6) that for a

given delayd, an increase in the sampling rate does not reduce

the MSE, and one of the reasons for this observation is the pres-
Many blind algorithms estimate the channelimpulse responsece ofr in the denominator of (25).

and then perform equalization [21]. If the equalizer taps are Case 2: The algorithm assumes colored noise model, and the

computed from the estimated channel impulse response, tiktre noise samples are colored. The MSE in this case is

their performance is affected by the noise model assumed.

V. EFFECTS OFNOISE MODEL ON EQUALIZATION ALGORITHMS

MSE=1-h/(HH" + R,) 'hy.

A. Linear Equalizers Note that the computation of the equalizer taps by this method

Consider a fractionally spaced linear equalizer of length  requires the knowledge of the noise correlation maRiy,
The output symbol spaced samples, } of the equalizer are  which can be obtained from the prefiltering response.
Case 3: The algorithm assumes white noise model, but the
Oy = fH(Ha +w) (23)  true noise samples are colored. The MSE then becomes

wheref = [fo, f1, -+, frv—1]* is the fractionally spaced MSE=E [|fH(Ha+W) — an,dﬂ )

equalizer tap vectdr.The matrixH is the convolution matrix

of the overall fractionally spaced channel impulse responsgsingf = (HH"” 402 1)~ 'h,, wheres?, is the estimated noise
consisting of the transmit filtes(¢), the multipath channe{t), variance assuming white noise model, the MSE expression can
and the receive prefiltej(t). The jth row of H is of the form be simplified to

[01,57 h(m)T7 01,77]7 §=lj/r],m=r—1-jmodr, n =

N —-—1-¢&0 < j < rN. The mth subchannel re- MSE =1 —hY (HHH—|—O'3)I) lhd
sponse vectoth™ equals [hu, Pntrs =+ 5 Pmgrn—1)) " s o

and h = [ho, b1, -+, her—1]* is the overall channel +hf (HHH +o§,I> (R +021)
impulse response vector. The symbol vectar equals 1

[Gry - ) Gped, - - an,_(,\,+,1_1)+1]T. The noisew is the X (HH” +a§,I) hy.

fractionally spaced noise sample vector at the output of the . _
filter g(¢). The linear equalizef minimizes the mean squaredThe fourth case of assuming a colored noise model when the
true noise samples are white is not important from a practical
viewpoint.
_ With a view to understanding the eigenstructure, the received
6The notationg-)7, (), E[], |-| anda modb denote transponse, Her- | b d
mitian transpose, expectation, floor function, and modulus, respectively. Thample vectoy may be expressed as

notation®., ;, I.,, denote am x b zero matrix and am x m identity matrix, .
respectively. y = Ha+w=Ha
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whereH = [H, vy, ---, v.n], anda = [a, b;, ---, b.n]*. spaced feedback filter (FBF) tap vector. The vedioiis 7Ny
The vectors{v;} are the eigenvectors of the correlation mataps long, and the vectfg is IV, taps long. The minimum mean
trix R,,, and{b; } are zero mean uncorrelated random variablesjuared error (MMSE) solution for the tap vecfas given by
[Karhunen—-Loeve (KL) expansion]. Then, the MSE becomeg22]

- 2 _ H -1
MSE = E UfHHé — nd] } . (26) t= (HyHy. +Rye,w)  ha (30)
whereHy. = [HL, HE]T. The jth row of matrix Hy is
Assuming the elements & to be uncorrelated, the MSE be-of the form [0, ¢, h™7 [0, ,], & = |j/r|,m = r — 1 —
comes jmodr, n=N;—1-¢, 0< 5 < 7Ny Themth subchannel
) N response vectdi™ is as in the case of the linear equalizer. The

MSE — |1 _ thd|2+ Z |thi|2+Z A, |fHVi|2 27) matrix Hg equals[(')bedJrl, IN.‘)]’ andhy is the?lth column of
Hgys.. The DFE noise correlation matrR 4. ., is of the form

=0, izd i=1
whereK = L 4+ N — 2. The MSE consists of three terms. Ryje o = <Rw 0)
1) The first term| 1 — £7h, |? represents the power of the 0 0
offset of the equalized symbol from unity. whereR,,, is the correlation matrix of the noise samples at the

2) The second ter@fioji;&d | £, |2 is the contribution FFF. For correct past decisions, the MSE can be expressed as
to the MSE due to residual intersymbol interference (ISI).

i TNy | eH |2 ; PR K
3) The third term) '~ A; | £7v; |* contains contribution MSE — |1 B fﬁhd|2 n Z |f§{hi|2

from noise. ~
Since each term is positive, we want each to be minimum for K < N
the MSE to be minimum. Observe that for white noise, the third H 2 Ho |2
. — L + frh + fei + ) N|frv; 31
term (noise contribution) becomeg ||f||?. It is insensitive to gq;, [Fr i + /.4 ; UACINCD

delayd as long as the norm of the equalizer remains constant,
but for colored noise, the contribution is through the relationshighere @ is the set of symbols that contribute to the received
between the noise eigenvectors and the equalizer tap vector Sigal samples fed to the FFF except ; and the symbols con-
the associated eigenvalues. Therefore, even if the norm of giéered in the FBF. The s€}’ contains all symbols that con-
equalizer may remain constant, depending on délayd the tribute to the received samples fed to the FFF and are also con-
correspondind’, the contribution can change significantly. ~ sidered at the FBF.

Assuming the matriEHTH +R,, to be positive definite, the
Cholesky decomposition provid#$H” + R, = LL* so that VI. SIMULATIONS AND DISCUSSIONS
the contribution to the MSE due to tlith column ¢ # d) of H
is

The effects of colored noise model due to higher sampling
rates is studied for both the channel estimation and equaliza-
2 tion algorithms. The signal-to-noise ratio (SNR) is defined as

(28) Ey/No, whereE, = >, |u(I1;.)|? /7, andNy is the noise power

- o spectral density.
whereI' = L. Similarly, the contribution due to the:th

noise eigenvector is A. Performance of Blind Identification under Different
Sampling and Prefiltering

(29)  we implement the well-known subspace method [7] in our

) o investigation of the discretization effect on the performance
Equation (27) shows that the contribution to the MSE comeg plind identification algorithms. Recall that the subspace

from all the columns oH. Equations (28) and (29) show that thenethod, as in many other approaches, assumes that the noise
contribution to the MSE from théh column ofH matrix comes s white after oversampling. Thus, one important question to
through an inner product with coluniry, (associated with delay gnswer is whether blind channel identification performs better
d) in a transformed space. For colored noise, the noise eigggy white (oversampled) noise, requiring prefilters with wider
values are not equal along the eigenvectors. Therefore, for sQRa@gwidth or for colored noise from prefilters with bandwidth
values ofd, the inner product of the dominant eigenvectors Witgqua| to the signal bandwidth.
h, in the transformed space may contribute large values to therpe performance of the subspace method for channel estima-
MSE. For some other values dfthe MSE may be very small. tjon combined with a DFE for data detection is shown in Fig. 3
for different sampling rates with colored noise samples. A data
length of 500 symbols is used, and the results are obtained by
The DFEs behavior in colored noise may also be presenieraging over 50 independent trials. The transmit filtér)
in a similar way as that of a linear equalizer under correct pastan RRC filter witha = 0.35 and rolloff over1/2T. The
decision assumption. In this case, the DFE tap vefttamsists multipath channek(¢) is modeled as consisting of four taps
of fr andfp, asf = [fL f1]7, wherefr is the fractionally of magnitudes{1.0, —0.4, 0.5, 0.3} corresponding to delays
spaced feedforward filter (FFF) tap vector, dads the symbol {0, 7/3, 27/3, T'}. The overall channel impulse response is

£ = | (0a) " (7,)

2

Ao £ B |* = A | (T 10) ™ (T7ha7)

B. Decision Feedback Equalizers (DFES)
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Fig. 3. Performance of the subspace method with a decision feedb
equalizer at different sampling rateg (vith colored noise.
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q_cllé 4. Performance of the subspace method with
equalizer under different noise models foe= 3.

o

20 22

a decision feedback

p(t) = c(t) = g(t), whereg(t) is the receive prefilter. The re-
ceive filter g(¢) is truncated to five symbol periods. The DFE
FFF used 2r taps. The number of FBF tapsl8 + L — d. Per-
fect knowledge of the noise autocovariance is assumed, and
FFF/FBF taps are computed using the estimated overall chan
impulse response and the noise autocovariance [22]. The fig
shows that the presence of the prefilter makes the identificati
problem difficult for the subspace method since many eige
values of the signal subspace are very small. In this examf2
r = 3 shows better performance than= 2. Further increase
in the sampling rate does not show marked improvement
performance. It will be seen in Section VI-B that an increas
in the sampling rate does not improve the performance of t
equalization algorithm. Thus, the improvement in performant
in usingr = 3 compared with- = 2 must come from the sub-
space channel identification algorithm. This performance ir
provement may be due to the ease of signal and noise subsg

10

10°

2

— - white noise, truncated OCIR

— - white noise, untruncated OCIR
—— colored noise, truncated OCIR

+ colored noise, untruncated OCIR

L L L

I 1 t

15
delay (d)

20 25 30 35

separation at = 3 compared with- = 2. Note that the sub-
space method is not an optimal identification algorithm.

Fig. 4 shows the performance of the subspace method wit
DFE for white and colored noise at= 3. The prefilter used in o ) )
the colored noise case has a roll off 0¥g2T" so that the noise NOt very sensitive in the middle region of the allowed delays,
samples of the subchannel are white, but the noise sample®'gfor colored noise, the MSE becomes very sensitive to delay
different subchannels are correlated. In this case, an improgehen the overall channel impulse response (OCIR) is trun-
ment in performance in the colored noise case is observed. Bféed. When the OCIR is not truncated, behavior in white and

white noise case uses a prefilter with a rolloff ovg27" and colored noise are similar. Therefore, in the study of equalizer
thus allows more noise at its output. performance in colored noise due to the prefilter, care must be

taken in truncating the overall channel impulse response. This

B. Performance of Equalizers Under Different Discretizationg€€eds further investigation.

s Fig. 6 shows the MSE performance of the linear equalizer
eL#1nder different sampling rates. The overall channel impulse re-
rgponse is not truncated. This figure shows that there is no benefit

Fig. 5. MSE at different delays for the linear equalizer showing the effect of
It'a’uérlu:ation of the overall channel impulse response.

The role of the prefilter under colored noise model is inve
tigated here. If the noise coloring is due to the prefilter, th
the effect of the prefilter must be considered carefully in t . . ' . .

: - . In equalizer performance in going to higher sampling rates.
overall channel impulse response. A negligible fraction of en-
ergy (0.034%) is lost if the overall channel impulse response is
truncated to six symbol periods. Fig. 5 shows the MSE versus
delayd at an SNR of 15 dB for linear equalizers. The equal- This paper shows that the analog prefilter, the sampling rate,
izer consists of 60 fractionally spaced taps with a sampling raad the noise model assumed in the equalization algorithms are
of r = 3. The figure shows that for white noise, the MSE iglosely related and that these should be carefully considered in

VII. CONCLUSIONS
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— white noise [15]
— - colored noise
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delay (d)

[16]

45

Fig.6. MSE atdifferent delays for the linear equalizer when different sampling17]
rates are employed.

[18]
comparing the performance of different blind algorithms pre-
sented in the literature. The fractionally spaced samples at theg;
output of an analog filter, with a spectral support at least equal
to that of signal part of the received signal, contain sufficient2]
statistics for several detection criteria. An increase in the sam-
pling rate introduces more noise in an algorithm that assumegi]
a white noise model since the bandwidth of the received filtelf 2]
must be increased to keep the noise white. On the other hané,
if the bandwidth of the received filter is kept fixed, an increase
in the sampling rate results in colored noise. The effect of col-
ored noise on the performance of linear and decision feedback
equalizers under correct past decision assumption is studied, -~
it is found that in colored noise, the performance is very sen:
tive to the truncation in the length of the overall channel i
pulse response. An increase in the sampling rate does not si
MSE performance improvement in linear and decision feedba
equalizers.

REFERENCES

e

217

L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization
based on second-order statistics: A time domain approHeBF Trans.
Inform. Theoryvol. 40, pp. 340-349, Mar. 1994.

Z. Ding, “Matrix outer-product decomposition method for blind mul-
tiple channel identification,IEEE Trans. Signal Processingol. 45,

pp. 3053-3061, Dec. 1997.

S. U. H. Qureshi, “Adaptive equalizationProc. IEEE vol. 73, Sept.
1985.

Y. Li and Z. Ding, “ARMA system identification based on second
order cyclostationarity,1IEEE Trans. Signal Processingol. 42, pp.
3483-3493, Dec. 1994.

G. M. Vachula and F. S. Hill, Jr., “On optimal detection of band-lim-
ited PAM signals with excess bandwidthEEE Trans. Communvol.
COMM-29, pp. 886-890, June 1981.

H. Meyr, M. Oerder, and A. Polydoros, “On sampling rate, analog
prefiltering, and sufficient statistics for digital receivertfEE Trans.
Commun,.vol. 42, pp. 3208-3214, Dec. 1994.

Y. Li and Z. Ding, “Global convergence of fractionally spaced Godard
(CMA) adaptive equalizers,lEEE Trans. Signal Processingol. 44,

pp. 818-826, Apr. 1996.

C. R. Johnson Jr., P. Schnitter, I. Fijalkow, and L. Tong, The Core
of CMA Behavior Theory in Blind Deconvolution Il, S. Haykin,
Ed. Englewood Cliffs, NJ: Prentice-Hall, to be published.

R. A. Kennedy, D. K. Borah, and Z. Ding, “Discretization issues for the
design of optimal blind algorithms,” iRroc. IEEE Int. Conf. Acoust.,
Speech, Signal Proces®unich, Germany, Apr. 1997, pp. 51-54.

T. Ericson, “Structure of optimum receiving filters in data transmission
systems,”IEEE Trans. Inform. Theorwol. IT-17, pp. 352-353, May
1971.

P. A. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans. Commun. Systol. CS-11, pp. 360-393, 1963.

B. D. Hart, “MLSE diversity receiver structures,” Ph.D. dissertation,
Elect. Electron. Eng., Univ. Canturbury, Christchurch, New Zealand,
1996.

S. Haykin, Ed.Blind Deconvolution Englewood Cliffs, NJ: Prentice-
Hall, 1994.

N. W. K. Lo, D. D. Falconer, and A. U. H. Sheikh, “Adaptive equal-
ization for co-channel interference in a multipath fading environment,”
IEEE Trans. Communvol. 43, pp. 1441-1453, Feb./Mar./Apr. 1995.

Deva K. Borah (M’00) received the B.E. degree in
electronics and communications engineering and the
M.E. degree in electrical communication engineering
from the Indian Institute of Science, Bangalore, in
1987 and 1992, respectively, and the Ph.D. degree in
telecommunications engineering from the Research
School of Information Sciences and Engineering,
The Australian National University, Canberra, in
2000.

From 1988 to 1990 and 1992 to 1995, he worked
as a Lecturer at Assam Engineering College, Guwa-

S

[1] G. D. Forney Jr., “Maximum-likelihood sequence estimation of digitahati, India, and Gauhati University, India. Since December 1999, he has been

sequences in the presence of intersymbol interferetEEE Trans. In-
form. Theory.vol. IT-18, pp. 363-378, May 1972.
[2
I: Optimality considerations,lEEE Trans. Commun.vol. 44, pp.
836-846, July 1996.
0. Macchi and L. Guidou, “A new equalizer and double sampling equal-
izer,” Ann. Telecommunvol. 30, pp. 331-338, 1975.
G. Ungerboeck, “Fractional tap-spacing equalizer and consequengay !
for clock recovery in data modemsJEEE Trans. Commun.vol.
COMM-24, pp. 856-864, Aug. 1976.
H. Schenk, “Eine allgemeine theorie der entzerrung von datenkanae
mit nichtrekursiven systemen (a generalized theory of equalization
data channels by nonrecursive systems,”J. Electron. Communvol.
30, pp. 377-380, 1976.
R. D. Gitlin and S. B. Weinstein, “Fractionally-spaced equalization: At
improved digital transversal equalizeBell Syst. Tech. Jvol. 60, pp.
275-296, Feb. 1981.
E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrargue, “Subspace

(3]
(4]

(5]

(6]

(71

an Assistant Professor with the Klipsch School of Electrical and Computer En-
gineering, New Mexico State University, Las Cruces. His current research in-
K. M. Chugg and A. Polydoros, “MLSE for an unknown channel—Parterests include detection and estimation in time-varying channels, CDMA mul-
tiuser detection, adaptive equalization, and call admission control algorithms.

Rodney A. Kennedy (M'88) was born in Sydney,
Australia, on October 23, 1960. He received the
B.E. (hons.) degree in electrical engineering from
the University of New South Wales, Sydney, in
1982, the M.E. degree in digital control theory from
the University of Newcastle, Callaghan, Australia,
in 1986, and the Ph.D. degree in December 1988
from the Department of Systems Engineering, The
L Australian National University (ANU), Canberra.
Since 1994, he has been Head of the Telecommuni-
cation Engineering Group, Research School of Infor-

methods for the blind identification of multichannel FIR filter$#EE  mation Sciences and Engineering, ANU. His research interests are in the fields

Trans. Signal Processingol. 43, pp. 516-525, Feb. 1995.

of digital communications, digital signal processing, and acoustical signal pro-

[8] G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-squares approach tgessing.

blind channel identification,IEEE Trans. Signal Processingol. 43,
pp. 2982-2993, Dec. 1995.

Dr. Kennedy is currently an editor for data communications for the IEEE
TRANSACTIONS ONCOMMUNICATIONS.

Authorized licensed use limited to: Inbar Fijalkow. Downloaded on July 23,2010 at 09:06:05 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001

Zhi Ding (M’87—SM’'95) was born in Harbin, China.

He received the B.Eng. degree from the Departmer
of Wireless Engineering, Nanjing Institute of Tech-
nology, Nanjing, China, in July 1982, the M.A.Sc. de-
gree from the Department of Electrical Engineering
University of Toronto, Toronto, ON, Canada, in May
1987, and the Ph.D. degree from the School of Elec
trical Engineering, Cornell University, Ithaca, NY, in

Inbar Fijalkow (M'96) was born in Haifa, Israel, on
October 17, 1966. She received the Engineering and
Ph.D. degrees from Ecole Nationale Supérieure des
Télécommunications (ENST), Paris, France, in 1990
and 1993, respectively.

From 1993 to 1994, she was a Research Associate
at Cornell University, Ithaca, NY, with the School
of Electrical Engineering. From 1994 to 1999, she

was an Associate Professor at the Ecole Nationale
He was an Associate Professor with the Depal | Supérieure de I'Electronique et de ses Applications
ment of Electrical and Computer Engineering, Uni- (ENSEA), Cergy-Pontoise, France, where she has
versity of lowa, lowa City. He is now with the Department of Electrical andeen a Professor since 1999. In 1998, she spent four months at The Australian
Computer Engineering, University of California, Davis. From 1990 to 1998, Héational University (ANU), Canberra, as a Visiting Researcher. Her current
was a Faculty Member in the Department of Electrical Engineering, Auburasearch interests are in statistical signal processing, particularly as applied
University, Auburn, AL, first as an Assistant Professor and later as an Associatedigital communications, adaptive and iterative (turbo) processing, blind
Professor. He has held visiting positions at The Australian National Universitjeconvolution/equalization of multiple sources, and sensors systems. She is
the Hong Kong University of Science and Technology, the NASA Lewis Re& member of the board of the GDR ISIS, which is the CNRS research group
search Center, and the USAF Wright Laboratory. His main research interestssignal and image processing. She is in charge of the working group on
includes digital communications, signal detection, adaptive signal processitejecommunications and transmission.
blind equalization, and cyclostationary signal processing.

August 1990.

Authorized licensed use limited to: Inbar Fijalkow. Downloaded on July 23,2010 at 09:06:05 UTC from IEEE Xplore. Restrictions apply.



