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Abstract—In the development of equalization algorithms for un-
known channels, the effects of the sampling rate and the analog
receive prefilter prior to discretization of the received signal are
often overlooked. In this paper, these effects are investigated. The
relationship between the fractionally spaced output samples of a
noise-limiting prefilter and the symbol spaced output samples of a
matched filter is studied for both the time-invariant and the time-
varying channels. It is shown that the prefilter and the sampling
rate can have significant effects on blind equalization algorithms.
Thus, this paper provides a common framework for comparing
different blind algorithms that are studied in the literature with
different sampling rates. A case study of the well-known subspace
method for blind channel identification is presented. The effects
of the noise color due to the prefilter on equalizers is investigated,
and the sensitivity of the truncation of the overall channel impulse
response in terms of the mean squared error (MSE) performance
criterion is investigated through numerical examples.

Index Terms—Equalizers, intersymbol interference, matched fil-
ters, maximum likelihood detection, noise, time-varying channels,
white noise.

I. INTRODUCTION

A MAJORITY of equalization algorithms proposed in the
literature for unknown channels start with a discrete time

quadrature amplitude modulation (QAM) baseband system
model. Many of these algorithms are blind algorithms that can
be broadly grouped into two classes depending on the sampling
rate of the receiver: symbol spaced blind algorithms and
fractionally spaced blind algorithms. It is commonly assumed
that after symbol spaced or fractionally spaced sampling, the
discrete noise sequence remains discretely white.

For symbol spaced algorithms, the functional equivalence of
the discrete-time channel model to the actual continuous-time
channel has been largely overlooked. This possible misconcep-
tion may be traced to an incorrect interpretation of the work of
Forney [1]. There, it is shown that for ana priori known channel,
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discretization by using an analog filter matched to the overall
channel impulse response and sampling its output at the symbol
rate provides a set of sufficient statistics for maximum likeli-
hood sequence estimation of the transmitted sequence. This re-
sult has been used as the basis for essentially all works in equal-
ization in justifying (at least implicitly) the use of symbol rate
discrete time models. However, in most wireless communica-
tion systems and nonfixed wireline communication systems, the
channel is not knowna priori, and the matched filter is, there-
fore, unknown. As a result, a set of sufficient statistics cannot
be guaranteed by discrete symbol rate samples at the receiver
filter output [2]. In short, it is incorrect to assert that any symbol
rate discrete time channel model is functionally equivalent to an
actual physical model.

The developments in fractionally spaced equalization al-
gorithms have presented an alternative to a front-end analog
matched filter. Although fractionally spaced equalizers have
been studied for a long time [3]–[6], blind fractionally spaced
equalization algorithms and their analysis are relatively more
recent [7]–[10]. These algorithms operate on samples obtained
at a rate higher than the symbol rate, usually satisfying the
Nyquist sampling criterion. Although there is an increase in
the complexity of the analog-to-digital conversion process,
these equalizers offer potentially significant advantages over
the conventional symbol spaced equalizers in terms of lower
timing phase sensitivity [4], [5], reduced noise enhancement,
and additional statistical information for channel identification
[11], [12]. In fact, the use of fractional sampling often allows
the blind identification of unknown channels based only on
second-order statistics by providing a discrete single input
multiple output (SIMO) channel model.

Vachula and Hill [13] showed that fractionally spaced sam-
pling in the receiver front end alleviates the need to use an
analog prefilter matched to the overall channel impulse response
to obtain a set of sufficient statistics. However, their receiver
has limited practical appeal because it depends on the use of
an ideal lowpass filter. It was shown by Chugg and Polydoros
[2] that fractionally spaced sampling at the output of a filter
matched1 to the known pulse shaping filter in the transmitter
provides a set of sufficient statistics. Hence, fractionally spaced
sampling can lead to a meaningful discrete time model without
relying ona priori knowledge of the channel. While the work
in [2] rigorously addresses a very important issue, we show that
it is restrictive and incompatible with the discrete time models
assumed in many blind equalization algorithms such as those

1This work also implicitly assumes a coherent sampling at the receiver, but
the generalization to arbitrary sampling phase (as we do here) is straightforward.
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Fig. 1. Block diagram showing part of a data communication system.

found in [7], [9]. The prefilter presented in [14] does not ad-
dress the noise coloring problem in the context of fractionally
spaced blind equalization algorithms.

In this paper, we highlight the critical role that sampling and
prefiltering play in the justification and development of blind
algorithms. In the literature, many comparisons of the fraction-
ally spaced blind equalizers have been done unfairly using dif-
ferent sampling rates [15], [16]. They tend to create the impres-
sion that faster sampling will generate better identification re-
sults. This work is aimed at studying the validity of modeling
under different front-end analog filterings, sampling rates, and
noise models by bringing the analysis of blind algorithms under
a common framework.

The contributions of this paper are as follows.

1) We generalize the results in [2] and [13] to show that an
arbitrary analog prefilterwith spectral support at least
equal to the signal part of the received signal, in conjunc-
tion with fractionally spaced sampling, yields sufficient
statistics for maximum likelihood sequence estimation
and related criteria. The relationship between the symbol
spaced output samples of a matched filter and the fraction-
ally spaced output samples of a noise-limiting prefilter
is studied for both time-invariant and time-varying chan-
nels.

2) We demonstrate that an analog prefilter in conjunction
with fractionally spaced sampling isrobust to sampling
phase offsetsthat remove the requirement to synchronize
with the symbol timing implicit in [2], [13], and [17].

3) We show the relationship of the analog prefilter, the sam-
pling rate, and the noise model assumed in the equal-
ization algorithms and thus establish the analog prefilter
needed to satisfy the white noise SIMO blind identifi-
cation model. A case study of the well-known subspace
method is presented.

4) We demonstrate the effect of the noise color on linear
and decision feedback equalizers. The sensitivity of the
truncation of the overall channel impulse response length
in colored noise is shown through numerical examples.

II. SYMBOL SPACED EQUALIZATION

Consider a transmitted waveform

where
input data sequence;
symbol interval;
impulse response of the pulse shaping filter;
symbol spaced time index.

As shown in Fig. 1, the signal passes through a channel with
impulse response resulting in an output signal

(1)

where is the finite
energy convolution of the response of the channel with the input
signal pulse , and is additive white noise.

Let the front-end analog filter of the receiver be given by .
It is well known that a matched filter having an impulse response

, where “ ” denotes complex conjugation, is the
front end of a receiver designed for optimum detection of the
input data sequence [1], [18]. Symbol rate samples of the
output of the matched filter are given by2

(2)

where is the observation interval. These symbol rate samples
form a set of sufficient statistics3 for maximum likeli-

hood sequence estimation (MLSE) and provide discrete time
stationary samples as input to the equalizer. Clearly, the key
condition needed for deriving sufficient statistics from symbol
rate samples is that the overall response is knowna priori.
When the channel is not knowna priori, as in the case of
blind equalizers or whenever a training sequence is employed
for channel identification, a matched filter cannot be used,
and we cannot rely on (2) in our receiver design to provide a
set of sufficient statistics [2]. As a result, the performance of
symbol-spaced equalizers becomes dependent on the choice of
the prefilter.

III. FRACTIONALLY SPACED EQUALIZATION

A. Background

Because symbol rate samples of the prefilter output may not
preserve sufficient statistics for channel equalization (since the
channel is usually unknown and the correct sampling phase is
unknown), we now investigate whether faster sampling rate will
admit sufficient statistics and whether this is feasible for imple-
mentation. The objective will be to show how the ideal symbol
spaced samples in (2) that contain sufficient statistics can be ex-
pressed in terms of fractionally spaced samples. This will imply

2Note that these samples are taken with correct sampling phase, and any
timing offset� (which is not a multiple of the symbol periodT ) in the form of
y(nT +�) usually implies loss of optimality.

3In fact, these symbol rate samples obtained at the output of a matched filter
provide sufficient statistics for a much broader class of optimality criteria that
subsumes the MLSE case [18].
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that the fractionally spaced samples also contain sufficient sta-
tistics, but they do so under far more lax requirements than those
implicit in (2).

We now consider the case when the input signal pulse shaping
filter is bandlimited to , where with
integer . In most QAM and PAM systems, can be
chosen when the transmitted pulse has a roll-off factor so that
there is no signal energy beyond .4

Assuming that is bandlimited within , we
can expand in terms of its rate sampling with some
arbitrary timing offset using the sampling theorem, i.e.,

sinc (3)

with fractionally spaced coefficients

where is the fractionally spaced time index.5 Note that the ar-
bitrary sampling phase offset is relative to the symbol spaced
optimum sampling phase implicit in (2). Therefore, utilizing (3),
the symbol spaced matched filter output samples , given by
(2), can be written as

sinc

sinc (4)

where we have substituted .

B. Sufficient Statistics Prefiltering

The question arises about the existence and classification of
general prefilters that yield sufficient statistics under frac-
tionally spaced sampling. It is highly desirable that such suf-
ficient statistics are maintained under arbitrary sampling phase

. Partial answers to this question in the form of explicit filters
(special cases) and when the sampling phase is zero have been
presented in the literature [2], [13]. Here, we generalize these re-
sults and give a simple demonstration that essentially any filter

that is invertible within the signal bandwidth and any sam-
pling phase can be used.

The key idea in what follows is to factorize the fractionally
spaced overall channel impulse response into two impulse
responses— and —given by the discrete convolution

(5)

4Indeed, the so-called excess bandwidth, which is the bandwidth of the
channel beyond1=2T , is typically only 10 to 30% of1=2T and, therefore,
considerably less than1=T [13].

5We use the convention ofn indexing symbol-spaced samples andm in-
dexing fractionally spaced samples.

Given , let the receiver prefilter be matched to ,
as in

(6)

where

sinc

is a filter bandlimited to . Its response to the channel
output (1) is given by

whose fractionally spaced samples are

sinc (7)

This expression is analogous to the symbol spaced samples of
the matched filter output (4).

Using (5), we can express (4) in terms of the fractionally
spaced samples (7)

(8)

where we recall that is the set of sufficient statistics ob-
tained from sampling the matched filter output at the symbol
rate with the optimum sampling phase. Equation (8) shows that

and, hence, sufficient statistics can be extracted from the
Nyquist (fractional) rate samples at output of prefilter

and that such a relationship exists for all.
Note that the discrete convolution in (8) (and decima-
tion) is a theoretical construction only and need not be explic-
itly implemented as a filter in the receiver. Such a digital filter
(8), which maps the fractionally spaced samples to the outputs
of the symbol spaced matched filter output samples (obtained
with correct sampling phase), will be referred to as a sufficient
statistics filter.

C. Frequency Domain Interpretation

In the previous subsection, the “choice” of prefilter (6) ap-
pears to be arbitrary. Here, we use the frequency domain to show
that there are only very weak conditions on the choice of pre-
filter, and therefore, in a practical sense, it can be arbitrary.

Denote
. Thus, the sufficient statistics filter

(9)

will exist as long as does not have extra zeros on the
unit circle that are not zeros of (where the zeros need to
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be counted with multiplicity). In other words,anybandlimited
filter impulse response (6) can be used as a prefilter as long
as it does not have additional spectral nulls besides those of the
true channel (nor greater multiplicity of the order of any zero
if it does correspond). From a practical perspective, there is no
sense in having a prefilter that has spectral nulls for the reasons
that i) the channel is unknown, and therefore, any zeros of the
channel would be unknown; and ii) it would not be a robust filter
under mismodeling.

This simple zero condition is sufficient to realize (5) and to
retain the sufficient statistics for channel equalization. This con-
trasts with [2] and [13], wherein specific prefilters need to be
implemented. The discretization analog prefilter can be essen-
tially arbitrary, and any matching can be done completely digi-
tally without approximation.

D. Extension to Time-Varying Channels

The sufficient statistics prefiltering results can be extended to
time-varying channels. Let be the impulse response of a
time-varying channel, where denotes the response of the
channel at time due to an impulse applied at time [19].
We show here that the sufficient statistics prefilter in this case
is a time-varying filter with a spectral support ,
where the transmit filter is bandlimited to , and

is bandlimited in within . The received signal
equals

(10)

where is the con-
volution of the time-invariant transmit pulse with .
We can express this in a more general form as

(11)

Since the transmit pulse is bandlimited to , for a
given , is also bandlimited in within since it
is obtained as a convolution of and in . Therefore,
using the sampling theorem, the response at a given time

can be expressed as

sinc (12)

where , and

The coefficients provide the time variations of
at . Since in (11) is independent of, and,
therefore, if is bandlimited in within , then
for a given , is also bandlimited in within .
Therefore, from (12), is bandlimited to for a
given . Using , we get, from (12)

sinc (13)

Let sinc
, where . Then, is ban-

dlimited to since it is a product of , which
is bandlimited to , and the sinc function, which is ban-
dlimited to . Therefore, using the sampling theorem

sinc

(14)

where is an arbitrary sampling phase offset. The sampling rate
satisfies , and

. Therefore

sinc

The matched filter output samples in this time-varying
channel case are given by

sinc (15)

This expression is similar to (4). The sequence can
be factored into two sequences: , as in
(5). Therefore, a similar prefilter can be used, but the
bandwidth of this filter in this case is , which is
more than the bandwidth of the filter in (6). The sampling rate
must be larger than . In the rest of the paper, the
channel is assumed to be time invariant.

IV. DISCRETENOISE SPECTRUM UNDERSAMPLING AND

PREFILTERING

A. Uniformly Sampled Noise Spectra

In the following, we willl assume that the received signal is
bandlimited to so that samples at the rate
provide sufficient statistics. The objective is to study whether
there is an advantage for equalization in selectinglarger than
the minimum that is necessary to achieve sufficient statistics (in
this case ). Now obviously, as far as optimal detection
is concerned, higher rates provide no additional information, so
such a study would be futile. The issue here is that the equal-
ization structures employed in blind equalization are typically
suboptimal, and the algorithms that operate on those structures
are also suboptimal.

In the blind equalization literature, different sampling rates
are often used in simulation of blind equalization systems. How-
ever, the white noise assumption persists in almost every case,
regardless of the choice of(sampling rate). In this section, we
show that the prefilter and the sampling rate affect the statistics
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of the noise samples. Consequently, the white noise assump-
tion and the actual value of the noise variance must be carefully
examined in performance comparisons of fractionally spaced
blind equalizers.

Given a prefilter , the analog noise at the receive filter
output is given by

(16)

If the filter output is sampled at instants , then the sam-
pled noise is

(17)

The autocorrelation sequence of the noise samples is

(18)

Therefore, the power spectral density of the output noise sam-
ples is given by

(19)

Hence, with , the sampled noise spectrum is

(20)

When symbol rate samples are taken with , the sampled
noise has power spectrum

(21)

It is clear that the oversampling factorand the prefilter re-
sponse both contribute to the sampled noise spectrum.
Hence, their effects on the performance of blind equalization
algorithms should not be overlooked.

B. Fractional Rate (Uncorrelated) White Noise Filter

In many blind equalization algorithms [7]–[9], there is often
the underlying assumption that the oversampled noise sequence

is white or has a nonsingular covariance matrix allowing
whitening. This assumption has its roots in array processing
where the sequences at different antenna elements are assumed
to be white. In the case of fractionally spaced samples, as the
data sequence can be divided intosubsequences, each noise
subsequence is white, but it is correlated with the other
noise subsequences. Therefore, the requirement for the white
noise model assumption needs investigation. Specifically, the
following question is important: For a fixed receiver prefilter,
does the sampling rate affect performance? Note that the sam-
pled noise may be colored if the sampling rate is increased and
whitening the noise with a wider bandwidth prefilter increases
the noise power.

As we showed in Section III-B, the receiver prefilter should
have no spectral nulls in the channel passband. In additon, if the
equalizer design requirement is for white sampled noise, a
good choice of lowpass prefilter is the root raised cosine (RRC)
filter with roll-off over . The impulse response of an RRC
filter with a roll-off over is known [20]. A generalization
of this expression for an RRC filter with a roll-off over

, where is a constant, gives the following expression
for the impulse response.

sinc

sinc

sinc (22)

The constant controls the bandwidth of the filter. We will
call this prefilter a fractional rate uncorrelated noise (pre)filter
(FRUNF). For a fractionally spaced white noise model at the
output of the prefilter, we need . However, it should
be noted that in an effort to guarantee that the fractional rate
noise is white, the prefilter may be letting additional noise into
the equalizer. The frequency response of a transmit filter
and the FRUNF filter for and is shown in Fig. 2.

C. Symbol Rate Uncorrelated Noise Prefilter

Clearly, the bandwidth of FRUNF is much wider than the
channel signal bandwidth for higher sampling rates. In effect,
the use of a FRUNF as receiver prefilter admits channel noise at
frequencies where there is no signal content. This indicates that
in an effort to guarantee that the fractional rate noise is white, the
receiver must let additional noise into the equalizer. Hence, the
fractional white noise assumption may have sacrificed system
performance for the sake of having a simplifying noise assump-
tion for the development of the blind algorithm. We now show
how this condition can be relaxed using a different prefilter.

From Fig. 2, it is clear that the channel bandwidth is limited
within . Hence, to reduce the channel noise effect, it
would make sense to design a prefilter that has bandwidth equal
to the channel bandwidth without admitting additional noise.
As has been shown in Section III-B, sufficient statistics by frac-
tional sampling are preserved as long as the prefilter does not
introduce additional nulls in the channel passband. It is, there-
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Fig. 2. Frequency response of the transmit filter and the fractional rate
uncorrelated noise filter.

fore, clear that the prefilter can use the RRC filter with roll-off
over so that in (22).

Nevertheless, (20) shows that the use of a lowpass RRC filter
with roll-off frequency will not generate a white fractional
rate noise. In fact, the noise will be colored, yet with a lower
variance. An obvious question we must answer is whether frac-
tional rate blind equalization performs better under white dis-
crete noise with higher variance or under colored discrete noise.
The answer to this question will have significant impact on the
design of practical blind equalizers for QAM communication
systems.

V. EFFECTS OFNOISEMODEL ON EQUALIZATION ALGORITHMS

Many blind algorithms estimate the channel impulse response
and then perform equalization [21]. If the equalizer taps are
computed from the estimated channel impulse response, then
their performance is affected by the noise model assumed.

A. Linear Equalizers

Consider a fractionally spaced linear equalizer of length.
The output symbol spaced samples of the equalizer are

(23)

where is the fractionally spaced
equalizer tap vector.6 The matrix is the convolution matrix
of the overall fractionally spaced channel impulse response,
consisting of the transmit filter , the multipath channel ,
and the receive prefilter . The th row of is of the form

mod
. The th subchannel re-

sponse vector equals ,
and is the overall channel
impulse response vector. The symbol vector equals

. The noise is the
fractionally spaced noise sample vector at the output of the
filter . The linear equalizer minimizes the mean squared

6The notations(�) ; (�) ; E[�]; b�c anda modb denote transponse, Her-
mitian transpose, expectation, floor function, and modulus, respectively. The
notations0 ; I denote ana� b zero matrix and anm�m identity matrix,
respectively.

error (MSE) so that the optimal solution for
the equalizer taps is

(24)

where denotes the th column of , and it corresponds to
the set of achievable delays . The parameter is
referred to as the decision delay. The noise correlation matrix is

. Then, the following cases can be considered.
Case 1: The algorithm assumes white noise model, and the

true noise samples are white. In that case, the MSE becomes

MSE

The computation of the equalizer taps by this approach
requires an estimate of the noise variance . Ob-
serve that if the noise power spectral density is, for
a sampling rate , . Therefore, using

, where the columns of
and the diagonal elements of are the eigenvectors and the
eigenvalues of , respectively, we have

MSE (25)

It will be observed in our numerical results (Fig. 6) that for a
given delay , an increase in the sampling rate does not reduce
the MSE, and one of the reasons for this observation is the pres-
ence of in the denominator of (25).

Case 2: The algorithm assumes colored noise model, and the
true noise samples are colored. The MSE in this case is

MSE

Note that the computation of the equalizer taps by this method
requires the knowledge of the noise correlation matrix ,
which can be obtained from the prefiltering response.

Case 3: The algorithm assumes white noise model, but the
true noise samples are colored. The MSE then becomes

MSE

Using , where is the estimated noise
variance assuming white noise model, the MSE expression can
be simplified to

MSE

The fourth case of assuming a colored noise model when the
true noise samples are white is not important from a practical
viewpoint.

With a view to understanding the eigenstructure, the received
sample vector may be expressed as
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where , and .
The vectors are the eigenvectors of the correlation ma-
trix , and are zero mean uncorrelated random variables
[Karhunen–Loeve (KL) expansion]. Then, the MSE becomes

MSE (26)

Assuming the elements of to be uncorrelated, the MSE be-
comes

MSE (27)

where . The MSE consists of three terms.

1) The first term represents the power of the
offset of the equalized symbol from unity.

2) The second term is the contribution
to the MSE due to residual intersymbol interference (ISI).

3) The third term contains contribution
from noise.

Since each term is positive, we want each to be minimum for
the MSE to be minimum. Observe that for white noise, the third
term (noise contribution) becomes . It is insensitive to
delay as long as the norm of the equalizer remains constant,
but for colored noise, the contribution is through the relationship
between the noise eigenvectors and the equalizer tap vector and
the associated eigenvalues. Therefore, even if the norm of the
equalizer may remain constant, depending on delayand the
corresponding, the contribution can change significantly.

Assuming the matrix to be positive definite, the
Cholesky decomposition provides so that
the contribution to the MSE due to theth column ( ) of
is

(28)

where . Similarly, the contribution due to the th
noise eigenvector is

(29)

Equation (27) shows that the contribution to the MSE comes
from all the columns of . Equations (28) and (29) show that the
contribution to the MSE from theth column of matrix comes
through an inner product with column (associated with delay
) in a transformed space. For colored noise, the noise eigen-

values are not equal along the eigenvectors. Therefore, for some
values of , the inner product of the dominant eigenvectors with

in the transformed space may contribute large values to the
MSE. For some other values of, the MSE may be very small.

B. Decision Feedback Equalizers (DFEs)

The DFEs behavior in colored noise may also be presented
in a similar way as that of a linear equalizer under correct past
decision assumption. In this case, the DFE tap vectorconsists
of and , as , where is the fractionally
spaced feedforward filter (FFF) tap vector, andis the symbol

spaced feedback filter (FBF) tap vector. The vectoris
taps long, and the vector is taps long. The minimum mean
squared error (MMSE) solution for the tap vectoris given by
[22]

(30)

where . The th row of matrix is
of the form

mod . The th subchannel
response vector is as in the case of the linear equalizer. The
matrix equals , and is the th column of

. The DFE noise correlation matrix is of the form

where is the correlation matrix of the noise samples at the
FFF. For correct past decisions, the MSE can be expressed as

MSE

(31)

where is the set of symbols that contribute to the received
signal samples fed to the FFF except and the symbols con-
sidered in the FBF. The set contains all symbols that con-
tribute to the received samples fed to the FFF and are also con-
sidered at the FBF.

VI. SIMULATIONS AND DISCUSSIONS

The effects of colored noise model due to higher sampling
rates is studied for both the channel estimation and equaliza-
tion algorithms. The signal-to-noise ratio (SNR) is defined as

, where , and is the noise power
spectral density.

A. Performance of Blind Identification under Different
Sampling and Prefiltering

We implement the well-known subspace method [7] in our
investigation of the discretization effect on the performance
of blind identification algorithms. Recall that the subspace
method, as in many other approaches, assumes that the noise
is white after oversampling. Thus, one important question to
answer is whether blind channel identification performs better
for white (oversampled) noise, requiring prefilters with wider
bandwidth or for colored noise from prefilters with bandwidth
equal to the signal bandwidth.

The performance of the subspace method for channel estima-
tion combined with a DFE for data detection is shown in Fig. 3
for different sampling rates with colored noise samples. A data
length of 500 symbols is used, and the results are obtained by
averaging over 50 independent trials. The transmit filter
is an RRC filter with and rolloff over . The
multipath channel is modeled as consisting of four taps
of magnitudes corresponding to delays

. The overall channel impulse response is
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Fig. 3. Performance of the subspace method with a decision feedback
equalizer at different sampling rates (r) with colored noise.

, where is the receive prefilter. The re-
ceive filter is truncated to five symbol periods. The DFE
FFF uses taps. The number of FBF taps is . Per-
fect knowledge of the noise autocovariance is assumed, and the
FFF/FBF taps are computed using the estimated overall channel
impulse response and the noise autocovariance [22]. The figure
shows that the presence of the prefilter makes the identification
problem difficult for the subspace method since many eigen-
values of the signal subspace are very small. In this example,

shows better performance than . Further increase
in the sampling rate does not show marked improvement in
performance. It will be seen in Section VI-B that an increase
in the sampling rate does not improve the performance of the
equalization algorithm. Thus, the improvement in performance
in using compared with must come from the sub-
space channel identification algorithm. This performance im-
provement may be due to the ease of signal and noise subspace
separation at compared with . Note that the sub-
space method is not an optimal identification algorithm.

Fig. 4 shows the performance of the subspace method with a
DFE for white and colored noise at . The prefilter used in
the colored noise case has a roll off over so that the noise
samples of the subchannel are white, but the noise samples of
different subchannels are correlated. In this case, an improve-
ment in performance in the colored noise case is observed. The
white noise case uses a prefilter with a rolloff over and
thus allows more noise at its output.

B. Performance of Equalizers Under Different Discretizations

The role of the prefilter under colored noise model is inves-
tigated here. If the noise coloring is due to the prefilter, then
the effect of the prefilter must be considered carefully in the
overall channel impulse response. A negligible fraction of en-
ergy (0.034%) is lost if the overall channel impulse response is
truncated to six symbol periods. Fig. 5 shows the MSE versus
delay at an SNR of 15 dB for linear equalizers. The equal-
izer consists of 60 fractionally spaced taps with a sampling rate
of . The figure shows that for white noise, the MSE is

Fig. 4. Performance of the subspace method with a decision feedback
equalizer under different noise models forr = 3.

Fig. 5. MSE at different delays for the linear equalizer showing the effect of
truncation of the overall channel impulse response.

not very sensitive in the middle region of the allowed delays,
but for colored noise, the MSE becomes very sensitive to delay

when the overall channel impulse response (OCIR) is trun-
cated. When the OCIR is not truncated, behavior in white and
colored noise are similar. Therefore, in the study of equalizer
performance in colored noise due to the prefilter, care must be
taken in truncating the overall channel impulse response. This
needs further investigation.

Fig. 6 shows the MSE performance of the linear equalizer
under different sampling rates. The overall channel impulse re-
sponse is not truncated. This figure shows that there is no benefit
in equalizer performance in going to higher sampling rates.

VII. CONCLUSIONS

This paper shows that the analog prefilter, the sampling rate,
and the noise model assumed in the equalization algorithms are
closely related and that these should be carefully considered in
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Fig. 6. MSE at different delays for the linear equalizer when different sampling
rates are employed.

comparing the performance of different blind algorithms pre-
sented in the literature. The fractionally spaced samples at the
output of an analog filter, with a spectral support at least equal
to that of signal part of the received signal, contain sufficient
statistics for several detection criteria. An increase in the sam-
pling rate introduces more noise in an algorithm that assumes
a white noise model since the bandwidth of the received filter
must be increased to keep the noise white. On the other hand,
if the bandwidth of the received filter is kept fixed, an increase
in the sampling rate results in colored noise. The effect of col-
ored noise on the performance of linear and decision feedback
equalizers under correct past decision assumption is studied, and
it is found that in colored noise, the performance is very sensi-
tive to the truncation in the length of the overall channel im-
pulse response. An increase in the sampling rate does not show
MSE performance improvement in linear and decision feedback
equalizers.
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