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Abstract—In this work, we study how emotional interac-
tions with a social partner can bootstrap increasingly complex
behaviors such as social referencing. Our idea is that social
referencing as well as facial expression recognition can emerge
from a simple sensory-motor system involving emotional stimuli.
Without knowing that the other is an agent, the robot is able
to learn some complex tasks if the human partner has some
"empathy” or at least "resonate” with the robot head (low level
emotional resonance). Hence, we advocate the idea that social
referencing can be bootstrapped from a simple sensory-motor
system not dedicated to social interactions.

Index Terms—Human-Robot interaction, emotion, social ref-
erencing, sensory-motor architecture

I. INTRODUCTION

OW can a robot or a human learn more and more

_complex tasks? This ques_tlon IS becomlng_central_ Hly. 1. Experimental set-up for social referencing. The tokbes upon the
robotics and psychology. In this work, we are interestingse of its expressive head which is also able to recognizel fapressions.
in understanding how emotional interactions with a sociﬁ’f robonc_ arm _W|II rea_ch the_posmve objects and avertribgative objects

. . . after emotional interactions with a human partner.

partner can bootstrap increasingly complex behaviors.
This study is important both for robotics applications
and development understanding. In particular, we propose
that social referencing, gathering information through - ' . .
emotional interaction, fulfills this goal. Social referengis a case, the inability at first to differentiate our own bodyriro

developmental process incorporating the ability to ren the body of other if the actions of the other are correlated

understand, respond to and alter behavior in responseV\{'(Sh our own ac_tlons. Th|s_ perce_p_uon amb|_gU|ty e}ssomat.ed
0 a homeostatic system is sufficient to trigger first facial

the emotional expressions of a social partner. It allows },\X ession I nition and next to leam t iate an
infant to seek information from another individual and t§G<P c>>on recognition ar ext 1o jeam fo associale a
motional value to an arbitrary object. Without knowingtfirs

use that information to guide his/her behavior toward at e existence of others, our robot is able to learn to catch
object or event [43]. Gathering information through emotib . ; ! .
ar avoid object not related to any direct reward. Hence, we

interactions seems to be a fast and efficient way (o trigg dvocate the idea that social referencing can be bootstdapp

learning. This is especially evident in early stages of hum rom a simple sensory-motor system not dedicated to social
cognitive development, but also in other primates [65].i&8loc 'nteractionsp y y

referencing ability might provide the infant (or a robotj
valuable information concerning the environment and the

outcome of its behavior. In social referencing, a good (af)ba In the next section, we will show a developmental approach
object or event is identified or signaled with an emotionalf social referencing, where all the robot abilities suchthes
message. There is no need for verbal interactions. THevelopment of facial expressions recognition (sectionthg
emotional values can be provided by a variety of modalitiessociation of emotional value to an object (section VIl an
of emotional expressions, such as facial expressionsgyoifinally the control of the arm according to emotional stimuli
gestures, etc. We choose to use facial expressions singe tfsection VIII), are learned through interactions with its/ie

are an excellent way to communicate important informatimonment. Moreover, each ability can be learned autonorgousl
in ambiguous situations but also because their recognitiand online, and, the social referencing may emerge once
can be learned autonomously very quickly [12]. Our idea &l these cognitive abilities have been learned. An impdrta
that social referencing as well as facial expression reitiogn point is that the sensory-motor architecture can resoleseh
can emerge from a simple sensory-motor system. All odifferents tasks based on a cascade of conditioning nesvork
work is based on the idea of the perception ambiguity. In thisection V).




Il. RELATED WORK In the field of image processing, solutions for the facial

. . . expressions recognition usually use algorithms to frange th
Many researchers emphasize that the emotions involve: 9 y 9

"ohysiological arousal, expressive behaviors, and ¢ ; Image around the face [69] before performing the expression

. N ; . recognition. When these techniques involve some learning
experience” [54] or, are important for survival [20], [22]’0r optimization, the problem of autonomous learning is not

[45]. However, there are clearly no agreements on the U dressed. Some methods are based on Principal Components

derlying mechanisms. For instance, James and Lange [ . . .
. : . . alysis (PCA) and use a batch approach for learning (offline
[44] consider emotions as direct consequences of phyw’ibglearn%ng).( For)example the LLEp?Locally Linear Igrr(lbed-

modifications in reaction to the interactions with the envis. . : . .
-~ .~ ding) [48] and [74] perform a dimension reduction on the inpu
ronment. Cannon-Bard [8], [17] supports that emotion is the .

: ; . ) - vectors. Neuronal methods have also been developed fail faci
result of a brain processing (centralist theory: physimal

changes are the results of the triggering in the brain of argiveXpreSSIOn recognition. In Franco and Treves [27], the awtw

; ) . multi-layer network with a classical rvi r
emotional state). There is a wide spectrum of models, mosHSes a mult-layer netwo th a classical supervisedieg

. . tle (again offline learning from a well-labeled databa3é
dedicated to address only one aspect of emotions. For If- .( 9 g e
. . . .. designer must determine the number of neurons that are asso-
stance, if we focus on emotion expression then the oppasitio . ) . . i
clated with different expressions according to their camjby.

will be between discrete models of emotions (Facial ACtIo?ther methods are based on face models that attempt to match

Coding _System [26]) versus d|mens_|0nallcont|nuous mod S face (see, for example, the appearance model [5]). Yu [73
of emotions that suppose any emotion may by expresses as

L . . . Ses a support vector machine (SVM) to categorize the facial
a point in a low dimensional space [66]. Classical models . .
. . . - expressions. Wiskott [71] uses Gabor wavelets to code the
of emotions consider either the communicational aspect

emotions (for instance the emotions conveyed by the facu'?llC lal features, such as with ‘jets’. These features areriad
Y y Into a labeled graph in which the nodes are ’jets’ and theslink

expressions) or the second order control necessary foivalrv the distances between the features in the image space (i.

purpose when the autonomy of the system is an issue. [%Z distance between both eyes); the recognition is pegdrm

show the interde_pendence of communipation and meFa_domtrﬁ)r?ugh graph matching. Other sophisticated models coenput
aspects of emotion. They propose the 'd.ea. that emotions r.nrleesad-pose invariant facial expression recognition frometa s
be understood as a dynamical system linking two controller;

one devoted to social interactions (i.e. communicatioreets) f characteristic facial points [64]. However, all of these
e .technigues use offline learning and need to access the entire

and anpther one devoted to the interact_ions within the pm/S'Iearning database. They attempt to introduce a substantial
world (|_.e. metacontrol of a_mor(_a classical controller). . amount of a priori analysis to improve the performances of
Starting from the neurobiological substrate of the wsk:erf)ne system. Moreover, the databases are usually cleanec:bef

brain [60] (with the regullation loop connecting Fhe thalanmuu e: the faces are framed (or only the face is presented in the
the hypothalamus, the hippocampus and the cingular Corte)ﬁiage), and human experts label the facial expressionsdien

. . . i
we would like to understand how b_a_su: emotions [62] ‘e problem of online and autonomous learning is usually not
emerge and become complex cognitive processes 'nVOIV'QQeIevant issue

planning and inhibition of action [20]. From this litera¢uf2], With res . .
pect to interactive robots, our focus on the
[31, [15], [21], [34], [59], [58], we know that a lot of struates .o development of interactive behaviors induces $igeci

a:z mvoilvlei(rjlt erver;i Ear t?e t;?sl'ncl ﬁrrlotlo\?sr.n Ydetl; pihi/js'cajonstraints that are usually forgotten. Breazeal [14] glesil
and socialinteractions are certainly not governed by iaep Kismet, a robot head that can recognize human facial

dent controllers and must share some common substructur . - -
X . . e%ressmns. Because of an interaction game between the
Moreover, we want to investigate how emotions can bootstr

lex task h th Al ref ) 431 165 flman and the robot, kismet learns to mimic the human’s
ﬁovn\;p ix asms rsubc t as n g 30I0|a t;ﬁ erencrzlliTi?/ [t ]’k[ ] afeial expressions. In this study, there is a strong a priori
ow an agent (robot) ca evelop this cognitive task. belief about what is a human face. Important focus points,
The .d.evelopment .Of soc[al referencmg' skills implies thguch as the eyes, the eye-brows, the nose, and the mouth, are
recognition of emothr_lal S|gna_ls (_prO\_ndlng a value_ to ﬁre-specified and thus expected. These strong expectations
stimulus), the recognition Of. stimuli/objects a_nd the @il 1604 to a lack of autonomy because the robot must have
to perform some simple actions on these objects. Here, ‘é’ﬁecific knowledges (what is a human face) to learn the

wil suppose t_he ex!stence qf a very simple reflex pathwqgcial expressions. Breazeal [14] manages a large number
allowing the simulation of pain and pleasure from an adh different sensory inputs and motor outputs, showing

tactlle_sgnsor (e.g. cond_ucti'vek_)J_ects). This ;lgnal allows thethat the diversity of sensory signals and action capadsliti
ass_omatlon_ of objects W'th positive or nggatlve valuesremd can strongly improve the recognition performances and
their grasping or he avoidance according o a sensorymofp, acceptability of the robot as a partner. Other studies

controller (see section X). One very difficult part is remeusing robot heads, such as Einstein’s robot [72], exploee th

to the facial expression recognition and to a lesser exttaﬂndsproCess of self—guided learning of realistic facial expies

objegt recognition which is generally performed with sfieci production by a robotic head (31 degrees of freedom). Facial

algorithms. motor parameters were learned using feedback from real-tim
. _ . o _ facial expression recognition from video. These studies ar
measure of the object conductivitig = 1 K2 for positive objectsR =

0K for negative objects an&® > 10K for neutral objects (usual objects) complementary to our ) approach .because they ShOW- that
with no hidden resistor. learning to produce facial expressions can be accomplished



by using the same approach as the approach that we usehighlight a developmental trajectory where the robot Isarn
expression recognition. skills such as the facial expressions recognition, the face
detection and the control of arm (visuo-motor learning)e Th
More and more robotics studies are interested in usiagitonomous learning of these abilities allows the ememgenc
emotions to regulate the robot behavior [14], [68], [396][4 of the social referencing.
and [47] shows a social robot with empathic capabilitieg tha
acts as a chess companion for children. The robot is endowedror each skill, the visual processing is the same. The visual
with empathic capabilities to improve the relationshipizsgn attention on potentially interesting regions (or objextf) is
children and the robot. In this model, the robot needs tmntrolled by a reflex mechanism that allows the robot to $ocu
model the childs affective states and adapt its affectivé aits gaze. The focus points are the result of a local compatiti
social behavior in response to the affective states of tlid.ch performed on the convolution between a DOG (difference of
However, these models have a number of a priori and th®aussians) filter and the norm of the gradient of the input
don't allow acquiring generic models. In these experimentitnage (we use the same architecture for place and object
the robots have many degree of freedom but their adaptreognition [31], [50]). This process allows the systemadious
behaviors are minimum. From our point of view, these studi@sore on the corners and ends of the lines in the image. The
don't focus on the development of cognitive capabilitidéeyt main advantages of this process over the SIFT (Scale Imtaria
are not interested about how the robot can develop skilgature Transform) [49] method are its computational speed
autonomously. and a smaller number of extracted focus points. For eactsfocu
Contrary to all these studies, in the following sections, weoint in the image, a local view centered on the focus point
will underline the robot's ability to develop autonomousdanis extracted: either a log-polar transform or Gabor filtens a
online. applied (Fig. 3) to obtain an input image or a vector more
robust to the rotations and distance variations.
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= 1

convolution with DOG focus points
¥

facial e;

xpression
facial
expressions|

recognition \/\ T input image. gradient extraction
pain,
Internal pleasure
state 4

signals

—#—» modifiable link

—/—» non modifiabe link
......... P neuromodulation

object's
emotional
value

' m— A In(rho) Q
= N | O—3
P{%f;?f 7 O0—3
reach or oi objects \J7 ’
e b ISR \ Sa—
theta O—3
24 gabor features
Fig. 2. Simplified model for social referencing. This model Higjts the filters

bidirectional interactions. The emergence of the sociaresfcing capability » ?

Is possible only through the interaction with a human partner Fig. 3. The robot visual system uses a sequential exploratidhe image.

A gradient extraction is performed on the input image (256xmBeIls). A

Our social referencing experiment (Fig. 1) uses tH@nvolution with a Difference of Gaussian (DOG) provides fhcus points.
followi . botic head abl . d itmi At last, the local views are extracted around each focustpdine visual
ollowing set-u_p. a robotic head able to recognize an mﬂ'tafeatures are: a) the local log-polar transform increasigrobustness of the
facial expressions, and, a Katana arm able to interact witkiracted local views to small rotations and scale variatifts radius is 20
different objects. One camera is turned toward the workespaxe!s). b) Gabor filters are applied to obtain a more robugbature (the

h he K h obi In thi . szor filters are 60x60); the features extracted for eaclkatotion with a
where the Katana arm can reach objects. In this experimeglyor fiter are the mean and the standard deviation.
we used 2 cameras to simplify and to avoid the problem of
alternating attention. As a consequence, the robot (heed, a _ _ _ _
and camera) can interact with the human partner and canlhe robotic head learns to recognize emotional facial
manipulate the objects. In this case, the robot can inteviet expressions  autonomously [13]. The facial expressions
the social environment as well as the physical environnent./earning can be learned through an imitation between
the developed architecture, the robot learns to handldiypesi the robot and the human partner. First, the robot internal
objects and to avoid negative objects as a direct consegquefigiotional state triggers one specific expression and th@hum
of emotional interactions with the social partner. Thisdgtu mimics the robot face The robot can learn to associate its
shows that the emotional interaction allows changing the, o

bot tional state in order to requlate a robot's behavi in natural condition, [55] showed that the human resonatethdorobot
robot emot g Rcial expression. Here, the instruction was to mimic the tdbead facial

(communication of an emotional state). We will attempt texpressions



internal emotional state with the human’s facial exprassio For each focus point in the image, a local view centered

The robot associates what it is doing with what it is seeingn the focus point is extracted (Fig. 3). The extracted local

After 2 minutes of real time learning, the robot is able teiew around each focus point is learned and recognized by a

recognize the human facial expressions as well as to mingioup of neuronsX (visual features) using a k-means variant

them. that allows online learning and real-time functions [42]Jex
SAW (Self Adaptive Winner takes all):

After the learning of these capabilities, the eye-arm syste
can learn visuo-motor associations to reach several positi
in the workspace [4], [23] and appendix. A dynamic system N
is used to smooth the trajectory [28]. This dynamic system net; =1— 1 Z Vij — L] 2)
uses a reinforcing signal in order to reach or avoid a pasitio N i—1

mﬂthe Wor:kspaceb_The S|%nal can be el_the:j related_ fo tgiej is the activity of neurory in the groupX. Hy(z) is the
reflex pathway (object conductivity associated to positiwe Heaviside function®. Here,~ is a vigilance parameter (the

nega’_uve S|gnals) or learned thr_ough Fhe assom_atlon _to leshold of recognition). When the prototype recognitisn i
emotional signal; for example, a joy facial expression \wél

. . . . below~, then a new neuron is recruited (incremental learning).
assomateq to a positive signal and an angry facial expmessi net is the average of the output, amd.; is the standard
to a negative signal. deviation. This model allows the recruitment to adapt to the

. . . dynamics of the input and to reduce the importance of the
The tested scenario is the following: The robot is in neutraﬁ . - .
oice of the vigilancey. Hence, the vigilancey can be set

emotional state, human displays a joy facial expressiohen tC S L .
o to a low value to maintain only a minimum recruitment rate.
presence of an object; consequently the robot moves to a . .
: " . e learning rule allows both one-shot learning and lomgyte
state and associates a positive value to the object. On the " e . ;
. . : . .averaging. The modification of the weights is computed as
contrary if the human displays a negative facial expression .
) . . ollows:
(anger), the value associated to this object becomes wegati
The robot arm can handle or avoid the objects according to AV, = 5jk(aj ) + e(I; — Vij) (1 — X)) ()
their associated emotional value. In other words, the emati
value associated to the object becomes the reinforcingabigW'th k= A’“_gMax(a_j)v a;(t) =1 only Whenka. new neuron
that the arm uses so as to move. In this scenario, we attempiStd€cruited; otherwiseq;(t) = 0. Here, §;" is the Kro-
emphasise the emotional dimension. The emotion is a way8CKer symbof, ande is the adaptation rate for performing
communicate with the robot. The recognition of the emotion!ng-térm averaging of the stored prototypes. When a new

state regulates the robot internal state and adapts the'sobBeUron is recruited, the weights are modified to match the
behavior to the environment. input (the terma;(t).1;). The other part of the learning rule,

e(I; - Vi;).(1 — X;), averages the already learned prototypes
(if the neuron was previously recruited). The more the iaput

) ) ] ] are close to the weights, the less the weights are modified.
In this section, we summarize the properties of the genetig)nyersely, the less the inputs are close to the weights, the

sensory-motor architecture (PerAc architecture) used asy@re they are averaged. The quality of the results depends on
building block in the following section (Fig. 4). PerAc lear e - yalue. If < is chosen to be too small, then it will have

sensory—mo.tor conditionings [30] in order to form a peraapt only a small impact. Conversely, ¥ is too large, then the
as a dynamical sensory-motor attractor. The low-levelwash reviously learned prototypes can be unlearned. Because of
consists in reflex behaviors. The conditioning pathwayalo s |earning rule, the neurons in thé group learn to average
anticipating reflex behaviors through the learning. Th&me he prototypes of the objects. One neuron can be recruited to
ing performs associations between the recognition of $§nsQqre 4 new pattern when the none of the neurons is suffigientl
information (high-level) and the reflex behavior (low-l1§ve  4ctivated. The initial number of neurons has to be large ghou
to avoid recruitment failure (lack of neurons to be reculjte

In our network, theY group associates the activity of the
——3non modifiable link visual featuresX with the proprioceptiort’ ¢ of the robot (a
simple conditioning mechanism using the Least Mean Square
(LM S) rule [70]):

Xj :netj~H

max('y,net+(rngt)(

net;) Q)

IV. PERAC ARCHITECTURE AS A BUILDING BLOCK

-

—#—» modifiable link

SHeaviside function:
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Hp(x) _{ 0 otherwise

+

4Kronecker function:
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Fig. 4. Sensory-motor architecture based on Neural Networks 0 otherwise



During the learning phase:

V=) Wi X, AWj=e-X; (Y=Y (4
j

After the learning phase:

Y=Y Wi X;+v (5)
J
Y corresponds to the sensory-motor association l&pdis
the synaptic weights betweexi andY. Y predictsY ¢, based
on the input X. HenceY ¢ is the target outpufy' is a vector
with real components (continuous values= 0). Y is also a
vector but a Winner Takes All procedure is used to transform
the analog values into binary values according to g A &
law. o Y/ 2
Z corresponds to a short term memory (accumulation of all
focus points).Z is used to sum and to filter thE activities Fig- 5. Examples of robot facial expressions: a) sadnesspipise, c)
. . . . happiness. d) Example of a typical human / robot interactionegéhere, the
on a short periodX < 1). The Z; highest activity triggers pyman imitates the robot).
the i** motor action WT'A mechanism). After learning, the
associations betweek the view recognition and” are strong
enough to bypass the low level reflex activity coming from th
Y?. Each focus point is associated with a motor acti®i) (
and Z is accumulation over all the focus points:

ﬁelps the robot to associate these expressions with his/her
internal state [13]. In the present study, the robot will be
considered as a baby and the human partner will be considered
Zi(t+dt) =T -Yi(t)+ (1 =T) - Zi(t) (6) as a parent (the father or mother). At first, the robot knows

almost nothing about the environment. Through the intevact

We will show that the robot can develop cognitive abilitie%vith a human, the robot will learn to recognize differentidhc
thanks to this architecture. A cascade of this arChiteCtu&preSSions ’

allows the learning of increasingly complex tasks such 8SEach of the four facial expressions has been controlled

the sociql -referencing. This sensory_—motor architectuité Yoy FACS experts [25]. The validity of this choice could be
allow bglld|ng some .complex_behawors such as _the faCIascussed (especially for the surprise and/or for the ehofc
expressions recognition (sectlon \./)’ the association of e expression names) [41]. However, for our purpose, we nee
emotlona_l value to an object (section Vi) or the control o nly a small set of facial expressions that are easily reizegn
the robotic arm (section X). and that induce a resonance from the human partner (allowing
learning while the human partner is mimicking the robot head

V. ONLINE LEARNING OF FACIAL EXPRESSION The sensory-motor architecture (Fig. 6 and section IV)rigar

RECOGNITION

Here, the robot must learn to recognize (and to understand) MRS
the caregiver’s facial expressions. We investigate howbatro
can develop the recognition of facial expressions such as th
baby could perform it. In our case, we limit our work to the
recognition of basic facial expressions. The tests arddinio I
4 prototypical facial expressions: happiness, sadnesygdnu . e
and surprise [36], [26], [25], [61], plus a neutral face (Fgy W gager adin fclvews

facial expression
Internal state recognition of
for the experimental setup). In other studies, we have shown Pl " e
that using an imitation procedure with first prototypicatiéd 8 /
expression can be generalized to more analog states (such as o)
more or less happy and more or less smiling) and next that 1s)
secondary emotional state can be recognized [11]. BL /

For sake of simplicity, we focus on the online learning
of prototypical facial expression without having a teachin
signal that associates a facial expression with a given aliy. 6. The global architecture to recognize facial expioess to imitate
stract label (e.g., 'sadness’, 'happiness’). In a firstese@f and to recognize fac_e from m_)n-face stimuli. Visual prqcreg;sillows‘ _the
robotic experiments, we showed that a simple sensory—mof@i{ﬁgt'?ﬂeoﬁ(ff;{“sgﬂ '?gi‘cx'eg"ri'u;"if ﬁ(ﬂgngc"czl \t’;";gﬁ;%?p;'t“?g)
architecture based on a classical conditioning paradigmidco performed betweed SP (emotional state: internal state prediction) and a
learn online to recognize facial expressions if and only & V\peuromoqulgtior_l signal, to select the neuron that must |eBne. face/non
assume that the robot first produces some facial expressiIﬂ%g discrimination is leamed by a neural network.
according to his/her internal emotional state and that the

parents next imitate the facial expression of their robdticv the association between the internal state of the robot lzend t

Interaction rhythm

Face/ non Face



visual features. HereX corresponds to visual features learned success,

and recognized when the visual system explore a face (face™® ™
features).Y'? corresponds to internal state of the robt. ” 1
corresponds to the facial expression associated (intstatd sor 1
prediction) to one focus point and corresponds to the facial nr 1
expression recognized after the sequential exploratiothef By 1
image (integration of the answers). sof 1
Moreover, the following experimental protocol was adopted e 1
In the first phase of the interaction, the robot produces a anl —— caness |
random facial expression (sadness, happy, anger, or sedpri ol et |
plus the neutral face for 2s; then, the robot returns to arakut e
face for 2s to avoid human misinterpretation of the robot " —s—aupise ||
facial expression (the same procedure is used in psyclualogi N1z 5+ s 5 7 5 s
experiments). The human participant is asked to mimic the number of persons

robot head. After this first phase, which lasts between 2 and 3 _ _ _
inut ding to the particinant’s "patience”. thearator Fig. 7. The success rate for each facial expression. Theaégare obtained

minutes according to the p p: P » (e during the natural interaction with the robot head. A totél10 persons

of the random emotional states is stopped. If the N.N. (Heuraeracted with the robot head. During the learning phabesd humans

network) has learned correctly, then the robot is able toiminimitate the robot, and then the robot imitates them. To perférenstatistical
. . ' analyses, each image was annotated with the response oftthiehead. The
the facial expression of the human partner.

) - . ’ annotated images were analyzed, and the correct correspmnd@s checked.
Fig. 7 shows that the interaction with the robot head for a

period of 2 minutes can be sufficient for the robot to learn the
facial expressions, and, then to imitate the human partinés.
incremental learning gains in robustness when the number of
human partners increases (expression of sadness can be qui ;|
different among people with the lack of action of some action
units). These results show the robot capability to recagthie na4r
facial expressions of participants who interacted withriteot
during the learning phase. Note that this result is sufficien
to accomplish the social referencing task because the robot
interacts only with known participants (learned during the
learning phase).

Moreover, Fig. 8 shows the measure of generalization vesh
capabilities which is approximately 38% when 10 subjects
interacted with the robotic head during the learning phase, b .+ s 5 s a1
and the success rate is approximately 50% when the robotic number of different faces during learing phase
head learned with 20 subjects. In our experiment, 20 persons
imitated the robot, and then, we asked to a new persongg. 8. Measure of generalization capabilities averagext our 5 categories
perform facial expressions (the success rate is 65% for jd4 facial expressions plus the neutral face). This resuitvsithe success rate

0 0 ; 0 0 es) of the facial expression recognition as a functibthe number of
73% anger, 47% for Surp”SEd’ 4% for sadness and 56% fgj es (x axes) that the system learned during the learninaggphThe success

neutral face). rate was measured on a database built from images of 10 othtégigzarts
(1600 images that were never learned). The generalizatiomoirap after
interaction with increasing numbers of people.

0361

03zr

succes rate (%)

026

VI. FACE FROM NON-FACE DISCRIMINATION CAN EMERGE
THROUGH THE EMOTIONAL INTERACTION

Recognizing a face from a non-face can be accomplishétk robot facial expression changes after 4s). The inferact
autonomously if we accept that learning to recognize a fadeythm can be predicted by using a prediction of the timing
can occur after learning to recognize a facial expressind, abetween 2 visual peaks (a stable frequency of interaction
not the opposite, as is classically considered. To perfarm af the human partner). A measure of the prediction error
tonomous learning, we introduced the capability of prédict can easily be built from the difference in activity between
the rhythm of the interaction [4] to avoid learning when therthe predicted signal and the non-specific signal itself. un o
is no human participant in front of the robot or when thetudy, the non-specific signal is the movement produced by
human is not paying attention to the robot (for example, whehe human. The non-specific signal is related to the presence
the human partner is leaving or talking with someone else)or absence of the human partner. If the error is important,

When a participant displays a facial expression, he/she p#ren there is a novelty (the participant is not in the rhythm)
forms whole face or body motions. If the participant imitateOtherwise, the prediction error is small, which involvesoad
the robot, then his/her movement peaks have a frequerniteraction between the participant and the robot. Mangtistu
that depends on the frequency of changes in the robot fadialpsychology underline the importance of synchrony during
expressions (in our case, this frequency is constant becatl®e interaction between a mother and a baby. For example,



babies are extremely sensitive to the interaction rhythrin wi
their mother [53], [52], [24]. An interruption of the social
interaction involves negative feelings (e.g., agitatitears).
However, a rhythmic interaction between a baby and his/her
mother involves positive feelings and smiles. These studie
show the importance of the interaction rhythm. In our cdse, t
rhythm is used as a neuromodulation signal or a label (see [4]
for the application of the same principle to the learning of
an arbitrary set of sensory-motor rules and the details ©f th
N.N.):

« a rhythmic interaction is equivalent to a positive neuro-
modulation: the robot head and the participant produce a
coherent action at each instant. ' 1 ' 2 3 ' 2

« conversely, an interruption of the interaction is intetpde number of different faces during learning phase
as a negative neuromodulation.

We consider this second network for the face/non fae®y. 9. Face/Non-face recognition and generalizations Tesult shows that
discrimination that functions in parallel with facial exgsion the success rate of face recognition is a function of the nuwitfaces that the
recognition. This network learns to predict the rhythm {S:)een;;;ar(gggoo?milgég?_ tzftgf?;?;?gcgggsﬁitg r;il;eiuggénlﬂﬁ?egyggg
the interaction, allowing detection if an interacting ag€é@ generalizes to 21 people.
human) faces the robot head. The interaction rhythm pravide
the reinforcement signal to learn to recognize an intemgcti
partner, which is a human, and, more specifically, to leawith the robot. Because the robot head performs facial expre
to recognize his/her face at a short interaction distange (tsions with a known rhythm, it is easy for the N.N. to attempt to
robot sees the human face and not the other parts of his/pggdict the visual signal according to its own rhythm. When
body). predictions match the robot action rhythm, this means that

one human is interacting with the robot. This solution agsoid

The results linked to this online learning of the face argropagating the emotional recognition when the human doesn
highly positive. When the face detection is learned and dest@teract with the robot.
using the same participant, the system success rate with thaas soon as the recognition of human facial expressions has
participant tends toward 100%. However, when the face det@gen learned, the human partner can interact with the boti
tion is learned with a single participant and is tested orfot head to associate an emotional value to an object (positive o

participants, the system success rate ranges between 28% rggative). The N.N. processes (see Fig. 10 and 16) in the same
people with beards) and 90% for more "similar” participants

success rate (%)

It is important to consider that the learning was performed | ‘ i
during a period of only 2 minutes (in real-time: frame rate r | ﬁh g\
10 Hz) with a single participant. This scenario shows the vF ol egrssion
generalization capabilities of our visual system when §irogl fier) " e

the robot’s attention on particular visual features. Nowmew ~ [gf-~m o ¥
face detection is learned on 4 participants and the tests are memise
performed on 21 different participants, the system success [
rate tends toward 95% for face detection (see Fig. 9). THe weu
performances improve after the interactions with an irgirep

number of people. Fig. 10. This sensory-motor architecture shows how the ffa@ipressions

At this development stage, the robot head is able to recciﬁggggggnvjﬂg :Qilrﬁagge"cffeC"°“ are integrated in ordeassociate the
nize and understand the emotional facial expressions and to
discriminate the face from a non-face. In the following st
we will show how the robot can assign an emotional signal way signals from the robot's internal state and information
an arbitrary object. correlated with this internal state. An internal state cégger
a robot facial expression and a human facial expression can
VII. A'SSOCIATING AN EMOTIONAL VALUE TO AN OBJECT  trigger also the robot facial expression (Refer to (5)). éNot
This section shows how the facial expressions recognititimat in real life condition the reflex associations shouletlsa
and the face detection are integrated in order to assodiate lbe activated since they are only related to low level signals
emotional value to an object using always the same Perfioternal levels, tactile signals). During the learning toe
building block. When the human partner interacts with thiacial expressions recognition, we bypass natural intenas
robot, the robot uses the human’s expressiveness to regulat a fast and random activation of the different states to
its behavior. obtain enough feedback from the human partners. In case
In our scenario, the robot must consider the output of itsff conflict, between the internal statd.y) and the facial
facial recognition system only when the human was intengcti expression recognitionF{£), the reflex links connectings to

Face/ non Face



focus points focus points

the control of F'E (through S P) are higher than the learned without pre-attentional mechanism with pre-attentional mechanism
links coming from the recognition of visual featurds i{) to Y
ISP. The internal state remains dominant. This means that if
the robot touches an object inducing some pain (because of
a "tactile” hardwired feedback), the pain signal will win on
any previous positive association regarding this objécb(igh
social referencing for instance). Recognized visual diimu
(VF) will either be conditioned to internal state prediction
(ISP) or to the object state predictio®W S P) (the IS P being
"priority” on OSP because of the reflex link fromiSP to
OSP). In recent works, we have generalized this association
capability adding a feedback loop frothS P to 1.5 P to build
second order conditioning and to allow the robot learning
complex chains of conditioning [1] but this is out of the seop

of the present paper. In our experiment, the internal state i
absent (the internal state neurons have all null valueg), th
recognized facial expression induces an internal statghwhfig- 12. Visual processing with or without pre-attentionachanism.
is associated with the object (a simple conditioning chain:
Fig. 16). Classical conditioning is used to perform the asso

Vision

Color detector

focus point

saliency map

Gabor filter

Fig. 11. Visual attention. The system focuses on some reldeatures of
the image. A saliency map is performed in order to focus an istiewg area
in the image. Visual primitives are calculated independe(®gbor filters,
color detector), a fusion of these primitives is performed rideo to find the
area that the robot must analyze.

ation between the emotional value transmitted by the human
and some local views of the image. An attentional process is
also introduced to avoid that the robot spends too much time ) ) _ o
looking its own arm (see [35], [18] for more information).&h Fig. 13. The 10 objects use during the social referencingmxgnt.
robot focuses on colored patches and textures (Fig. 11 and 12
We use a very simple spatial competition between different
maps (colors, textures). When focusing on an object, thetrolmbjects one after another (Fig. 13). Each object is put few
extracts some focus points and associates the recognitiorseconds in the robot workspace (Fig. 12) and each object
the local view surrounding each focus point with the ematlonis learned as the result of the emotional interaction wit th
value recognized by the robot. Starting again from our generobotic head. During the learning phase, the objects posis
architecture (see section IV and the Fig. &), corresponds fixed (the object doesn’'t move) and the human partner sends an
to visual features (object featuresy, corresponds to the emotional signal to the robot: a positive signal when thedbj
recognized facial expressiorY, corresponds to the objectcan give pleasure and a negative signal when the object is
emotional value for one focus point atficorresponds to the dangerous. The recognition of emotional value is 87% for the
global object emotional value after the sequential expiona negative objects and 98% for the positive objects. The siscce
of one image. According to our sensory-motor architecturegte difference between the positive and negative objexts i
the proprioceptive signal is considered as a training $ifpra only related to the variability of the objects complexityhel
the Y layer. This training signal corresponds to the internauccess rate shows the robustness of the model despite some
state prediction (facial expression recognized by the tjobovariations such as the distance and the object positiondn th
Consequently, the sensory-motor architecture assoctates image (the objects are put at different locations).
internal state prediction with the visual perception (abjeTo Hence, the robot is now able to use the emotional facial
associate an emotional value to an object, the trainingasigmexpression of the human partner in order to assign an emo-
is provided by the facial expression of the human. tional value to an object. As a result of the interaction vtite

The tests were performed with 10 objects (5 positive objegtairtner, the robot recognizes and "understands” the hugnan’
and 5 negative objects). We put on the workspace the differexpression in the aim of disambiguating some new situations




VIIlI. EMOTIONAL INTERACTION REGULATES THE the learning robustness to the noise. Now, the arm avoids the
ROBOT S BEHAVIOR object as if the object appears to be “dangerous” to the robot

At this stage of the development. the robot has some cal To provide more quantitative results on the robotic arm
At 9 development, - . %%pability to catch the objects having a positive emotional
bilities such as the facial expressions recognition, tociate

)éalue. We performed the following experiment: the objects

an er_not|onal value tq an object ?‘”d to _control his mUIt"Doare put at different positions to show that the robot cantcatc
robotic arm (see section X). In this section, we show how tkée

robot can integrate all these capacities to regulate itaxieh hd recognize the objects in the whole workspace. Fig. 15
9 P to regu . . shows that the robot is able to reach the positive object (92%
In our experimental set-up, the emotional interaction wnEn

. . . success rate) and to catch it (with successful prehensi#: 8
the human partner can bias the object approach. The Objesﬁgcess rate). The robot fails only when the object can't be

and the human facial expressions can provide a relmcorCIPeqached (environment area not surrounded by attractors). |

et i e 1 oy mtonstahe e th abjct s negatve, the oot avads the hre
) 9 objects all time (100% success rate). These results highlig

In others words, the robotic arm can reach or avoid an Obletﬁ robot’'s capability to adapt its behavior according te th

according to the parametet. emotional signal (emotional value associates to object).

1 if the emotional value is positive
A= ) . . . @)
—1 if the emotional value is negative
reach catch
In this experiment, one object is put in the robot workspace. Foci 1 SO SO
If the object is associated to pleasure and/or a smile fran th 0 !eCt 0° 00
human then the robot reaches the object. On the contrary, if Obl_eCt 2 90/‘(’) 800/0
the object is dangerous and/or is associated to a negative ex ob!ect 3 1084 SOOA’
pression from human partner, then, the robot avoids thebbje object 4 90% 80%
Fig. 14 shows the important dynamics induced by the social | object 5 90% 80%
average 92% 82%
+ . - . -

o : // o : Fig. 15. Success rate when the robot attempts to catch objectise
g% }\(\ o environment. The 5 positive objects are put one after therstire the
B “(g ; ﬂ g« : workspace. Each object is put at 10 different positions ia wWorkspace
N 4o * - B : allowing obtaining quantitative results for the prehensd$ positive objects.
Zg: :

—— positive value +

—— negative value =

o
! <) :
T time T1 time

o

At this level, the robot can reach an object if the self-
generated reinforcing signal is positive (the emotional value
is positive) and avoid an object A is negative (the emotional
value is negative). The human emotional expression is able t
communicate an emotional value to an object (for instance a
dangerous object or an interested object) and moreover can
object modulate the robot behavior.

negative interaction (after T,)
positive interaction (before T, )

speed

b) . d)
T time

IX. CONCLUSION

Fig. 14. These curves show: a) the emotional value transmitiset@bject In our study, the social referencing is seen as a cascade of
thanks to the interaction with the human’s partner (befbrdauman transmits ensory-motor architecture (Fig. 16). We showed that thetro
a positive value afte?’} the human transmits a negative value) b)the spee(?s . . ) ) L
of each arm's motor (6 degrees of freedom) c) the distance tolifeetod) Can learn different behaviors (or tasks) through the ictésa
the robotic arm trajectories from different starting psinthe arm is able to with the environment (Fig. 17): facial expressions rectigni
reach the object associated with the happy facial expressiml avoid the (B1), face/non face discrimination (B2), the associatidn o
object when it is associated with the angry facial expressio ’ . . ’
an emotional value to an object (B4) or the control of the
robotic arm (B3). Each ability can be learned automously
referencing architecture. Fig. 14a shows the object’s mmat and online therefore the social referencing may emerge once
value associated with the facial expressions of the humen pall these cognitive abilities will be learned. However, gom
ner. BeforeT}, the partner displays a happy facial expressicabilities such as the association of an emotion to an object a
in presence of the object, the human associates a posifivefficient while the facial expressions recognition hagrbe
emotional value to this object. We can see (Fig. 14b,14c) thet learned. Consequently, some skills must be learned first
more the distance between the gripper and the object desrea® that others can be learned correctly. In our experiment,
the more the speed of the arm’s motors decreases in ordetvto different cameras are used: one looking in the direction
tend to 0 when the object is reached. Aftdr, the human of the human and another one looking in the direction of
partner displays an angry face (transmitting a negativeejal the object. Therefore, it was possible to learn the visuo-
the object value is modified (negative emotional value). @fe cmotor control of the arm in parallel with the learning of
see that the emotional value is now negative although, duethe facial expression recognition (Fig. 17a). In practites
noise, the positive emotional value is still high. This skowfacial expression recognition and the face/non face rdtiogn
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Arm reaches or avoids an object
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VF: Visual Features  Osp: Object State Prediction
IS: Internal State OEV: "Object" Emotional Value
FE: Facial Expression a; self generated reinforcement signal
ISP: Internal State Prediction
on modifiable ik -« -« - - - P modulation link

——4/—pp modifiable link ——J algorithmic link

Fig. 16. Global architecture for the social referencing nio8ecial referencing emerges from the sensory-motor intierss between facial expression
recognition, objects emotional value and visuo-motor legyrfor the arm control. A simple sensory-motor architecturabite to learn and recognize the
facial expressions, and then to discriminate between faoefarce stimuli (face detection). Using a simple chain of ctoning, the robot learns the emotional
value of an object as a result of the interactions with the hu(fece discrimination). The robot focuses on an object usingual attention processes (Gabor
filters, color). After a visuo-motor learning, the robot areaches or avoids some objects in the workspace thanks tolffgeserated reinforcement signal
A (emotional value coming from the facial expression recognjtiA is built as the result of the facial expression recognitieiti( A; neuron corresponding
to happy facial expression, thé; neuron corresponding to angry facial expression)

Bl . improvement always possible
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Fig. 17. The different behaviors learned by the robot. ah\&itameras (our
experimental set-up), the robot learns the different bemaor tasks) through
the interaction with the environment. B1: the learning ofidaexpressions.
B2: learning of face/non face discrimination. B3: learninigvisuo-motor
coordination. B4: Emotional interaction regulates the tsbbehavior. The
gray shows that the learning can always be improved. Learointhese
cognitive skills. b) with 1 camera, the development could beset to the
baby development with the need to alternate between thel soalaphysical
interactions.

or if the cameras have to look in the same global direction
(as for human gaze) then there is a need to add a mechanism
to alternate the attention between two directions. A simple
oscillatory mechanism could be sufficient to control theugis
attention. However, for the learning of the arm control, it
would be better to perform this task until some progress has
been made in this learning. Hence it is clear that some comple
self-evaluation need to be added [67], [57], [6]. In [40], we
propose a possible solution but it has not been tested for our
problem.

To our knowledge, our architecture is the first one that lgarn
a coupling between emotion (facial expression recognition
and sensory-motor skills. We developed a real self-supedvi
developmental sequence contrary to others authors [14], [6
Yet, we don’t solve the question of joint attention which s a
important issue. Joint attention may also be reached using a
learning protocol similar to Nagai [56] (developmental rabd
for the joint attention).

We think our sensory-motor approach can provide new
interesting insights about how humans can develop social
capabilities from sensorimotor dynamics. For exampleg-stu
ies [9] show that humans use the theory of mind (to assign
mental states to the self and to others [63]) for complex
social interactions. For example, the false-belief tasleisame
the test for crediting a child with a theory of mind [9].
One consequence of this definition is an emphasis upon
representational mental states and knowledge rather {bam u
emotions, intentions, perceptions. In contrast to curiaEit
velopmental theory which considers the social interastias
a complex cognitive process [9], our works suggest 1) the

were performed first. Next, the arm control was learned apdimacy of emotion in learning, 2) the effectiveness of gsin

finally the social referencing was learned. Starting to thieyb

a simple conditioning for the learning of facial expression

development, the learning should be continuous and aternthrough an imitation game with the human partner 3) the
(Fig. 17b). If the two cameras are replaced by a single camefficiency of a simple system of pairing internal emotional



state with object-directed behavior. New neuropsychalggi [5]
studies related to the mirror system in emotions [37], the
neural basis of intersubjectivity (e.g. [29]) as well as Ourg
study highlight the important role played by emotion in the
emergence of social referencing. Social cognition, inicigd 7
social referencing, may have stronger emotional foundatio
and less need for complex cognition than previously thought
(e.g. [7]). Our works show that the robot can develop social
interactions without a theory of mind, and, we argue that th%]
theory of mind can emerge from social interactions. Thesgfo
the theory of mind should be considered as a development[%%
processes [19].

To improve the functioning of our architecture, there may beo]
a need to modulate the internal emotional state as a function
of intensity of emotional expressions and to modulate they,
behavior to the object in accordance, e.g. an intense angry
expression might involve withdrawing, and an intense happy
expression might involve picking up more quickly. Ongoingu]
work suggests it might be possible by using a population
coding at the different stages of the architecture. (13]

The facial expressions are an excellent way to bootstrap
complex sensory-motor learning. The relationship betvtben [14]
robot and the partner is dramatically changed thanks to an
emotional communication. It allows the robot to learningl an
manipulating an object. The dynamical interactions betwegis)
the robot and the human participant allows to simplify learn
ing, for example, the robot can learn autonomously and enlihlﬁ]
the facial expressions if the human partner mimics the robot
(resonate to the robot facial expression). Consequentty, w
show that the dynamics of interaction and simple rules (I@eri\m
architecture) are sufficient to have an autonomous robads Thig]
work suggests the robot/partner system is an autopoietialso
system [51] in which the emotional signal and empathy are
important elements of the network to maintain the inteacti [19]
and to allow the learning of more and more complex skills for
instance the social referencing. 120]
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Fig. 18. Model of the arm controller (see [23]). The sensotonanap can learn to associate visual stimulus and proprimeeptformation of the arm.
A competition between visuo-motor neurons enable to asgociatrent proprioception with the most activated visual tnpeuron. Thus, neurons on this
layer can activate one or several attractors (construeted ¥isuo-motor neurons) in the motor space. If the currenttipasof the arm is different of the
generated attractor, a non-null motor command is read out byyeuks adapted dynamical equations and given to the rolaotit. In the social referencing
experiment, this model is used to catch or to avoid objectsrdoup to the emotional interaction.

and, the visuo-motor controller can learn the correspocelercontrolling the speed: .
between the attractors in the joint space and the visualiposi

of the arm end-effector. After this learning, the robot arm Tod = f(z)x A+e (®)
can reach several positions in the workspace. One visual a (X; —x)

position corresponds to one or several motor configurations fz) = Z zm 9)
(e.g. attractors). These attractors pull the arm in anditra =1

basin (the target position). Recently, [28] has proposed& s N gi(x) (10)
tion (Yuragi/fluctuation method) for arm control in the moto L Z;’;l g;(z)

space. This model is based on the use of a limited number of )

attractors allowing the arm to converge reliably toward ohe gi(x) = exp{—B||X; — x|["} (11)
these motor configurations. The robot modulates the stenggit n, the number of selected attractor; (i=1, ... , 7,)

of the nearest attractors in the joint space allowing angati 5 vector reprensenting the center of the i-th attractor &ed t
a virtual attractor in the joint space. Yuragi equation &80 fynction N; a normalized Gaussian. The behavior of this
with a fitness signal to control the end-effector displacemesystem is such that the arm approaches to the nearestaittract
S0 as to minimize the fitness function. The exploration alow
avoiding possible local minima by creating new states when\wnhere x and f(x) are the state (arm proprioception) and the
necessary and by playing with the visual associations.  gynamics of the attractor selection mode}, = 0.1 is time
Taking inspiration from this model, our working hypothesigonstant and: represents noised is the reinforcing signal
is that proprioceptive configurations associated with tiseal \yhich indicates the fitness of the state x to the environment
positions of the arm end effector can be used as attractgfgy controls the behavior of the attractor selection model.
to achieve the visuo-motor control. The dynamical equatiofnat is to say,f(z) * A becomes dominant when the activity
of the Yuragi controller allow smoothening the trajectoryg large, and the state transition approaches deternainisti
The interest of this controller is the capability to conttoé  pehavior (converge towards the goal). On the other hand, the
exploration/exploitation dilemma according to a reinfament gisec becomes dominant when the activity is small and the
signal. If the fitness signal increases, the strength of tAgyte transition becomes more probabilistic. Modulatinhgf
attractors is increased and the noise is decreased (@twak the command: or the noise levek enables to switch from
and vice versa if the fitness signal decreases and the ra”d&mverging toward one of the selected motor configurations
exploration increases (see [23] for more details). In oweca (Fig. 19.a) to exploring randomly the working space by

signal for the "Yuragi” controller while the "anger face” isyjce versa.

related to a negative fitness signal.

C. Results

B. Yuragi Controler After verifying the convergence of the arm to a learned
Following Langevin equation (Refer to (8)) used to deposition, we tested the convergence to a visual positiottegho
scribe Brownian movements, [28] proposed that using randdratween four learned attractors. If the arm/target digtanc
configurations expressed in the joint space of the arnis( lower than 3 pixels then the movement is stopped, the target
the current proprioception) combined with a noise paramets considered as reached. Fig. 20 shows the results when
is enough to move a robotic arm toward any position biyre robot has to reach a not learned position. The "virtual”
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precision. The accuracy can be improved by recruiting
a new attractor close to the target.

. « the architecture can merge attractors in order to make
a "virtual attractor”. For example, the Fig. 20b) shows

4 attractors activated to reach a not previously learned
position.

the trajectories of the robotic arm are curvilinear which

involve smooth movements of the robotic arm (Fig. 20c

and Fig. 20d).

At this point, the robot can reach a neutral object in its
workspace as the result of the cooperation of sensorimotor
map and the Yuragi method.

Fig. 19. Simulation of 3 DoF arm proprioception using (Refer(8)). a:
The trajectory converges to the nearest attractors. Simonlgrameters are
following: number of iterations=1000; beta (Gaussian patane20; noise
level emaq2=0; Number of attractors = 8; shading parameter=0.01; Ax1.
When the ratio of A to noise level decreases, noise has a sraffgct on
the speed command and allows an exploration of the motor spalcgumips
from an attractor to another. Simulation parameters areviolig: number of
iteration=about 5000 ; beta (Gaussian parameter)=20 ; t@igtc,q,=1 ;
A=1; shading parameter=0.01.
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Fig. 20. Trajectory of the robot arm end effector in visuaep Experiments

are made of several trials. For each trial the arm is inigaliat a different
position. The black circles correspond to the learned ettira and the black
cross is the visual target to be reached. The stars are ttiegtaositions for
each trial. a) Reaching a learned attractor, 2 attractdigaéed. b) Reaching
a not previously learned position, 4 attractors activaitd. also record the
distance between the arm end effector and the target in thealvispace

France. Currently his research interests are focused
on the modelling of cognitive mechanisms and brain
structures such as the hippocampus and its rela-
tions with cortical structures like parietal, temporal
and prefrontal areas, the dynamics of visual per-
ception,the development of interaction capabilities
(imitation, emotions...). Current robotic applications

(number of pixels). c) Reaching a learned position, 2 tridJsReaching a not
previously learned position, 6 trials. The light gray lineoss the threshold
under which the target is reached.

include autonomous and online learning for motivated visualigation,
object manipulation, emotion, social referencing.

attractors are built as a linear combination of the reahattrs.
The results show the robot’s capability to reach target & th
robotic arm workspace. Fig. 20a) and Fig. 20b) show the
trajectories of the robot arm towards a target. The arm |
able to reach the target whatever the starting positions. Tl
robotic arm succeeds in reaching a visual stimulus at anitr
places. These results show that the cooperation of the 1Igensc
motor map and the Yuragi method (Refer to (8)) offers al
interesting basis for the control of a robotic arm with a self &
learning of the associations between visual and motor spac
This architecture (Fig. 18) has some interesting propertie
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« the learning of a few attractors is sufficient to reach any
position; the robotic arm reaches the target with high



